Master 2 iCFP

Waves in disordered media and localisation phenomena — Exam
Friday 3 april 2020
Duration : 8 hours.
Lecture notes are allowed.
Write your answers for the two parts on separate sheets.

Solutions will be available at http://www.lptms.u-psud.fr/christophe_texier/

Problem 1: DoS correction and Altshuler-Aronov correction (CT)

Interaction (among electrons) is reinforced by disorder at low temperature, due to the (slow)
diffusive motion of electrons. They are responsible for a negative quantum correction to the
density of states (DoS) ov(e). The conductivity receives a quantum contribution of same origin,
known as the “Altshuler-Aronov correction” Aocee, which is expected since the DoS and the
conductivity are related by the Einstein’s relation o = e?vD, where D is the diffusion constant.

A Don't get stuck on a question. The problem is written so that you can progress until the end. A

A. DoS correction.— Consider a disordered metal. The one electron spectrum in the presence
of disorder is denoted by {e,, ¢o(7)}, where « labels one particle eigenstates. Using pertur-
bation theory, one obtains that the electron-electron interaction is responsible for two types of
corrections to the energy levels : £, — €4 + 0gq With de, = dell + 0k

e The Hartree correction is el = [, | d?7d?’ |G ()| U(F—7") n(7"), where n(7') = > f(ep) lps (7))
is the electron density, f(¢) the Fermi function. Here, U(7—7") denotes the screened Coulomb
interaction in the metal.

e The Fock contribution, due to exchange (Pauli principle), is

b=~ flep) /V lddfddf' Ga (M5 (F) U = 7) da(7) ¢5(7) - (1)
ﬁ [0}
A measure of the perturbative correction at level ¢ is given by
1
Ale) = 0(e — €q) beq 2
(& = Gorsg 20 =0 2)
where - -- denotes averaging over the disorder and vy = ﬁza d(e —€q) is the DoS per unit

volume (which can be assumed flat for € ~ ep, the Fermi energy).

def

1/ Show that the DoS correction dv/(e) = 5>, 0( — €0 — 02a) — 5100 0 (€ — €a) is given by
0A(g)

0 ~ — 3
(o) = 3)
2/ Assuming that Hartree contribution is negligible, de!! < ¢k i.e. de, ~ def in A(e), show
1
Ale) = — / de’ f(<') / dFdYF U(F = 7)) ve (7, 7) ver (7, ) (4)
Vol vy Vol

where v (7, 7') = 3, ¢a(7)$%(7) 6(—¢q) is the non-local DoS [with v(e) = iy [y, A% ve (7, 7).
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The correlations of the non-local DoS are related to the diffuson (cf. diagram of Fig. [1f) :

" 1 L
e moal ™)

Ve (T, P (P! F) = ? Re [Pd(F, F';w)] where Py(7,7;w) = 5)

Furthermore, the screened Coulomb interaction in metals has very short range. At the scale
2 Le, it can be replaced by U(7) ~ zu o(7).

~

3/ Deduce the form

d—»
dv(e) = 217T/dwf(€— )/Vlc\lfl Re [Py(7, 7 w)] . (6)

We now want to prove the following time representation

1 [ Tt
(51/(6) = —% . dtpd(t) COS(€t) m (7)
where )
Palt) = 5 / AP, 7) and - Py ) = (7[R (8)
Vol Vol

i.e. with &,P(F,7") = DAP,(F,7").

4/ When T = 0, the Fermi function is f(¢) = 0u(—¢), where 0y is the Heaviside function (we
choose the Fermi energy at ey = 0). Prove (7)) for 7' = 0 from (0.

Hint : use spectral representations, such as Py(7,7;w) = > W_Qﬁ’g\ ) and Pu(r, 7)) =

2 Un (M5 () €7 where —DAn(F) = Anhn (7).

5/ Recall the expression of P;(z,2’) and P,4(t) in a narrow wire of section s (one dimensional
case). Using the integral of the appendix, get the DoS correction dv(e) for T' = 0. Estimate
dv(e = 0) for finite T (do not try to calculate precisely the integral).
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Figure 1: Left : One diagram for DoS correlations. Right : Figure from : F. Pierre, H. Pothier,
P. Joyez, N. O. Birge, D. Esteve and M. H. Devoret, Electrodynamic Dip in the Local Density
of States of a Metallic Wire, Phys. Rev. Lett. 86(8), p. 1590 (2001).



6/ Tunnel conductance.— The DoS correction can be measured as follows : electrons tunnel
between the wire and a tip on the top of the disordered wire. The tunnel current is controlled
by the “tunnel conductance” Gy. One can show that it receives a correction

0GL(V) (e =¢€V)

R (9)

where V' is the voltage drop. Compare with the experimental curve of Fig.

B. Altshuler-Aronov correction.— The conductivity receives a correction of same physical

origin, given by , ,
2¢D [ wTt
Avee = — dtPy(t) | ——F= 10
Tee ™ /0 Pa(t) (sinh(th)) (10)

1/ Justify that the thermal function (%)2 acts as a cutoff for times t > 1/7.

2/ Using the expression of Py(t) found above, deduce the main temperature dependence of Acee
for a narrow wire (a rough estimation of the integral is sufficient). Check that Acee and
dv(0) are related in agreement with Einstein’s relation.

3/ The conductivity of a disordered metal receives several quantum corrections : Ao = Acee +
Aowr. What is the origin of the temperature dependence of the weak localisation correction
Aowr, 7 How can one identify the two contributions in practice in an experiment ?

4/ The AA correction A—RR = —AUL;‘* has been measured for long wires as a function of the
temperature (cf. Fig. [2|) for different currents. How can one explain the different curves ?
What can be the interest to study this contribution ?
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Figure 2: From : C. Bauerle, F. Mallet, F. Schopfer, D. Mailly, G. Eska and L. Saminadayar,
Ezxperimental Test of the Numerical Renormalization Group Theory for Inelastic Scattering from
Magnetic Impurities, Phys. Rev. Lett. 95, 266805 (2005).

Appendix

s

e An integral fooo % cos(et) = PIE



Problem 2: Self-consistent theory of localization in finite media

(NC)

In this exercise, we generalize the self-consistent theory of localization introduced in the lecture
to the case of finite media, and use it to recover the exponential decay of the conductance in a
uni-dimensional disordered wire.

We recall the form of the self-consistent equation for the generalized diffusion coefficient seen

in the lecture: J
1 1 1 d'Q -
D(Q) Dg t hDg / (%)dP(Q’Q)’ (11)

where Dp = vl/d is the classical diffusion coefficient, v is the density of state per unit volume,
and the propagator obeys

[—iQ + D(Q)Q’P(Q, Q) = 1. (12)
Strictly speaking, these equations are only valid in an infinite disordered medium, where trans-
lation invariance holds. In a medium with boundaries, a simple generalization was proposed in
[1], and demonstrated analytically and numerically in [2} 3], 4]:
1 1 . 1
D(r,Q) Dp wvhDp

P(r,r,Q), (13)

where P(r,r/,Q) is the inverse Fourier transform of P(Q, ), which obeys:
[—iQ — V,.D(r, )V, | P(r,rv,Q) = §(r —1'). (14)

The main difference between the sets of equations and is that, due to the ab-
sence of translation invariance in a medium of finite size, the return probability P(r,r,(2), and
therefore the diffusion coefficient D(r, 2), now explicitly depend on the position 7.

We propose to solve Eqgs. and for a stationary flow of quantum particles (i.e., at
Q = 0), transmitted through a uni-dimensional wire of length L and mean free path /.

Mapping onto a classical diffusion problem

1. Show that, in 1D, Egs. and read:

1 1 2
D(z) Dg * EP(Z’ 2 1)
B ) )
_ —8ZD(Z)—8ZP(Z, 2)=6(z— 2 (16)

and give the expression of £ as a function of the mean free path £.

2. The system of coupled equations and can be solved with the following change of

variables: ;
dz

Sl AT

and P(r,7') = P(z, 7). (17)

3. Using this change of variables, and the property §(f(z) — f(y)) = |f,%$)|6(1: —y) of the

Dirac-delta function, show that Eq. becomes

0*P(r, ') :
—T:(;(T—T), (18)
where 7/ = 7(2'). We have thus mapped Eq. onto a simple stationary diffusion

equation.



4. Give the general solution of Eq. for 7 > 7/ and 7 < 7’. By using Dirichlet boundary
conditions at z = L and z = 0, i.e. P(7(L),7) = P(r(0),7") = 0, together with the
continuity of P(r,7") and the discontinuity of 9, P(7,7') at 7 = 7/, deduce that:

T'(r(L) = 7)

P(r,7') = =0

for 7> 1. (19)

Resolution of the self-consistent equations

1. Using Eq. (19), show that the variable 7(L) is solution of:

(L) dr L
/O ¢/Dp+2r —272/7(L) & (20)

2. The integral in the left-hand-side can be easily computed using a partial fraction decom-
position. This leads to the following implicit equation for 7(L):

1 L 2¢

2argth | —/——== | = /1 + ——, (21)

2¢ ¢ Dpt(L

1+ BT(L) ()

where argth(x) = %ln %i‘—i Show that the asymptotic solutions of this equation are:

L 2 L

T(L <K §) ~ Da and 7(L>¢) ~ D—f exp <£> : (22)
B B

3. We define the conductance (or transmission coefficient) of the wire as

OP(z,72)

g(L) = = D(x) 7

(23)

z=L,z'={

Give an approximate expression of g(L) in the limit L > £. You may use that 7(¢) ~ ¢/Dp
(which follows from Eq. (17), noting that D(z) little varies at the scale of the mean free
path).

4. (Optional) Without any calculation, show that, due to Eq. , the scaling function

Blg) = 8(1;115 (LL) is indeed a function of g only. In other words, the one-parameter scaling
hypothesis is well captured by the self-consistent theory of localization.

References

[1] B. A. van Tiggelen, A. Lagendijk, and D. S. Wiersma, Phys. Rev. Lett. 84, 4333 (2000).
[2] N. Cherroret and S. E. Skipetrov, Phys. Rev. E 77, 046608 (2008).

[3] B.Payne, A. Yamilov, S. E. Skipetrov, Anderson localization as position-dependent diffusion
in disordered waveguides, Phys. Rev. B 82, 024205 (2010).

[4] A. G. Yamilov, R. Sarma, B. Redding, B. Payne, H. Noh, H. Cao, Position-dependent
diffusion of light in disordered waveguides, Phys. Rev. Lett. 112, 023904 (2014).



