Correction de l'examen du 8 avril 2022

Part 1 : Weak localization correction in a hollow cylinder

1/ $\mathrm{e}^{-t / \tau_{\varphi}}$ accounts for the decoherence and cut off the contribution of electronic trajectories longer than the phase coherence length $L_{\varphi} \stackrel{\text { def }}{=} \sqrt{D \tau_{\varphi}}$. The time τ_{φ} is the phase coherence time.
2/ Cooperon in the infinite line : The solution of the diffusion equation in 1D is $\mathcal{P}\left(x, t \mid x^{\prime}, 0\right)=$ $\frac{1}{\sqrt{4 \pi D t}} \exp \left\{-x^{2} / 4 D t\right\}$.

A. Cooperon in an isolated ring.

3/ The magnetic flux is $\phi=\oint \mathrm{d} \vec{r} \cdot \vec{A}=L A_{x}$.
4/ We find the Cooperon inside the ring. We analyze the spectrum of the operator $D\left(\partial_{x}-\frac{2 \mathrm{i} e}{\hbar} A_{x}\right)^{2}$ involved in the "diffusion" equation. The solutions of

$$
\begin{equation*}
-D\left(\partial_{x}-\frac{2 \mathrm{i} e}{\hbar} A_{x}\right)^{2} \psi(x)=\lambda \psi(x) \quad \text { for } x \in[0, L] \tag{1}
\end{equation*}
$$

are plane waves $\psi(x)=c \mathrm{e}^{\mathrm{i} k x}$ (from translation invariance). These plane waves should be periodic in the ring $\psi(x+L)=\psi(x)$ thus $\psi_{n}(x)=\frac{1}{\sqrt{L}} \mathrm{e}^{2 \mathrm{i} n \pi x / L}$, with $n \in \mathbb{Z}$. Application of the operator gives the eigenvalue

$$
\begin{equation*}
-D\left(\partial_{x}-\frac{2 \mathrm{i} e}{\hbar} A_{x}\right)^{2} \psi_{n}(x)=D\left(\frac{2 \pi n}{L}-\frac{2 e \phi}{\hbar L}\right)^{2} \psi_{n}(x) \equiv \lambda_{n} \psi_{n}(x) \tag{2}
\end{equation*}
$$

thus

$$
\begin{equation*}
\lambda_{n}=D\left(\frac{2 \pi}{L}\right)^{2}\left(n-2 \phi / \phi_{0}\right)^{2} \equiv\left(n-2 \phi / \phi_{0}\right)^{2} / \tau_{D} \tag{3}
\end{equation*}
$$

where $\tau_{D}=L^{2} /\left(4 \pi^{2} D\right)$ is the Thouless time (time for the diffusion over length L). The spectral decomposition of $\mathcal{P}\left(x, t \mid x^{\prime}, 0\right)$ is

$$
\begin{equation*}
\mathcal{P}\left(x, t \mid x^{\prime}, 0\right)=\langle x| \mathrm{e}^{D t\left(\partial_{x}-\frac{2 \mathrm{i} e}{\hbar} A_{x}\right)^{2}}\left|x^{\prime}\right\rangle=\sum_{n} \psi_{n}(x) \psi_{n}\left(x^{\prime}\right)^{*} \mathrm{e}^{-\lambda_{n} t} \tag{4}
\end{equation*}
$$

5/ Explicitly

$$
\begin{equation*}
\mathcal{P}\left(x, t \mid x^{\prime}, 0\right)=\frac{1}{L} \sum_{n \in \mathbb{Z}} \mathrm{e}^{-\left(n-2 \phi / \phi_{0}\right)^{2} t / \tau_{D}+2 \mathrm{in} \pi\left(x-x^{\prime}\right) / L} \tag{5}
\end{equation*}
$$

We only need the Cooperon at coinciding points:

$$
\begin{equation*}
\mathcal{P}(x, t \mid x, 0)=\frac{1}{L} \sum_{n \in \mathbb{Z}} \mathrm{e}^{-\left(n-2 \phi / \phi_{0}\right)^{2} t / \tau_{D}} \tag{6}
\end{equation*}
$$

We make use of the Poisson formula for

$$
\alpha=2 \phi / \phi_{0} \quad \text { and } \quad y=t / \tau_{D}
$$

hence

$$
\begin{equation*}
\mathcal{P}(x, t \mid x, 0)=\frac{1}{\sqrt{4 \pi D t}} \sum_{n \in \mathbb{Z}} \mathrm{e}^{-\frac{(n L)^{2}}{4 D t}} \mathrm{e}^{\mathrm{i} n \theta} \quad \text { for } \theta=4 \pi \phi / \phi_{0} \tag{7}
\end{equation*}
$$

For $\theta=0$ this is simply the periodisation of the propagator of the infinite line.

B. Cooperon in a hollow cylinder

6/ The cylinder is translation invariant along \vec{u}_{y}, and along \vec{u}_{x}, but also periodic in this direction. The equation

$$
\partial_{t} \mathcal{P}\left(\vec{r}, t \mid \vec{r}^{\prime}, 0\right)=D\left[\left(\partial_{x}-\frac{2 \mathrm{i} e}{\hbar} A_{x}\right)^{2}+\partial_{y}^{2}\right] \mathcal{P}\left(\vec{r}, t \mid \vec{r}^{\prime}, 0\right)
$$

is separable, thus

$$
\begin{equation*}
\mathcal{P}\left(\vec{r}, t \mid \vec{r}^{\prime}, 0\right)=\left.\mathcal{P}\left(x, t \mid x^{\prime}, 0\right)\right|_{\text {ring }} \times\left.\mathcal{P}\left(y, t \mid y^{\prime}, 0\right)\right|_{\text {line }} \tag{8}
\end{equation*}
$$

(this is clear in the spectral representation). Hence

$$
\begin{equation*}
\mathcal{P}(\vec{r}, t \mid \vec{r}, 0)=\frac{1}{4 \pi D t} \sum_{n \in \mathbb{Z}} \mathrm{e}^{-\frac{(n L)^{2}}{4 D t}} \mathrm{e}^{\mathrm{i} n \theta} . \tag{9}
\end{equation*}
$$

7/ We need to cure the divergence of the integrql $\int_{0} \mathrm{~d} t \mathcal{P}(\vec{r}, t \mid \vec{r}, 0)$ at short times. Indeed, the cylinder is 2D, hence we have to introduce also a short scale cutoff to get the WL

$$
\begin{equation*}
\overline{\Delta \sigma(\phi)}=-\frac{2_{s} e^{2}}{\pi \hbar} D \int_{0}^{\infty} \mathrm{d} t \mathcal{P}(\vec{r}, t \mid \vec{r}, 0)\left(\mathrm{e}^{-t / \tau_{\varphi}}-\mathrm{e}^{-t / \tilde{\tau}_{e}}\right) \tag{10}
\end{equation*}
$$

where $\tilde{\tau}_{e}=\ell_{e}^{2} / D$, with ℓ_{e} the ellastic mean free path. The cutoff at scale ℓ_{e} accounts for the fact that this equation was obtained in the diffusion approximation, for scales $\gtrsim \ell_{e}$.
8/ We introduce the n-th Fourier harmonic of the propagator :

$$
\begin{equation*}
\mathcal{P}_{n}(t)=\int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{2 \pi} \mathrm{e}^{-\mathrm{i} n \theta} \mathcal{P}(\vec{r}, t \mid \vec{r}, 0)=\frac{1}{4 \pi D t} \mathrm{e}^{-\frac{(n L)^{2}}{4 D t}} \tag{11}
\end{equation*}
$$

which is interpreted as the return probability for a diffusive particle, conditioned to turn n times around the cylinder. Hence

$$
\begin{equation*}
\Delta \sigma_{n}-\frac{2_{s} e^{2}}{\pi \hbar} D \int_{0}^{\infty} \mathrm{d} t \mathcal{P}_{n}(t)\left(\mathrm{e}^{-t / \tau_{\varphi}}-\mathrm{e}^{-t / \tilde{\tau}_{e}}\right) \tag{12}
\end{equation*}
$$

Making use of the appendix, we get

$$
\begin{equation*}
\Delta \sigma_{n}=-\frac{2_{s} e^{2}}{h} \frac{1}{\pi}\left[K_{0}\left(|n| L / L_{\varphi}\right)-K_{0}\left(|n| L / \ell_{e}\right)\right] \tag{13}
\end{equation*}
$$

for $n>0$.
9/ $\bullet=0$: we take the limit $|n| L \rightarrow 0$ in the previous expression. Using the limiting behaviour of the MacDonald function we get

$$
\begin{equation*}
\Delta \sigma_{0}=-\frac{2_{s} e^{2}}{h} \frac{1}{\pi} \ln \left(L_{\varphi} / \ell_{e}\right) \tag{14}
\end{equation*}
$$

which is precisely the WL correction for a plane.
$\bullet n \neq 0$: we simplify the expression by making use of the fact that $L / \ell_{e} \gg 1$ (take the limit $\left.L / \ell_{e} \rightarrow \infty\right)$

$$
\begin{equation*}
\Delta \sigma_{n}=-\frac{2_{s} e^{2}}{h} \frac{1}{\pi} K_{0}\left(|n| L / L_{\varphi}\right) \tag{15}
\end{equation*}
$$

for $n>0$.

- The MC is now given by the Fourier series

$$
\begin{equation*}
\overline{\Delta \sigma(\phi)}=-\frac{2_{s} e^{2}}{\pi h}\left[\ln \left(L_{\varphi} / \ell_{e}\right)+2 \sum_{n=1}^{\infty} K_{0}\left(|n| L / L_{\varphi}\right) \cos \left(4 \pi n \phi / \phi_{0}\right)\right] \tag{16}
\end{equation*}
$$

Clearly $\Delta \sigma_{0}$ is controlled by $\mathcal{P}_{0}(t)$, i.e. by diffusive electronic trajectories that do not wind around the cylinder while $\Delta \sigma_{n}$ involves $\mathcal{P}_{n}(t)$, i.e. trajectories that wind n times around the cylinder.

10/ $\Delta \sigma_{n} \sim \exp \left\{-|n| L / L_{\varphi}\right\}$ decays fast because its is unlikely to wind n times if $|n| L \gg L_{\varphi}$.
The decoherence is activated by extrinsic processes, hence by temperature. L_{φ} decreases as T grows. Thus the MC oscillations also decays with temperature, as a result of decoherence.
11/ We see on the experimental curve that four oscillations correspond to ~ 50 Gauss, i.e.

$$
\phi=\frac{L^{2}}{4 \pi} \times 50 \text { Gauss } \simeq 4 \times \frac{\phi_{0}}{2}
$$

so $L \simeq 4 \pi \sqrt{\hbar / e B} \simeq 4.5 \mu \mathrm{~m}$.
$12 / \mathrm{BONUS}$: The penetration of the magnetic field in the thickness of the cylinder generate an effective contribution to the phase coherence lentgh, like in a wire

$$
\begin{equation*}
\frac{1}{L_{\varphi}^{2}} \longrightarrow \frac{1}{L_{\varphi}^{2}}+\frac{1}{3}\left(\frac{e B w}{\hbar}\right)^{2} \tag{17}
\end{equation*}
$$

where w is the thickness of the film.
For $L_{\varphi}(1.1 \mathrm{~K})=2.2 \mu \mathrm{~m}$, the typical field over which this effect is important is

$$
B_{c} \sim \frac{\hbar}{e L_{\varphi} w} \approx 20 \text { Gauss }
$$

which is consistent with the experimental curve. Note that the envelope $\Delta \sigma_{0}$ also depends on L_{φ}, hence the above substitution makes it B-dependent.

To know more

- Mesure de la magnétorésistance du cylindre : B. L. Al’tshuler, A. G. Aronov, B. Z. Spivak, D. Yu. Sharvin and Yu. V. Sharvin, Observation of the Aaronov-Bohm Effect in hollow metal cylinders, JETP Lett. 35(11), 588 (1982) ; Yu. V. Sharvin, Weak localization and oscillatory magnetoresistance of cylindrical metal films, Physica 126B, 288 (1984).
- Revue sur les anneaux et chaînes d'anneaux (discussion des effets de moyennage) : S. Washburn and R. A. Webb, Aharonov-Bohm effect in normal metal. Quantum coherence and transport, Adv. Phys. 35(4), 375-422 (1986).
- L'analyse précise de la localisation faible des anneaux (effet des fils de contact) des chaînes d'anneaux, etc (plus avancé) : C. Texier, P. Delplace and G. Montambaux, Quantum oscillations and decoherence due to electron-electron interaction in networks and hollow cylinders, Phys. Rev. B 80, 205413 (2009).

