Partial Exam of Statistical Physics Wednesday March 11, 2020

Duration: 2 hours.

The use of documents, mobile phones, calculators, ..., is forbidden.

Recommendations:

Read the text carefully and **write** out your answers as *succinctly* and as *clearly* as possible. Check your calculations (dimensional analysis, etc.); do not forget to **reread yourself**.

Check the **informations at the end of the text**

1 Questions on the lectures : thermal contacts and fluctuations $(\sim 40 \mathrm{mn})$

- A. The classical perfect gas: We consider a perfect gas of N non-relativistic atoms of mass m in a volume V.
 - 1/ Recall the semi-classical formula allowing to calculate the number $\Phi(E)$ of microstates of energy less than E (the atoms are indistinguishable).
 - 2/ Justify that $\Phi(E) \propto E^{fN}$ where f is a number of order 1 that you should provide and justify (the precise calculation of $\Phi(E)$ is neither demanded nor necessary).
 - 3/ Give the definitions of the microcanonical entropy $S^*(E)$ and of the microcanonical temperature $T^*(E)$.
 - 4/ What is the relation between $S^*(E)$ and $\Phi(E)$? Justify it. Deduce the expression of $T^*(E)$ for the perfect gas (in the limit $N \gg 1$).
 - 5/ Give the expression of the specific heat of the gas, $C_V^* \stackrel{\text{def}}{=} \left[\partial T^* / \partial E \right]^{-1}$.
- **B.** Thermal contact between two perfect gas: we consider two perfect gas with N_1 and N_2 atoms of respective mass m_1 and m_2 , occupying two contiguous boxes of volume V_1 and V_2 .

When the two gases are brought into contact, they initially have energies $E_1^{(i)}$ and $E_2^{(i)}$. They are separated by a diatherm wall (allowing energy transfers) and an equilibrium is finally established.

- 1/ Give the expressions of the microcanonical temperatures of the two gases, which we will note more simply $T_1(E_1)$ and $T_2(E_2)$ (use part \mathbf{A} .).
- 2/ What is the condition of thermal equilibrium?
- 3/ Express the most likely value of the energy E_1 in terms of $E_1^{(i)}$ and $E_2^{(i)}$.
- 4/ Express the final temperature T_f as a function of $T_{1i} \equiv T_1(E_1^{(i)})$ and $T_{2i} \equiv T_1(E_2^{(i)})$.
- 5/ We recall that the variance of the energy is given by

$$var(E_1) = k_B T_f^2 \left(\frac{1}{C_{V1}} + \frac{1}{C_{V2}} \right)^{-1}$$
 (1)

where C_{V1} and C_{V2} are the specific heats of the two systems. Give the expression of $var(E_1)$ as a function of T_f , N_1 , N_2 and k_B .

6/ The microcanonical ensemble gives a bijective relationship between energy and temperature. $T_1 = T_1(E_1)$. Deduce the expression of the variance of the microcanonical temperature of the gas n°1, var (T_1) . Discuss the *relative* fluctuations of the microcanonical temperature.

2 Magnetic cooling (~1h20mn)

Household refrigerators use a fluid that undergoes compression/decompression cycles that extract heat from a cold source to re-inject it into a hot source (the environment). In the problem, we show that a magnetization/demagnetization cycle of a magnetic system also allows the conversion of magnetic energy into heat.

We consider a simple paramagnetic crystal model: N spins 1/2 on a lattice under a magnetic field B. Each spin can occupy two states $|+\rangle$ or $|-\rangle$ of energies $\varepsilon_{\pm} = \mp m_0 B$, where $m_0 > 0$ is the spin magnetization in the state $|+\rangle$. Spin interactions are assumed to be negligible.

- 1/ Question on the lectures: Recall the (general) definition of the canonical partition function and then of the free energy F. Introduce $\beta = 1/(k_{\rm B}T)$ where T is the temperature of the thermostat.
- 2/ Calculate the partition function for a single spin, z_{spin} . Then deduce the partition function Z_{cristal} of the paramagnetic crystal for N spins.
- 3/ Equation of state.— Each spin can have two magnetizations $(+m_0)$ in the state $|+\rangle$ or $-m_0$ in the state $|-\rangle$). How to deduce the average magnetization \overline{M}^c from the free energy F?

 Calculate the average magnetization per spin, $m \stackrel{\text{def}}{=} \frac{1}{N} \overline{M}^c$. This equation m = m(B, T) plays the role of the equation of state. Plot two isotherms for the temperatures T_c and $T_f < T_c$ in the (m, B) plane.
- 4/ Question on the lectures : Using the Gibbs-Shannon formula, show that the canonical entropy is $S^c = (\overline{E}^c F)/T$.
- 5/ Deduce that the entropy by spin $S = \frac{1}{N}S_{\text{cristal}}^{\text{c}}$ is only a function of $x = \beta m_0 B$. Give its expression.
- 6/ Isothermal transformation:
 - a) Work.— Calculate the « work » (for one spin) during a reversible transformation along the isotherm T, to go from the state (B = 0, m = 0) to a state (B, m):

$$W^{(T)}(0 \to B) = -\int_0^B m(B', T) \, dB'.$$
 (2)

b) **Heat.**— Show that the heat received (per spin) along the isothermal transformation is given by

$$Q^{(T)}(0 \to B) = -k_{\rm B}T \,\Phi\left(\frac{m_0 B}{k_{\rm B}T}\right) \quad \text{où} \quad \Phi(x) \stackrel{\text{def}}{=} x \, \text{th} \, x - \ln(\text{ch} \, x) \tag{3}$$

Study the limiting behaviors of $\Phi(x)$ and draw it very carefully.

Suggestion: We could use $\Delta \varepsilon = Q + W$ and that the energy of a single spin is $\varepsilon = -mB$ (this is the canonical average energy, $\varepsilon = \overline{E}^c/N$).

7/ **Isentropic transformation.**— No heat is exchanged with the outside.

- a) Justify that an isentropic transformation corresponds to $B/T={\rm cste.}$ Represent an isentrope in the (m,B) plane .
- b) Show that the work of the isentropic transformation going from B_1 to B_2 is given by

$$W^{\text{(isentrope)}}(B_1 \to B_2) = k_{\text{B}}T_1 x_1 \text{ th } x_1 - k_{\text{B}}T_2 x_2 \text{ th } x_2 \quad \text{with } x_1 = \frac{m_0 B_1}{k_{\text{B}}T_1} \text{ and } x_2 = \frac{m_0 B_2}{k_{\text{B}}T_2}.$$

- 8/ Carnot cycle.— We are now studying the cycle:
 - Isothermal transformation at T_1 going from B=0 to $B=B_1$.
 - Isentropic transformation from $B = B_1$ to $B = B_2 > B_1$.
 - Isothermal transformation at $T_2 < T_1$ going from $B = B_2$ to B = 0.
 - a) Represent the cycle in the diagram (m, B).
 - b) Give the expression of the work received by the system during the cycle

$$W = -\oint dB \, m = W^{(T_1)}(0 \to B_1) + W^{(\text{isentropic})}(B_1 \to B_2) + W^{(T_2)}(B_2 \to 0) \tag{4}$$

- c) Express the heat $Q_f > 0$ received by the system from the cold source.
- d) Deduce the expression of the cycle efficiency $\eta_{\text{fridge}} \stackrel{\text{def}}{=} Q_f/W$ as a function of T_1 and T_2 .

Annex

- Stirling formula : $\ln N! \simeq N \ln N N$ for $N \gg 1$.
- Fundamental identity of thermodynamics: $dE = T dS p dV + \mu dN M dB + \cdots$