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Correction du problème 1 l’examen du 3 avril 2020

Problem 1: DoS correction and Altshuler-Aronov correction

1/ The density of states (DoS) correction is

δν(ε)
def
=

1

Vol

∑
α

δ(ε− εα − δεα)− 1

Vol

∑
α

δ(ε− εα) ' 1

Vol

∑
α

−δεα
∂

∂ε
δ(ε− εα) (24)

thus

δν(ε) ' −ν0
∂∆(ε)

∂ε
(25)

2/ We now get an expression for ∆(ε). From the expression of the Fock contribution :∑
α

δ(ε− εα) δεF
α = −

∑
α, β

f(εβ)

∫
Vol

dd~rdd~r ′ δ(ε− εα)φ∗α(~r)φ∗β(~r ′)U(~r − ~r ′)φα(~r ′)φβ(~r)

now insert
∫

dε′ δ(ε′ − εβ) = 1 in the integral in order to introduce the non local DoS. One gets∑
α

δ(ε− εα) δεF
α = −

∫
dε′ f(ε′)

∫
Vol

dd~rdd~r ′ νε(~r
′, ~r) νε′(~r, ~r

′)U(~r − ~r ′)

Averging, one obtains

∆(ε) = − 1

Vol ν0

∫
dε′ f(ε′)

∫
Vol

dd~rdd~r ′ U(~r − ~r ′) νε(~r ′, ~r) νε′(~r, ~r ′) (26)

3/ The non local DoS correlator is expressed in terms of the diffuson :

∆(ε) = − 1

π

∫
dε′ f(ε′)

∫
Vol

dd~rdd~r ′

Vol
U(~r − ~r ′) Re

[
Pd(~r, ~r

′; ε− ε′)
]

(27)

= − 1

2πν0

∫
dω f(ε− ω)

∫
Vol

dd~r

Vol
Re [Pd(~r, ~r;ω)] (28)

where we have used that the effective screened interaction is U(~r) ' 1
2ν0

δ(~r). Applying (3), we
get

δν(ε) =
1

2π

∫
dω f ′(ε− ω)

∫
Vol

dd~r

Vol
Re [Pd(~r, ~r;ω)] . (29)

4/ We use the spectrum of the diffusion operator. Write first

Re [Pd(~r, ~r;ω)] =
∑
n

|ψn(~r)|2 Re

[
1

−iω + λn

]
=
∑
n

|ψn(~r)|2 λ2
n

ω2 + λ2
n

∫
dd~r
−→

∑
n

λ2
n

ω2 + λ2
n
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and ∫ ∞
0

dtPd(t) cos(ωt) =
1

Vol

∑
n

∫ ∞
0

dt e−λnt cos(ωt) =
1

Vol

∑
n

Re

∫ ∞
0

dt e−(λn+iω)t

=
1

Vol

∑
n

λ2
n

ω2 + λ2
n

Qed.

• At T = 0, using f ′(ε− ω) = −δ(ε− ω) the relation is thus proved :

δν(ε) = − 1

2π

∫ ∞
0

dtPd(t) cos(εt) at T = 0 . (30)

• We can also prove the relation for T 6= 0 (not asked). We write∫
dε [−f ′(ε)] eiεt =

πTt

sinh(πTt)
(31)

Using the previous manipulations, we have

δν(ε) =
1

2π

∫
dω f ′(ε− ω)

∫ ∞
0

dtPd(t) cos(ωt)

= − 1

2π

∫
dω

∫ +∞

−∞

dt′

2π

πTt′

sinh(πTt′)
e−i(ε−ω)t′

∫ ∞
0

dtPd(t) cos(ωt)

in order to make the integrals more symmetric we use∫ ∞
0

dtPd(t) cos(ωt) =
1

2

∫ +∞

−∞
dtPd(|t|) cos(ωt) =

1

2

∫ +∞

−∞
dtPd(|t|) e−iωt

(in principle, Pd(t) is defined for t > 0). Integral over ω produces δ(t− t′), hence (7) .

5/ The diffuson is Pt(~r, ~r ′) = 1
s
√

4πDt
exp

{
− (x−x′)2

4Dt

}
and Pd(t) = 1

s
√

4πDt
(section of the wire

arises from the fact that diffusion is transversally ergodic).
At T = 0, one has

δν(ε) = − 1

2πs

∫ ∞
0

dt√
4πDt

cos(εt) (32)

Using the integral
∫∞

0
dt√
t

cos(εt) =
√

π
2|ε| , one gets

δν(ε) = − 1

4πs
√

2Dε
for T = 0 . (33)

For T 6= 0, we cannot compute the integral simply. However for ε = 0 we can estimate the
integral as

δν(ε) ≈ − 1

2πs

∫ 1/(πT )

0

dt√
4πDt

⇒ δν(ε = 0) ∼ − 1

s
√
DT

(34)

hence the singularity is regularised by thermal fluctuations.

6/ This is exactly the behaviour observed for δGt(V ) ∼ δν(ε = eV ) in Fig. 1 : δGt(V ) ∼
−1/

√
|V |, cut off at V = 0 as δGt(0) ∼ −1/

√
T .
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B. Altshuler-Aronov correction.– We now consider the correction to the conductivity.

1/ We have already used a similar argument to estimate the integral in question A.5 : we have
πTt

sinh(πTt) ' 1 for t� 1/T and ∼ exp−πTt for t� 1/T . Hence the thermal function cut off the

integral over times at scale ∼ 1/T .

2/ The conductivity can be estimated as

∆σee ≈ −
2e2D

π

∫ 1/(πT )

0
dtPd(t) = −2e2D

sπ

∫ 1/(πT )

0

dt√
4πDt

thus

∆σee ∼ −
e2

s

√
D

T
= − e

2

s~
LT (35)

where LT =
√

~D/kBT is the thermal length. Since we have obtained that δν(0) ∼ −1/(s
√
DT )

at Fermi level, we see that the two corrections are indeed related through the Einstein’s relation

∆σee ∼ e2Dδν(0) . (36)

3/ The Altshuler-Aronov correction is a quantum correction due to electronic interaction, which
should be added to the weak localisation correction. The latter depends on temperature through
the phase coherence length. It also depends on the magnetic field (as it is controlled by the
Cooperon)

∆σ = ∆σee(T ) + ∆σWL(Lϕ(T ),B) (37)

The AA correction does not depend on B since it is controlled by the Diffuson.
In experiment, one can identify ∆σWL through its magnetic field dependence. The AA

correction can be singled out by applying a strong magnetic field, which kills the WL correction :

∆σ ' ∆σee(T ) at strong B . (38)

4/ The figure 2 clearly shows the behaviour

∆R

R
= −∆σee

σ0
∝ +

1√
T

(39)

for the lowest current (I = 0.5 nA and 0.3 nA). The deviation at the lowest T for larger current
(I = 10 nA) can be explained by Joule heating in the wire. Although the temperature of the
fridge is imposed, a strong current induces Joule heating and increases the temperature locally in
the wire. Hence, the interest of the AA correction is to provide a local probe of temperature.

* To know more about the problem

The Hartree correction was neglected here. It provides a correction, which modifies the prefactors of
δν(ε) and ∆σee. A more precise discussion and some references can be found in :

• Chapter 13 of the book of É. Akkermans & G. Montambaux (Mesoscopic physics of photons and
electrons, Cambridge, 2007)

• An overview can be found in chapter 5 of my HDR :
C. Texier, Désordre, localisation et interaction – Transport quantique dans les réseaux métalliques (Ha-
bilitation à Diriger des Recherches, Université Paris-Sud, 2010), http://tel.archives-ouvertes.fr/
tel-01091550.
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