
Master 2 iCFP

Waves in disordered media and localisation phenomena – Exam
Friday 3 april 2020

Duration : 3 hours.

Lecture notes are allowed.

Write your answers for the two parts on separate sheets.

Solutions will be available at http://www.lptms.u-psud.fr/christophe_texier/

Problem 1: DoS correction and Altshuler-Aronov correction (CT)

Interaction (among electrons) is reinforced by disorder at low temperature, due to the (slow)
diffusive motion of electrons. They are responsible for a negative quantum correction to the
density of states (DoS) δν(ε). The conductivity receives a quantum contribution of same origin,
known as the “Altshuler-Aronov correction” ∆σee, which is expected since the DoS and the
conductivity are related by the Einstein’s relation σ = e2νD, where D is the diffusion constant.

! Don’t get stuck on a question. The problem is written so that you can progress until the end. !

A. DoS correction.– Consider a disordered metal. The one electron spectrum in the presence
of disorder is denoted by {εα, φα(~r)}, where α labels one particle eigenstates. Using pertur-
bation theory, one obtains that the electron-electron interaction is responsible for two types of
corrections to the energy levels : εα → εα + δεα with δεα = δεH

α + δεF
α.

• The Hartree correction is δεH
α =

∫
Vol dd~rdd~r ′ |φα(~r)|2 U(~r−~r ′)n(~r ′), where n(~r ′) =

∑
β f(εβ) |φβ(~r ′)|2

is the electron density, f(ε) the Fermi function. Here, U(~r−~r ′) denotes the screened Coulomb
interaction in the metal.

• The Fock contribution, due to exchange (Pauli principle), is

δεF
α = −

∑
β

f(εβ)

∫
Vol

dd~rdd~r ′ φ∗α(~r)φ∗β(~r ′)U(~r − ~r ′)φα(~r ′)φβ(~r) . (1)

A measure of the perturbative correction at level ε is given by

∆(ε) =
1

Vol ν0

∑
α

δ(ε− εα) δεα (2)

where · · · denotes averaging over the disorder and ν0 = 1
Vol

∑
α δ(ε− εα) is the DoS per unit

volume (which can be assumed flat for ε ∼ εF , the Fermi energy).

1/ Show that the DoS correction δν(ε)
def
= 1

Vol

∑
α δ(ε− εα − δεα)− 1

Vol

∑
α δ(ε− εα) is given by

δν(ε) ' −ν0
∂∆(ε)

∂ε
(3)

2/ Assuming that Hartree contribution is negligible, δεH
α � δεF

α, i.e. δεα ' δεF
α in ∆(ε), show

∆(ε) = − 1

Vol ν0

∫
dε′ f(ε′)

∫
Vol

dd~rdd~r ′ U(~r − ~r ′) νε(~r ′, ~r) νε′(~r, ~r ′) (4)

where νε(~r, ~r
′)

def
=
∑

α φα(~r)φ∗α(~r ′) δ(ε−εα) is the non-local DoS [with ν(ε) = 1
Vol

∫
Vol dd~r νε(~r, ~r)].
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The correlations of the non-local DoS are related to the diffuson (cf. diagram of Fig. 1) :

νε−ω(~r, ~r ′)νε(~r ′, ~r) =
ν0

π
Re
[
Pd(~r, ~r

′;ω)
]

where Pd(~r, ~r
′;ω) = 〈~r | 1

−iω −D∆
|~r ′ 〉 (5)

Furthermore, the screened Coulomb interaction in metals has very short range. At the scale
& `e, it can be replaced by U(~r) ' 1

2ν0
δ(~r).

3/ Deduce the form

δν(ε) =
1

2π

∫
dω f ′(ε− ω)

∫
Vol

dd~r

Vol
Re [Pd(~r, ~r;ω)] . (6)

We now want to prove the following time representation

δν(ε) = − 1

2π

∫ ∞
0

dtPd(t) cos(εt)
πTt

sinh(πTt)
(7)

where

Pd(t)
def
=

1

Vol

∫
Vol

dd~rPt(~r, ~r) and Pt(~r, ~r ′) = 〈~r |etD∆|~r ′ 〉 (8)

i.e. with ∂tPt(~r, ~r ′) = D∆Pt(~r, ~r ′).

4/ When T = 0, the Fermi function is f(ε) = θH(−ε), where θH is the Heaviside function (we
choose the Fermi energy at εF = 0). Prove (7) for T = 0 from (6).

Hint : use spectral representations, such as Pd(~r, ~r
′;ω) =

∑
n
ψn(~r)ψ∗n(~r ′)
−iω+λn

and Pt(~r, ~r ′) =∑
n ψn(~r)ψ∗n(~r ′) e−λnt where −D∆ψn(~r) = λnψn(~r).

5/ Recall the expression of Pt(x, x′) and Pd(t) in a narrow wire of section s (one dimensional
case). Using the integral of the appendix, get the DoS correction δν(ε) for T = 0. Estimate
δν(ε = 0) for finite T (do not try to calculate precisely the integral).
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FIG. 3. Symbols in main panel: same experiment as in Fig. 2,
but with data near V ! 0 plotted on linear scale. Solid lines:
Predictions for our finite length wire. Inset: V ! 0 differential
conductance. Solid line: Prediction for our finite length wire.
Dotted line: T21!2 dependence expected for an infinite wire.

an electron is added at the surface of the wire, the po-
tential establishes itself in the thickness of the wire on
a time scale given by the reciprocal of the plasma fre-
quency. After this transient, too short to play a role given
our energy scale, the electrical potential is homogeneous
within the wire thickness, and diffuses in the two other
dimensions, with a diffusion constant D! ! "R"Cs#21 !
"RlCl#21 $ 10 m2!s, where Rl and Cl are the resistance
and capacitance per unit length of the wire, and Cs is the
capacitance per unit area [17]. The electron itself dif-
fuses much more slowly, with a diffusion constant D !
"ne2waRl#21 $ 27 3 1024 m2!s, where w and a are the
width and thickness of the wire, and n the density of
states at the Fermi energy. The complete calculation of
Zeff"v# in the case of an infinitely long junction shows
that the spreading of the potential in the thickness and
in the width of the wire can be taken as instantaneous at
energies eV ø h̄D!!w2 $ 100 meV. Note that the di-
mensionality criterion is not determined by the compari-
son of eV with the Thouless energy h̄D!w2, as is usually
assumed [7].

In the one-dimensional regime relevant to our ex-
periment, we first treat the case of a junction with
infinite length. The impedance is then that of two RC
semi-infinite transmission lines in parallel: z"x0, x, v# !
1
2Zc"v#e2g"v# jx2x0j, where Zc"v# !

p

Rl!iClv is the
characteristic impedance of one transmission line, g"v# !
p

iv!D! and x the coordinate along the wire. The ex-
pression for p"0, x, v# ! 1

2

p

1!iDv e2
p

iv!D jx2x0j has
the same form, since both the electric potential and the
electron probability cloud obey a diffusion equation
in our system, but D now enters in place of D!. We
then obtain for the real part of the effective impedance:
ReZeff"v# ! 1

2 ReZc"v#!"1 1
p

D!D! #. The correc-

tion due to electron diffusion, of order
p

D!D! % 0.02
[18], is thus negligible and in the following we take
Zeff"r0, v# ! z"x0, x0, v#. Our junction can now be
modeled as a ladder array of infinitesimal junctions
and resistances, each junction seeing an environmental
impedance due to the resistances and the other junction
capacitances (see Fig. 1b). Such a simplification does not
occur for two-dimensional junctions, where the interplay
of electron and potential diffusion cannot be neglected
and where Zeff"v# includes the nontrivial factor ln"D!!D#
[7,8,19].

We thus find, in the case of the infinite wire, at very
low or very large voltages, the following analytical
expressions:

dG!Gt & 21.56
Rl

RK

s

h̄D!

kBT
for

eV
kBT

! 0 ,

while

dG!Gt ! 2
p

2
Rl

Rk

s

h̄D!

eV
for

eV
kBT

! ` .

The crossover between these two expressions occurs for
eV $ 10kBT .

In the case of a wire with finite length with a
terminal impedance, the full voltage and tempera-
ture dependence can be computed numerically using
z"x0, x0, v#21 ! Zx0 "v#21 1 ZL2x0"v#21, where Zx"v#!
Zc"v# ! "r 1 u#!"1 1 ru# with r ! Z0"v#!Zc"v#
and u ! tanh'g"v#x(. These last expressions have been
used to fit the complete data set with three parameters: the
capacitance per unit length Cl , the tunnel conductance Gt ,
and the terminal impedance Z0. The best fit, obtained with
Gt ! 26.392 mS, Cl ! 7.4 fF!mm, and Z0 ! 50 V is
shown with solid lines on Fig. 2 and the right half of
Fig. 3 for three temperatures. In Fig. 2, we also show
the predictions for the infinite wire, both at T ! 0 and
at the experiment temperature. At large voltages, the
1!
p

V dependence [1] is well observed, down to voltages
corresponding to the predicted crossover. Note that at low
voltages, the effect of the finite length of the wire is a
rather small correction, except at the lowest temperatures
and voltages. In the inset of Fig. 3 we show the predictions
for the V ! 0 conductance as a function of temperature.
The infinite wire prediction (dotted curve) gives only a
qualitative account of the data. We find good agreement
between the full theory and experiment at temperatures
above 50 mK, whereas for the lowest temperature, the dip
is not as pronounced as predicted. This discrepancy can
be attributed to a slight heating of the electrons: a good fit
of the 26 mK data is obtained with a 37 mK theoretical
curve. This problem should not cast doubt on the rest of
the data set: we believe heating cannot affect G"V , T #
above 50 mK as currents in the junction are not sufficient
to raise significantly the temperature of the electrodes,
given the known electron-phonon coupling. The influence

1592

Figure 1: Left : One diagram for DoS correlations. Right : Figure from : F. Pierre, H. Pothier,
P. Joyez, N. O. Birge, D. Esteve and M. H. Devoret, Electrodynamic Dip in the Local Density
of States of a Metallic Wire, Phys. Rev. Lett. 86(8), p. 1590 (2001).
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6/ Tunnel conductance.– The DoS correction can be measured as follows : electrons tunnel
between the wire and a tip on the top of the disordered wire. The tunnel current is controlled
by the “tunnel conductance” Gt. One can show that it receives a correction

δGt(V )

Gt
=
δν(ε = eV )

ν0
(9)

where V is the voltage drop. Compare with the experimental curve of Fig. 1.

B. Altshuler-Aronov correction.– The conductivity receives a correction of same physical
origin, given by

∆σee = −2e2D

π

∫ ∞
0

dtPd(t)
(

πTt

sinh(πTt)

)2

(10)

1/ Justify that the thermal function
(

πTt
sinh(πTt)

)2
acts as a cutoff for times t & 1/T .

2/ Using the expression of Pd(t) found above, deduce the main temperature dependence of ∆σee

for a narrow wire (a rough estimation of the integral is sufficient). Check that ∆σee and
δν(0) are related in agreement with Einstein’s relation.

3/ The conductivity of a disordered metal receives several quantum corrections : ∆σ = ∆σee +
∆σWL. What is the origin of the temperature dependence of the weak localisation correction
∆σWL ? How can one identify the two contributions in practice in an experiment ?

4/ The AA correction ∆R
R = −∆σee

σ0
has been measured for long wires as a function of the

temperature (cf. Fig. 2) for different currents. How can one explain the different curves ?
What can be the interest to study this contribution ?

The temperature evolution of !" below TK deserves
several comments: After a slow increase of !", the tem-
perature dependence is almost linear in temperature over
almost one decade in temperature, as emphasized in the
inset in Fig. 1. This relatively weak temperature depen-
dence explains why the pioneering experiments [14,16]
have not succeeded in observing the Fermi liquid regime.
Comparing the experimental results with the NRG calcu-
lation, we see clearly that the Fermi liquid regime can be
reached only for temperatures typically below 0:01TK.
Moreover, the AAK behavior is recovered only at ex-
tremely low temperatures (T < 0:001 K).

It is noteworthy that the calculated quantity by NRG is
#inel and not the phase coherence time !" measured in a
weak localization experiment. In fact, #inel has been cal-
culated in the limit of zero temperature and finite energy
#inel!w; T " 0#, whereas in a transport experiment one
measures #inel!w " 0; T#. The fact that the numerical re-
sults describe well the experimental data lets us conclude
that these two quantities are not very different, at least for
kBT $ $F, $F being the Fermi energy.

Having now a theory which satisfactorily describes the
temperature dependence of !" in the presence of magnetic
impurities, let us reexamine the temperature dependence of
!" in extremely pure gold wires. In a recent article [6], the
deviation of !" from the AAK prediction at very low tem-
peratures has been assigned to the presence of an extremely
small amount of magnetic impurities (typically on the
order of 0.01 ppm). For this purpose, we have fabricated
an extremely pure gold wire (Au1) as shown in the inset in
Fig. 2. The fabrication procedure is essentially the same as
for the Au=Fe wires, with the only difference that the wire
has been evaporated in an evaporator which is exclusively
used for the evaporation of extremely pure gold. The gold
of purity 5N5 has been evaporated directly on a silicon
wafer without a sticking layer. In addition, special care has

been taken for the sample design such that there is no
influence on the phase coherence due to the two-
dimensional contact pads (see inset in Fig. 2). For this
wire, the phase coherence length at the lowest temperatures
is more than 20 %m. To our knowledge, this is the largest
coherence length ever obtained in a metallic wire and
confirms the high purity of the sample.

To determine the effective electron temperature of this
sample, we have measured the Altshuler-Aronov correc-
tion to the resistivity at very low temperatures. A magnetic
field of 40 mT has been applied in order to suppress weak
localization correction to the resistivity. In Fig. 2, we plot
the resistance correction as a function of 1=

!!!!
T

p
. For mea-

suring currents below 0.7 nA, the sample is in thermal
equilibrium (eV < kT) in the entire temperature range,
and the resistance correction follows the expected 1=

!!!!
T

p

temperature dependence down to 10 mK. This shows
clearly that the electrons of a mesoscopic sample can be
cooled to such low temperatures. Fitting the temperature
dependence of the resistance correction to !R!T# "
&exp=

!!!!
T

p
(dotted line in Fig. 2), we determine &exp and

compare it to the predicted value [13] of !R!T# "
2R2=RKLT=L " &theo=

!!!!
T

p
, where LT "

!!!!!!!!!!!!!!!!!!
@D=kBT

p
is the

thermal length and RK " h=e2. We obtain a value &exp "
0:11 "=K1=2, which is in very good agreement with the
theoretical value of &theo " 0:109 "=K1=2.

The phase coherence time !" is then measured via
standard weak localization (see inset in Fig. 3) and the
phase coherence length l" is extracted via the Hikami-
Larkin-Nagaoka formula [18]. From the relation
!" " l2"=D, we then calculate the phase coherence time
as displayed in Fig. 3. We fit the experimental data with the
AAK expression such that an almost perfect agreement is

FIG. 2 (color online). Resistance variation of sample Au1
plotted as a function of 1=

!!!!
T

p
for different bias currents. The

dotted line corresponds to the theoretical expectation for the
resistance correction. The inset shows a scanning electron micro-
scope photograph of the gold wire.

FIG. 3 (color online). Phase coherence time as a function of
temperature for sample Au1 (%). The solid green line corre-
sponds to the AAK prediction, the black (a), red (b), and blue (c)
solid lines correspond to the NRG calculation assuming TK "
40 mK, TK " 10 mK, and TK " 5 mK, respectively. The inset
shows typical magnetoresistance curves at different tempera-
tures.

PRL 95, 266805 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
31 DECEMBER 2005

266805-3

Figure 2: From : C. Bäuerle, F. Mallet, F. Schopfer, D. Mailly, G. Eska and L. Saminadayar,
Experimental Test of the Numerical Renormalization Group Theory for Inelastic Scattering from
Magnetic Impurities, Phys. Rev. Lett. 95, 266805 (2005).

Appendix

• An integral
∫∞

0
dt√
t

cos(εt) =
√

π
2|ε| .
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Problem 2: Self-consistent theory of localization in finite media
(NC)

In this exercise, we generalize the self-consistent theory of localization introduced in the lecture
to the case of finite media, and use it to recover the exponential decay of the conductance in a
uni-dimensional disordered wire.

We recall the form of the self-consistent equation for the generalized diffusion coefficient seen
in the lecture:

1

D(Ω)
=

1

DB
+

1

πν~DB

∫
ddQ

(2π)d
P̃ (Q,Ω), (11)

where DB = v`/d is the classical diffusion coefficient, ν is the density of state per unit volume,
and the propagator obeys

[−iΩ +D(Ω)Q2]P̃ (Q,Ω) = 1. (12)

Strictly speaking, these equations are only valid in an infinite disordered medium, where trans-
lation invariance holds. In a medium with boundaries, a simple generalization was proposed in
[1], and demonstrated analytically and numerically in [2, 3, 4]:

1

D(r,Ω)
=

1

DB
+

1

πν~DB
P (r, r,Ω), (13)

where P (r, r′,Ω) is the inverse Fourier transform of P̃ (Q,Ω), which obeys:

[−iΩ−∇rD(r,Ω)∇r]P (r, r′,Ω) = δ(r − r′). (14)

The main difference between the sets of equations (11-12) and (13-14) is that, due to the ab-
sence of translation invariance in a medium of finite size, the return probability P (r, r,Ω), and
therefore the diffusion coefficient D(r,Ω), now explicitly depend on the position r.

We propose to solve Eqs. (13) and (14) for a stationary flow of quantum particles (i.e., at
Ω = 0), transmitted through a uni-dimensional wire of length L and mean free path `.

Mapping onto a classical diffusion problem

1. Show that, in 1D, Eqs. (13) and (14) read:

1

D(z)
=

1

DB
+

2

ξ
P (z, z), (15)

− ∂

∂z
D(z)

∂

∂z
P (z, z) = δ(z − z′) (16)

and give the expression of ξ as a function of the mean free path `.

2. The system of coupled equations (15) and (16) can be solved with the following change of
variables:

τ(z) =

∫ z

0

dz

D(z)
and P(τ, τ ′) = P (z, z′). (17)

3. Using this change of variables, and the property δ(f(x) − f(y)) = 1
|f ′(x)|δ(x − y) of the

Dirac-delta function, show that Eq. (16) becomes

− ∂2P(τ, τ ′)

∂τ2
= δ(τ − τ ′), (18)

where τ ′ = τ(z′). We have thus mapped Eq. (16) onto a simple stationary diffusion
equation.
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4. Give the general solution of Eq. (18) for τ > τ ′ and τ < τ ′. By using Dirichlet boundary
conditions at z = L and z = 0, i.e. P(τ(L), τ ′) = P(τ(0), τ ′) = 0, together with the
continuity of P(τ, τ ′) and the discontinuity of ∂τP(τ, τ ′) at τ = τ ′, deduce that:

P(τ, τ ′) =
τ ′(τ(L)− τ)

τ(L)
for τ > τ ′. (19)

Resolution of the self-consistent equations

1. Using Eq. (19), show that the variable τ(L) is solution of:∫ τ(L)

0

dτ

ξ/DB + 2τ − 2τ2/τ(L)
=
L

ξ
. (20)

2. The integral in the left-hand-side can be easily computed using a partial fraction decom-
position. This leads to the following implicit equation for τ(L):

2 argth

 1√
1 + 2ξ

DBτ(L)

 =
L

ξ

√
1 +

2ξ

DBτ(L)
, (21)

where argth(x) = 1
2 ln 1+x

1−x . Show that the asymptotic solutions of this equation are:

τ(L� ξ) ' L

DB
and τ(L� ξ) ' 2ξ

DB
exp

(
L

ξ

)
. (22)

3. We define the conductance (or transmission coefficient) of the wire as

g(L) = − D(z)
∂P (z, z′)

∂z

∣∣∣∣
z=L,z′=`

. (23)

Give an approximate expression of g(L) in the limit L� ξ. You may use that τ(`) ' `/DB

(which follows from Eq. (17), noting that D(z) little varies at the scale of the mean free
path).

4. (Optional) Without any calculation, show that, due to Eq. (20), the scaling function

β(g) = ∂ ln g(L)
∂ lnL is indeed a function of g only. In other words, the one-parameter scaling

hypothesis is well captured by the self-consistent theory of localization.
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