

MID-TERM EXAM OF STATISTICAL PHYSICS Wednesday 10 march 2021

Duration: 2hours

The use of documents, mobile phones, calculators, ..., is forbidden.

Recommendations:

Read the text carefully and **write** out your answers as *succinctly* and as *clearly* as possible. Check your calculations (dimensional analysis, etc.); do not forget to **reread yourself**. Check the **informations at the end of the text**

1 Frenkel defects(~30mn)

Consider a crystalline solid made up of N atoms. In the ground state, atoms occupy the N sites of the crystal lattice, however, an atom can leave a site in the lattice and position itself at an interstitial site, which has an energy cost of $\varepsilon > 0$. We denote by N' the number of available interstitial sites (in general N and N' are of the same order of magnitude). If n atoms occupy interstitial sites (so N-n atoms remain on the N sites of the crystal lattice), the energy of the atoms is $E=n\,\varepsilon$.

Figure 1: Crystal of N=35 atoms with two Frenkel defects.

- 1/ State the fundamental postulate of statistical physics.
- 2/ Recall the definitions of the microcanonical entropy S^* and the microcanonical temperature T^* .
- 3/ How many ways are there to pick the n atoms leaving the N sites on the lattice? How many ways are there for these n atoms to occupy the N' interstitial sites?
- 4/ Deduce from the previous question the number Ω of microstates corresponding to n atoms on the interstitial sites. Show that for $n \ll N$, N' we have

$$\Omega \simeq \frac{(N'N)^n}{(n!)^2} \tag{1}$$

- 5/ Deduce the microcanonical entropy S^* atoms of the crystal and give its expression in the limit $N, N' \gg n \gg 1$.
- 6/ Deduce the expression of the temperature $T^*(E)$. Invert this function to determine how the number n of atoms on the interstitial sites depends on the temperature T^* , of N and of N'. Does the hypothesis $n \ll N$, N' of the question 4/ correspond to high or low temperatures? Qualitatively plot n as a function of T^* in this regime and comment.

2 Conjugate variables in the microcanonical ensemble (~40mn)

Consider a system whose energy depends on a parameter ϕ , a « force », conjugate to an observable X (for example the magnetic field $\phi \to \mathcal{B}$ and the magnetization $X \to M$). Said differently, the value of the observable in a microstate $|\ell\rangle$ is related to its energy by

$$X_{\ell} = -\partial E_{\ell}/\partial \phi . \tag{2}$$

If the system is isolated, we denote by \overline{X}^* the microcanonical average of the observable (i.e. the average over the accessible states $\in [E, E + \delta E]$). Let us note S^* and T^* the microcanonical entropy and temperature. The objective of the exercise is to show the relation

$$\overline{\overline{X}}^* = T^* \frac{\partial S^*}{\partial \phi}$$
 (3)

and to discuss a simple application of this very general formula.

FIGURE 2: Evolution of the accessible microstates when changing the parameter $\phi \to \phi + \delta \phi$.

We note $\Omega(E,\phi)$ the number of accessible microstates.

1/ If we consider an *adiabatic* transformation driven by a "small" variation of the force, $\phi \to \phi + \delta \phi$, the energy of the system changes like $E \to E - \overline{X}^* \delta \phi$, according to (2). Under such transformation, the number of accessible microstates is conserved (Fig. 2). Show the relation (3).

2/ Application: crystal of 1/2 spins

We apply these considerations in a very simple case: we consider an (isolated) crystal of N spins 1/2, under a magnetic field \mathcal{B} . We note n_{\pm} the number of spins in the state $|\pm\rangle$ of energy $\varepsilon_{\pm} = \mp \varepsilon_{\mathcal{B}}$ with $\varepsilon_{\mathcal{B}} = m_0 \mathcal{B}$ where m_0 is the magnetization of one spin.

- a) Give the expression of the number of accessible microstates Ω as a function of N, n_+ and n_- .
- b) Deduce the microcanonical entropy S^* (assuming N, $n_{\pm} \gg 1$). Justify that it can be written in the form $S^*(E, N, \mathcal{B}) = N k_{\rm B} s(E/N \varepsilon_{\mathcal{B}})$ and give the expression of the dimensionless function s(x).
- c) Apply the formula (3) for the magnetization (i.e. $X \to M$ and $\phi \to \mathcal{B}$) and interpret the result.
- d) High temperature limit.—Show that $s(x) \simeq \ln 2 x^2/2$ for $x \ll 1$. Deduce an approximate expression of the magnetic temperature T^* . Give \overline{M}^* as a function of N, m_0 , \mathcal{B} and T^* . Interpret the result.
- e) Bonus (optional): In the more general case of spins s > 1/2, which part of the analysis would change and which results would be unchanged?

3 Anharmonic oscillator (~45mn)

We consider a system in contact with a thermostat at temperature T.

- 1/ Give the definition of the canonical partition function Z (we note $|\ell\rangle$ the microstates and E_{ℓ} the energies).
- 2/ How do we deduce the average energy \overline{E}^{c} of the partition function (recall the demonstration).
- 3/ We consider a one-dimensional system described by its Hamiltonian $H(x,p) = \frac{p^2}{2m} + V(x)$. The system is treated classically.
 - a) Show that the partition function factorizes in the form $Z = Z_{\text{cin}}Z_{\text{pot}}$ where Z_{cin} and Z_{pot} are respectively associated with the kinetic and potential parts of the energy.
 - b) Calculate Z_{cin} and deduce the average kinetic energy $\overline{E}_{\text{cin}}^c$.
 - c) We will analyse Z_{pot} using an approximate potential $V(x) = \frac{1}{2}\kappa x^2 + \lambda x^4$. In that respect, we write $e^{-\beta V(x)} = e^{-\frac{1}{2}(x/a_2)^2} e^{-(x/a_4)^4}$. Give the expressions of the two length scales a_2 and a_4 as a function of T.
 - d) By plotting the shapes of $e^{-\frac{1}{2}(x/a_2)^2}$ and $e^{-(x/a_4)^4}$, justify that the quartic term is negligible within the limit of low temperatures. Deduce Z_{pot} and the contribution of the potential energy $\overline{E}_{\text{pot}}^c$ to the total average energy.
 - e) In the high temperature limit, the quadratic term of V(x) is negligible. Show that $Z_{\rm pot} \propto \beta^{-\theta}$ and specify the value of the exponent θ . Infer $\overline{E}_{\rm pot}^{\rm c}$.
 - f) Calculate the specific heat $C_V = \partial \overline{E}^c / \partial T$ in the two limits (with $\overline{E}^c = \overline{E}_{cin}^c + \overline{E}_{pot}^c$). Identify the temperature scale $T_{crossover}$ separating the two regimes, that you will express in terms of κ and λ . Qualitatively plot C_V and provide a physical interpretation.

Reread yourself (~5mn)

Annex

- Stirling formula : $\ln N! \approx N \ln N N$ for $N \gg 1$.
- $N!/(N-m)! \simeq N^m$ for $N \gg m$.
- $\int_{\mathbb{R}} dx e^{-ax^2} = \sqrt{\pi/a}$