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Correction du problème 1 l’examen du 2 avril 2021

Problem 1: Magnetoconductance oscillations in a ring

A. Wire.—

1/ In a long wire of length L and section s = wd−1, where w is a width, the diffusion becomes ef-
fectively 1D over large scale. The weak localization probes properties of diffusive trajectories
over scale . Lϕ. When Lϕ � w, one can consider the wires as effectively 1D.

2/ Let us check that

Pc(x, x
′) =

Lϕ
2

e−|x−x
′|/Lϕ (1)

solves the equation for the Cooperon in 1D: ∂xPc(x, x
′) = − sign(x−x′)

2 e−|x−x
′|/Lϕ and

∂2
xPc(x, x

′) = −δ(x− x′) +
1

2Lϕ
e−|x−x

′|/Lϕ = −δ(x− x′) +
1

L2
ϕ

Pc(x, x
′) (2)

Qed. x− x′ must be . Lϕ since phase coherence is limited.

3/ We have ∆σ̃(x) = −2Pc(x, x) = −Lϕ and ∆gwire = −Lϕ/L (result found in the lectures and
the exercices).

B. Isolated ring – Altshuler-Aronov-Spivak (AAS) oscillations.—

1/ We consider first the spectral problem −
(
∂x − 2i e~A

)2
ψ(x) = λψ(x) for periodic boundary

conditions (i.e. ψ(0) = ψ(L) and ψ′(0) = ψ′(L)).

a) The operator involves only ∂x, whose eigenfunctions are plane waves ψ(x) = eikx/
√
L.

Periodic boundary conditions impose k = 2πn/L with n ∈ Z. We deduce the related
eigenvalue

λn = −
(

ik − 2i
e

~
A
)2

=

(
2π

L

)2

(n− 2φ/φ0)2 for n ∈ Z . (3)

b) We deduce

Pc(x, x
′) = 〈x | 1

1/L2
ϕ −

(
∂x − 2i e~A

)2 |x′ 〉 =
∑
n∈Z

ψn(x)ψn(x′)∗

1/L2
ϕ + λn

(4)

At coinciding points, we have

Pc(x, x) =
1

L

∑
n∈Z

1

1/L2
ϕ +

(
2π
L

)2
(n− 2φ/φ0)2

=
Lϕ
2

sinh(L/Lϕ)

cosh(L/Lϕ)− cos θ
(5)

where we have used the formula given in Appendix and θ = 4πφ/φ0.

∆σ̃(x) = −2Pc(x, x) is independent of x in the ring due to translation invariance.

In the limit L � Lϕ, we recover the result of the infinite wire Pc(x, x) ' Lϕ/2, as it
should (in this limit, boundary conditions are not important).
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The Cooperon encodes the interferences of reversed electronic trajectories, hence inter-
ference terms carrying twice the magnetic flux. An electronic trajectory encircling n
times the flux carries eineφ/~. A pair of such reversed trajectories carries e2ineφ/~. The
WL in the ring combines suchs phase factors and the WL correction has the period φ0/2
has a function of the flux.

2/ Using the formula of the appendix, we get the haromincs

∆σ̃n(x) =

∫ 2π

0

dθ

2π
∆σ̃(x) e−inθ = −Lϕ e−|n|L/Lϕ . (6)

The n-th harmonics is due to trajectories encircling n times the ring, i.e. travelling at least
over a distance |n|L. Hence ∆σ̃n(x) ∼ e−|n|L/Lϕ has the same origin as Pc(x, x

′) ∼ e−|x−x
′|/Lϕ

in the wire.

C. Ring with arms.— plugging the connecting arms on the ring breaks translation invariance.
We first have to clarify how the Cooperon should be integrated in the network. We use a heuristic
argument...

1/ Classically, the resistance of the network is a function of the resistances of the wires,
Rring(Ra, Rb, Rc, Rd). Assuming that each resistance receives a quantum correction Ri →
Ri + ∆Ri, we get the correction to the resistance of the ring

∆Rring =
∑
i

∂Rring

∂Ri
∆Ri (7)

Now we use that the classical resistances can be written in terms of the lengths of the wires,
Ri = li/(σ0 s) and Rring = L/(σ0 s) where L = la + lc‖d + lb. Thus

2se
2

h
∆gring = −∆Rring

R2
ring

=
1

R2
ring

∑
i

∂L
∂li

Ri

∫
wire i

dx

li

∆σ(x)

σ0︸ ︷︷ ︸
=−∆Ri/Ri

(8)

=
(σ0s)

2

L2

∑
i

∂L
∂li

li
σ0s

∫
wire i

dx

li

2se
2

h

∆σ̃(x)

σ0s
(9)

Finally one obtains the general formula

∆gring =
1

L2

∑
wire i

∂L
∂li

∫
wire i

dx∆σ̃(x) (10)

Application to the ring gives

∆gring =
1

L2

[∫
a

+

(
ld

lc + ld

)2 ∫
c
+

(
lc

lc + ld

)2 ∫
d

+

∫
b

]
dx∆σ̃(x) (11)

2/ Naive integration : we use the expressions of the Cooperon obtained above

∆σ̃(x ∈ a or b) ≈ −Lϕ and ∆σ̃(x ∈ c or d) ≈ −Lϕ
sinh(L/Lϕ)

cosh(L/Lϕ)− cos θ
(12)
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a) As a result, we get

∆gring ≈ −
Lϕ
L2

[
la + lc‖d

sinh(L/Lϕ)

cosh(L/Lϕ)− cos θ
+ lb

]
(13)

b) Taking the discrete Fourier transform, we get (cf. appendix once again)

∆g0 ≈ −
Lϕ
L

and ∆gn ≈ −
Lϕ lc‖d

L2
e−|n|L/Lϕ for n 6= 0 . (14)

3/ The assumption (12) is incorrect because solving the equation for the Cooperon should take
into account the complex geometry of the device. Doing this one gets the harmonics

∆gn ∼ e−|n|Leff/Lϕ (15)

where the effective length is given by (assuming la, lb � Lϕ)

cosh(Leff/Lϕ) ' eL/Lϕ +
1

2
sinh(lc/Lϕ) sinh(ld/Lϕ) (16)

a) Weakly coherent ring (L � Lϕ) : we can write 1
2e
Leff/Lϕ ' eL/Lϕ + 1

8e
(lc+ld)/Lϕ , thus

eLeff/Lϕ ' 9
4 e

L/Lϕ and

∆gn ∼
(

2

3

)2|n|
e−|n|L/Lϕ (17)

Interpretation : 2/3 corresponds to the probability to remain inside the ring when cross-
ing the contact wire a or b. Hence, trajectory remaining inside the ring picks a factor
(2/3)2 per revolution.

b) Coherent ring (L � Lϕ) : in this case we get a rather different behaviour as 1 +
1
2(Leff/Lϕ)2 ' 1 + L/Lϕ therefore Leff '

√
2Lϕ L and

∆gn ∼ e−|n|
√

2L/Lϕ (18)

c) A measurement of the harmonic ratio can provide L/Lϕ. Consider a physicist unaware
of the effect of the contact wires, which (incorrectly) fits the data with Eq. (6). He

interprets the data from ∆gn ∼ e−|n|L/L
fit
ϕ .

For the weakly coherent ring, the analysis with (17) gives

Lϕ '
Lfit
ϕ

1− 2 ln(3/2) (Lfit
ϕ /L)

> Lfit
ϕ (19)

thus the fit with the incorrect formula underestimates the phase coherence length. For
the coherent ring, we reach the same conclusion

Lϕ '
Lfit
ϕ

2L
Lfit
ϕ > Lfit

ϕ (20)

Discrepancy is stronger.

d) (Bonus) The decay of the harmonics is faster when one accounts for the contact wires
a and b, because the trajectories can explore the contact wires, hence are a bit longer
than expected (this explains the difference between L and Leff).

L� Lϕ:
φ

L� Lϕ:
φ
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To learn a bit more

• The formula (10) for the weak localisation correction in networks of wires has been derived
(more rigorously) in:

Christophe Texier & Gilles Montambaux, Weak localization in multiterminal networks of
diffusive wires, Phys. Rev. Lett. 92, 186801 (2004).

• The role of the contact wires on the AAS harmonics has been studied in :

Christophe Texier & Gilles Montambaux, Quantum oscillations in mesoscopic rings and
anomalous diffusion, J. Phys. A: Math. Gen. 38, 3455-3471 (2005).

• The magnetoconductancs harmonics have been analysed in many experiments :

S. Washburn and R. A. Webb, Aharonov-Bohm effect in normal metal. Quantum coherence
and transport, Adv. Phys. 35(4), 375–422 (1986).

or more recently

Meydi Ferrier, Lionel Angers, Alistair C. H. Rowe, Sophie Guéron, Hélène Bouchiat,
Christophe Texier, Gilles Montambaux & Dominique Mailly, Direct measurement of the
phase coherence length in a GaAs/GaAlAs square network, Phys. Rev. Lett. 93, 246804
(2004).

Félicien Schopfer, François Mallet, Dominique Mailly, Christophe Texier, Gilles Montam-
baux, Christopher Bäuerle & Laurent Saminadayar, Dimensional crossover in quantum
networks: from mesoscopic to macroscopic physics, Phys. Rev. Lett. 98, 026807 (2007).

etc.
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Exercise 2:

a- 1) For a Gaussian beam, the Diffuson contribution to the albedo reads:

αL =
c

4π`2S

∫
d2r⊥1 d

2r⊥1 dz1dz2 e
−πr⊥2

1 /Se−(z1+z2)/`[P (ρ, z1 − z2)− P (ρ, z1 + z2)], (21)

With the change of variables R = (r⊥1 +r⊥2 )/2 and ρ = r⊥1 −r⊥2 , we obtain:

αL =
c

4π`2S

∫
d2Rd2ρdz1dz2 e

−π(R+ρ/2)2/Se−(z1+z2)/`[P (ρ, z1 − z2)− P (ρ, z1 + z2)], (22)

The integral over R gives:∫
d2R e−π(R+ρ/2)2/S =

∫
d2R̃ e−πR̃

2
/S =

∫
d2R̃|Ψin(R̃)|2 = S, (23)

and hence

αL =
c

4π`2

∫
dz1dz2d

2ρ e−(z1+z2)/`[P (ρ, z1 − z2)− P (ρ, z1 + z2)]. (24)

2) Equation (4) shows that αL is not affected by the level of spatial coherence of the light source.
This was expected since the no interference is involved in the Diffusion.

3) The Cooperon contribution is given by

αC =
c

4π`2S

∫
d2r⊥1 d

2r⊥1 dz1dz2 e
−π(r⊥2

1 +r⊥2
2 )/2Se−(z1+z2)/`e−ik⊥·ρ[P (ρ, z1− z2)−P (ρ, z1 + z2)],

(25)
which simplifies to

αC =
c

4π`2S

∫
d2Rd2ρdz1dz2 e

−πR2/S−πρ2/4Se−(z1+z2)/`e−ik⊥·ρ[P (ρ, z1 − z2)− P (ρ, z1 + z2)].

(26)
The integral of the Gaussian function over R is equal to S, giving :

αC =
c

4π`2

∫
dz1dz2d

2ρ e−(z1+z2)/`e−ik⊥·ρ−πρ
2/4S [P (ρ, z1 − z2)− P (ρ, z1 + z2)]. (27)

4) Inserting the Fourier relation, we find:

αC = 4S
c

4π`2

∫
dz1dz2d

2ρ e−(z1+z2)/`

∫
d2q

(2π)2
e−i(k⊥−q)·ρ−q2S/π[P (ρ, z1 − z2)− P (ρ, z1 + z2)].

(28)
Using the expression of αL known for a perfect plane wave, we can rewrite this formula as:

αC = 4S
3

8π

∫
d2q

(2π)2

e−q
2S/π

(1 + |k⊥ − q|`)2
. (29)

With the change of variables q → q̃ = k⊥ − q, we finally get the requested formula:

αC =
3S

2π

∫
d2q̃

(2π)2

exp[−(k⊥ − q̃)2S/π]

(1 + |q̃|`)2
. (30)
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5) The function 1/(1 + k|θ+ θ′|`)2 of θ′ has a width ∼ 1/k`, while the function exp[−Sk2θ′2/π]
has a width ∼ 1/k

√
S. When

√
S � `, the integral approximates to

αC(θ) ' 3
√
Sk

8π2

1

(1 + k|θ|`)2

∫ ∞
−∞

dθ′ exp[−Sk2θ′2/π], (31)

giving

αC(θ) ' 3

8π

1

(1 + k|θ|`)2
, (32)

i.e. we recover the plane-wave limit (as expected). On the other hand, when
√
S � `, the

integral approximates to

αC(θ) ' 3
√
Sk

8π2
exp[−Sk2θ2/π]

∫ ∞
−∞

dθ′
1

(1 + k|θ + θ′|`)2
, (33)

which gives the asymptotic expression:

αC(θ) ' 3
√
S

4`π2
exp[−Sk2θ2/π]. (34)

0

Figure 1: In red: equation (12). In blue: equation (14).

6) A poor spatial coherence results in a strong decrease of the CBS contrast and a broadening
of its lineshape, making the peak much less visible. We conclude that the use of a sufficiently
well collimated beam is crucial for observing the CBS peak.

b- When using a non-monochromatic beam, the shape of the CBS peak starts to be modified
when c/(`|θ|) becomes smaller than the width ∆ω of the laser spectrum, i.e. when

|θ| > c

`∆ω
� c

`ω0
∼ 1

k`
. (35)

In other words, the lack of temporal coherence only affects the far tails of the CBS profile. We
conclude that temporal coherence has a very little effect on the CBS peak. In fact, the peak can
rather easily be observed even with white light!
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