

Master 2 iCFP - Soft Matter & Physics for biology

Advanced Statistical Physics - Exam

Monday 3 january 2022

Duration : 3h30min.

Lecture notes are NOT allowed.

 \bigwedge Write Exercices 1 & 2 and Exercice 3 on separate sheets (with your name on both!) \bigwedge

1 Subdiffusion of a monomer embedded in a long polymer

A. Preliminary : Ornstein-Ulhenbeck process.— We consider a particle submitted to a force F(y) = -V'(y) for potential $V(y) = \frac{\lambda}{2}y^2$ and a Langevin force :

$$\frac{\mathrm{d}y(t)}{\mathrm{d}t} = -V'(y(t)) + \sqrt{2D}\,\eta(t) \tag{1}$$

where $\eta(t)$ is a normalized Gaussian white noise, $\langle \eta(t) \rangle = 0$ and $\langle \eta(t)\eta(t') \rangle = \delta(t-t')$.

- 1/ Express the solution y(t) as an integral of the noise, for $y(0) = y_0$ fixed.
- **2**/ Deduce $\langle y(t) \rangle$ and $\operatorname{Var}(y(t))$.
- **3**/ Give the conditional probability $P_t(y|y_0)$ (no further calculation needed).
- **B.** Motion of a polymer.— We consider an elongated polymer modelled as an elastic line : the *y* coordinates of the monomers fluctuate, while the *x* coordinates are fixed on a lattice, $x \in \mathbb{Z}$ (figure). Monomers are linked by elastic forces, i.e. the potential energy of the line is

$$V(\{y_x\}) = \sum_{x} \frac{\lambda}{2} (y_{x+1} - y_x)^2$$
(2)

Figure 1: Directed polymer model.

1/ Write explicitly the Langevin equation describing the motion of the monomer x

$$\frac{\partial y_x(t)}{\partial t} = -\frac{\partial V}{\partial y_x} + \sqrt{2D} \,\eta_x(t) \tag{3}$$

where the noises are independent Gaussian white noises

$$\left\langle \eta_x(t)\eta_{x'}(t')\right\rangle = \delta_{x,x'}\,\delta(t-t')\tag{4}$$

The continuum limit of this model is known as the Edwards-Wilkinson model.

2/ In order to solve the set of coupled equations, we use the discrete Fourier transform :

$$\tilde{y}_k(t) = \sum_x y_x(t) e^{-ikx} \quad \text{and} \quad y_x(t) = \frac{1}{N} \sum_k \tilde{y}_k(t) e^{ikx} \quad (5)$$

Here we assume a finite number N of monomers. In this case, the summation \sum_k runs over quantized wave vectors $k = 2\pi m/N \in [-\pi, +\pi]$ (with $m \in \mathbb{Z}$). Thus $\frac{1}{N}\sum_k \to \int_{-\pi}^{\pi} \frac{\mathrm{d}k}{2\pi}$ in the large N limit. Note also the useful identities $\sum_x e^{\mathrm{i}kx} = N \,\delta_{k,0}$ and $\sum_k e^{\mathrm{i}kx} = N \,\delta_{x,0}$.

Compute the correlator $\langle \tilde{\eta}_k(t) \tilde{\eta}_{k'}(t') \rangle$ for the Fourier components of the noise. Give the Langevin equation for the Fourier component $\tilde{y}_k(t)$.

- **3**/ Express $\tilde{y}_k(t)$ as an integral of the noise $\tilde{\eta}_k(t)$ [introduce the notation $\Lambda_k = 4\lambda \sin^2(k/2)$].
- 4/ For a non-random initial condition $y_x(0) = y_x^0$, show that the fluctuations of the position of the monomer at x are characterized (in the limit $N \to \infty$) by

$$\operatorname{Var}(y_x(t)) = D \int_0^{\pi} \frac{\mathrm{d}k}{\pi} \frac{1 - \mathrm{e}^{-2\Lambda_k t}}{\Lambda_k}$$
(6)

- 5/ Plot Λ_k as a function of k. For short times, $\lambda t \ll 1$, what is behaviour of $\operatorname{Var}(y_x(t))$? Explain physically.
- 6/ We now study the long time limit, $\lambda t \gg 1$. Argue that one can approximate the integral over k as $\int_{k_c(t)}^{\pi} \frac{dk}{\pi} \frac{1}{\Lambda_k}$, where $k_c(t)$ is a time dependent cutoff. Give the expression of $k_c(t)$. Deduce an estimate for the variance and show that $\operatorname{Var}(y_x(t)) \sim t^{2\theta}$ for large time. Give the exponent θ . Comment the result.

2 Scaling of the correlation length

We consider a magnetic system. The correlation length depends on the temperature $t = (T - T_c)/T_c$ and the conjugated field : $\xi(t, h)$. The scaling hypothesis leads to the relation

$$\xi(t,h) = \ell \,\xi(\ell^{y_t} \, t, \ell^{y_h} \, h) \tag{7}$$

where ℓ is the scaling factor. y_t and y_h are the thermal and magnetic exponents.

- 1/ The critical exponent for the correlation length at zero field is denoted ν and defined by $\xi \propto |T T_c|^{-\nu}$. Express ν in terms of y_t and y_h .
- 2/ Similarly, characterize the divergence of ξ as $h \to 0$ when $T = T_c$ in terms of y_t and y_h .
- 3/ The Onsager-Yang solution for the 2D Ising model shows that the specific heat critical exponent and the order parameter exponent are : $\alpha = 0$ and $\beta = 1/8$. Deduce explicitly the behaviours $\xi(t,0)$ for $t \to 0$ and $\xi(0,h)$ for $h \to 0$ in this case.

Appendix

We recall the two relations $\alpha = 2 - d/y_t$ and $\beta = (d - y_h)/y_t$, where d is the dimension.

3 Liquid crystal

Introduction.— the liquid crystal state is a mesophase with properties intermediate between liquid and crystalline phases. We are here interested in the *nematic* phase which is translationally invariant, like a liquid, but with rotational symmetry partially broken, like in a solid.

Long molecules are in suspension in a liquid, with fluctuating orientations. In the disordered phase the distribution of the orientation of the molecules is *isotropic*, while in the ordered phase (*nematic*) the molecules are on average oriented along a fixed direction given by the unit vector \vec{n} .

Figure 2: Three phases of a liquid crystal : isotropic, nematic and smectic.

A. Order parameter.— In this first part, we clarify the nature of the order parameter. The molecules have an orientation but no direction (i.e. if the axis of the molecule number *i* is carried by the unit vector $\vec{u}^{(i)}$, the two directions $\vec{u}^{(i)}$ and $-\vec{u}^{(i)}$ correspond to the same state).

- 1/ Deduce the symmetry of $p(\theta)$, the distribution of the angles $\theta_i \in [0, \pi]$ between the vectors $\vec{u}^{(i)}$ (fluctuating) and \vec{n} (fixed). Give $p(\theta)$ corresponding to the isotropic phase and sketch $p(\theta)$ corresponding to the nematic phase (choose the normalisation $\int_0^{\pi} d\theta \, p(\theta) = 1$).
- 2/ Deduce $\langle \vec{u}^{(i)} \rangle$ in general ($\langle \cdots \rangle$ denotes thermal averaging). Can the order parameter be a vector ?
- **3**/ For each molecule *i*, we introduce the tensor $Q_{\alpha\beta}^{(i)} = u_{\alpha}^{(i)}u_{\beta}^{(i)} \frac{1}{3}\delta_{\alpha\beta}$ (the greek indices label the three directions *x*, *y* and *z*). Show that the averaged tensor $Q = \langle Q^{(i)} \rangle$ is diagonal for $\vec{n} = \vec{e}_z$ (unit vector along axis Oz). Express the components of *Q* in term of $S = \langle P_2(\cos\theta_i) \rangle = \int_0^{\pi} d\theta \, p(\theta) \, P_2(\cos(\theta))$, where $P_2(x) = (3x^2 - 1)/2$. Give its value corresponding to the isotropic phase, and when the molecules are perfectly aligned (nematic state far from the transition).
- 4/ Maier and Saupe have proposed a model where the molecules *i* and *j* interact through a term of the form $E_{ij} = -\varepsilon \operatorname{Tr} \{Q^{(i)}Q^{(j)}\} = -\varepsilon \sum_{\alpha,\beta} Q^{(i)}_{\alpha\beta} Q^{(j)}_{\beta\alpha}$ with $\varepsilon > 0$. Argue that this favors the nematic phase.

B. Isotropic-nematic transition.— The nematic state is characterised by the parameter S and the director \vec{n} . For symmetry reasons, the Landau free energy only depends on S. Within the Maier-Saupe model, one can show that it presents the $S \to 0$ expansion

$$f(S) = \frac{1}{2}a(T) S^2 - \frac{b}{3}S^3 + \frac{c}{4}S^4 \qquad \text{with } a(T) = \tilde{a} (T - T_*) \text{ and } \tilde{a}, b, c \text{ positive}. \tag{8}$$

$$(a) T = T_0 \qquad (b) \qquad (c) \qquad (d) \qquad (e) T = T_1$$

- 1/ What is the correct ordering for the five plots of f(S) (for decreasing temperature T)?
- **2**/ Express T_0 and T_1 as a function of T_* , \tilde{a} , b and c. Hint : in order to determine T_1 , solve f(S) = f(0) and f'(S) = 0.
- 3/ Does this describe the isotropic-nematic transition ? Is the transition first or second order ? What is the transition temperature ? Plot $S_{\star}(T)$, the minimum of f(S), as a function of T.

C. Nematic phase.— In this last section, we consider a fixed temperature (below the transition temperature). The Ginzburg-Landau theory involves an elastic energy depending on the local orientation $\vec{n}(\vec{r})$. From symmetry considerations, Frank (1958) has proposed the form

$$F_{\rm el}[\vec{n}] = \frac{1}{2} \int \mathrm{d}^3 \vec{r} \left\{ K_1 \left(\vec{\nabla} \cdot \vec{n} \right)^2 + K_2 \left[\vec{n} \cdot \left(\vec{\nabla} \times \vec{n} \right) \right]^2 + K_3 \left[\vec{n} \times \left(\vec{\nabla} \times \vec{n} \right) \right]^2 \right\}$$
(9)

where K_1 (splay), K_2 (twist) and K_3 (bend) are three positive parameters. We study below the case where the director is in the xOy plane, $\vec{n}(\vec{r}) = (\cos\psi(z), \sin\psi(z), 0)$, with the angle depending only on the coordinate z. In the presence of a homogeneous magnetic field $\vec{H} =$ (0, H, 0), the free energy has a magnetic contribution $F_{\text{magn}}[\vec{n}] = -\frac{1}{2}\chi_a \int d^3\vec{r} (\vec{H} \cdot \vec{n})^2$, where χ_a is the anistropic contribution to the magnetic susceptibility.

1/ Show that the free energy per unit surface is

$$F[\psi(z)] = \frac{F_{\rm el} + F_{\rm magn}}{\text{Surface}} = g \int dz \left\{ \frac{1}{2} \left[\psi'(z) \right]^2 - \frac{1}{\xi^2} \sin^2 \psi(z) \right\}$$
(10)

Give the expressions of g and ξ in terms of K_i , $\chi_a > 0$ and H.

2/ Field equation. What is the equation for the field $\psi(z)$ which minimizes $F[\psi]$?

- **3**/ If $\psi(z)$ satisfies the field equation, show that $\mathscr{E} = \frac{1}{2} \left[\psi'(z) \right]^2 + \xi^{-2} \sin^2 \psi(z)$ is independent of z.
- 4/ In this last question, we are interested in a field configuration with $\psi(z) \to \pm \pi/2$ for $z \to \pm \infty$. What is the value of \mathscr{E} in this case ? Deduce the solution $\psi(z)$ such that $\psi(0) = 0$. Plot neatly $\psi(z)$.

Compare the free energy for this solution with the free energy for the uniform solution $\psi(z) = \text{cste}$ (no detailed calculation ; an order of magnitude is sufficient).

Hint : $\frac{\mathrm{d}}{\mathrm{d}t} \ln |\tan(t/2)| = 1/\sin t.$

SOLUTIONS WILL BE AVALAIBLE AT http://lptms.u-psud.fr/christophe_texier/