
Master 2 iCFP

Waves in disordered media and localisation phenomena – Exam
Friday 2 april 2021

Duration : 3 hours.

Lecture notes are allowed.

!
Pay attention to the appendix

Write your answers for the two parts on separate sheets.
!

Problem 1: Magnetoconductance oscillations in a ring

We study the quantum electronic transport in a device made of metallic wires, forming a ring.
The weak localisation correction to the conductivity can be written as ∆σ = 2se2

h
1
s∆σ̃, where s

is the section of the wires and the rescalled correction is related to the Cooperon :

∆σ̃(x) = −2Pc(x, x) (1)

Here, we keep the x dependence of ∆σ̃(x) as our aim is to study a device which is not translation
invariant (Fig. 1.b). The Cooperon is solution of[

1

L2
ϕ

−
(
∂x − 2i

e

~
A(x)

)2
]
Pc(x, x

′) = δ(x− x′) , (2)

where Lϕ is the phase coherence length and A(x) the vector potential.
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Figure 1: Metallic rings pierced by a magnetic flux φ. Wavy lines represent macroscopic contacts
through which current is injected and collected ; perimeter is L = lc + ld.

A. Wire.— We first solve the equation (2) in the simplest geometry of a long quasi-one-
dimensional wire.

1/ Under what physical condition(s) can we justify to treat the wire as effectively one-dimensional
in Eq. (2) ?

2/ Considering a very long wire, we can neglect boundary conditions. Check that

Pc(x, x
′) =

Lϕ
2

e−|x−x
′|/Lϕ (3)

solves (2) for A(x) = 0. Explain (physically) why Pc(x, x
′) decays with distance.

3/ Deduce the WL correction to the rescaled conductivity ∆σ̃(x) and to the dimensionless
conductance ∆gwire = ∆σ̃(x)/L.
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B. Isolated ring – Altshuler-Aronov-Spivak (AAS) oscillations.— We now consider the
geometry of an isolated ring (Fig. 1.a) pierced by a magnetic flux φ, corresponding to a uniform
vector potential A(x) = φ/L.

1/ We construct the solution of (2) in the geometry of Fig. 1.a. For that purpose we consider

first the spectral problem −
(
∂x − 2i e~A

)2
ψ(x) = λψ(x) for periodic boundary conditions

(i.e. ψ(0) = ψ(L) and ψ′(0) = ψ′(L)).

a) Justify that the eigenfunctions are of the form ψ(x) = eikx/
√
L. What is k ? Deduce

the (discrete) spectrum of eigenvalues λn.

b) Calculate Pc(x, x), expressed as a function of the reduced flux θ = 4πφ/φ0, where φ0 =
h/e is the quantum flux. Why is ∆σ̃(x) independent of x in the ring ? Check your result
by discussing the limit L� Lϕ. How can you explain the AAS oscillations ?

2/ Show that the Fourier harmonics ∆σ̃n(x) =
∫ 2π

0
dθ
2π ∆σ̃(x) e−inθ are

∆σ̃n(x) = −Lϕ e−|n|L/Lϕ . (4)

Comment on the decay of the harmonic with |n|L.

C. Ring with arms.— The previous model is simple, however it is not clear how to measure
a transport property in an isolated ring ! A more reallistic setting is shown in Fig. 1.b. We first
clarify how the Cooperon must be integrated in the ring of Fig. 1.b. In a wire of length L, we
have seen in the lectures that the WL correction to the conductance is given by the integral of
the Cooperon ∆gwire = 1

L2

∫ L
0 dx∆σ̃(x). Our aim is now to derive a similar formula for ∆gring.

Denoting by Ri = li/(σ0 s) the classical resistance of the wire i ∈ {a, b, c, d} (σ0 is the Drude
conductivity and s the section of the wires), we can write the classical resistance as

Rring(Ra, Rb, Rc, Rd) = Ra +Rc‖d +Rb where 1/Rc‖d = 1/Rc + 1/Rd . (5)

1/ Assuming that the WL correction to the resistance of each wire i can be considered separately,

and is given by ∆Ri/Ri = −
∫

wire i
dx
li

∆σ(x)
σ0

= −
∫

wire i
dx
li

2se2

h
∆σ̃(x)
σ0s

, justify the following form
for the weak localization correction to the dimensionless conductance of the network

∆gring =
1

L2

∑
wire i

∂L
∂li

∫
wire i

dx∆σ̃(x) where L = la + lc‖d + lb and 1/lc‖d = 1/lc + 1/ld . (6)

2/ Naive integration : we now combine Eq. (6) with the results obtained above : when x is in
the wires a and b, we use the simple expression of ∆σ̃(x) obtained for the long wire (part
A.), and when x is in the ring (wires c and d), we use ∆σ̃(x) of the isolated ring (part B.).

a) Give the expression of ∆gring(θ) as a function of the reduced flux θ.

b) Deduce the harmonics ∆gn =
∫ 2π

0
dθ
2π ∆gring(θ) e−inθ.

3/ A more precise treatment requires to solve the equation (2) by taking into account the
complex geometry of the device. Doing this, one can show that the magnetoconductivity
harmonics ∆σ̃n(x) present the same exponential dependence as (4), provided the perimeter
in the exponential is replaced by an effective length L→ Leff given by

cosh(Leff/Lϕ) ' eL/Lϕ +
1

2
sinh(lc/Lϕ) sinh(ld/Lϕ) (7)

(the approximation corresponds to the assumption la, lb � Lϕ).
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a) Weakly coherent ring (L � Lϕ) : get an approximate expression for Leff and deduce
how ∆gn is affected by the presence of the contact wires a and b.

b) Coherent ring (L� Lϕ) : get another approximate expression for Leff and ∆gn.

c) If an experiment is (incorrectly) fitted with formula (4), does one underestimate or
overestimate the phase coherence length ? (discuss the two regimes)

d) (Bonus) Give a physical argument to explain the difference between L and Leff .

Appendix: using the Poisson summation formula, it is easy to prove that∑
n∈Z

1

ω2 + (n− α)2
=
π

ω

sinh(2πω)

cosh(2πω)− cos(2πα)
(8)

We give the integral ∫ 2π

0

dθ

2π

sinhλ

coshλ− cos θ
einθ = e−|n|λ (9)

Problem 2: Coherent backscattering versus optical coherence

In this exercise, we explore the sensitivity of the coherent backscattering effect to the spatial
and temporal coherence of a light beam. To this aim, we consider an optical beam impinging
on a disordered material with wave vector kin, and detected in some direction kout in reflection.
Figure 2 recalls the two scattering diagrams describing the diffusive part of the reflected signal
(Diffuson, left) and the coherent backscattering effect (Cooperon, right) in this configuration.
The first and last scatterers of the sequences are located at points r1 and r2.

interface

Figure 2: Left: Diffuson and Cooperon diagrams at an interface.
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In the lecture, we have calculated the contribution of the Diffuson and of the Cooperon to the
albedo, denoted by αD and αC , respectively. We have obtained them for an incident plane wave
Ψin(r) = eikin·r covering a surface S of the interface. For the Diffuson we have found:

αL =
c

4π`2S

∫
d2r⊥1 d

2r⊥1 dz1dz2 e
−(z1+z2)/`[P (ρ, z1 − z2)− P (ρ, z1 + z2)], (10)

where r⊥1 and r⊥2 are the projections of r1 and r2 on the interface with ρ = r⊥1 −r⊥2 , z1 and z2

are the projections on the z axis, and ` is the mean free path. The contribution of the Cooperon
only differs by an additional phase factor:

αC =
c

4π`2S

∫
d2r⊥1 d

2r⊥1 dz1dz2 e
−(z1+z2)/`e−ik⊥·ρ[P (ρ, z1 − z2)− P (ρ, z1 + z2)]. (11)

After computing the integrals, we had obtained:

αL '
3

8π
and αC '

3

8π

1

(1 + |k⊥|`)2
, (12)

where k⊥ = kin + kout and |k⊥| ' kθ in the limit of small backscattering angle θ.

a- Effect of spatial coherence

Instead of a plane wave, we now consider a more realistic Gaussian beam:

Ψin(r) = exp(−πr⊥2/2S) exp(ikin · r), (13)

which has the same normalization as the plane wave when integrated on the interface, namely∫
d2r⊥|Ψin(r)|2 = S.

1) By introducing the changes of variables R = (r⊥1 +r⊥2 )/2 and ρ = r⊥1 −r⊥2 , show that:

αL =
c

4π`2

∫
dz1dz2d

2ρ e−(z1+z2)/`[P (ρ, z1 − z2)− P (ρ, z1 + z2)]. (14)

2) Conclusion?

3) Similarly for the Cooperon, show that

αC =
c

4π`2

∫
dz1dz2d

2ρ e−(z1+z2)/`e−ik⊥·ρ−πρ
2/4S [P (ρ, z1 − z2)− P (ρ, z1 + z2)]. (15)

4) By using the Fourier relation exp(−πρ2/4S) = 4S
∫
d2q/(2π)2 exp(−q2S/π + iq · ρ) together

with Eq. (12), prove that

αC =
3S

4π

∫
d2q

(2π)2

exp[−(k⊥ − q)2S/π]

(1 + |q|`)2
. (16)

This result indicates that for a non-plane incident beam, the coherent backscattering peak is
convoluted with the angular distribution of the beam.
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5) Eq. (17) can be simplified to:

αC(θ) ' 3
√
Sk

8π2

∫ ∞
−∞

dθ′
exp[−Sk2θ′2/π]

(1 + k|θ + θ′|`)2
. (17)

Give the asymptotic expressions of αC(θ) in the two limits
√
S � ` and

√
S � `, and plot them

qualitatively versus θ on the same graph. You can use that∫ ∞
−∞

dx

(1 + |x|)2
= 2 and

∫ ∞
−∞

dx exp(−|x|2) =
√
π. (18)

6) Conclusion?

a- Effect of temporal coherence

We now address the case of a non-monochromatic incident beam (the beam is assumed well
collimated). Theoretically, this problem can be modeled using an incident wave of the form
Ψin(r) = eikin·r+iφ(t), where φ(t) is a phase fluctuating randomly in time. By using a phase-
diffusion model for these fluctuations (which describes well a laser), one can show that:

αC(θ) =
3

8π

∫ ∞
−∞

dω

2π
S(ω)

1

(1 + ω`|θ|/c)2
, (19)

where

S(ω) =
2∆ω

(ω − ω0)2 + ∆ω2
(20)

is the frequency spectrum of the beam, with ω0 the central frequency and ∆ω the width of the
spectrum. For a laser, the spectrum is typically narrow, i.e. one has ∆ω � ω0.

How important is the non-monochromatic character of the beam on the shape of the coherent
backscattering peak? Explain.

Solutions will be avalaible at http://lptms.u-psud.fr/christophe_texier/

5

http://lptms.u-psud.fr/christophe_texier/

