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Part 1 : Weak localization correction in a hollow cylinder

1/ e�t/⌧' accounts for the decoherence and cut o↵ the contribution of electronic trajectories

longer than the phase coherence length L'
def
=

p
D⌧'. The time ⌧' is the phase coherence

time.
2/ Cooperon in the infinite line : The solution of the di↵usion equation in 1D is P(x, t|x0, 0) =

1p
4⇡Dt

exp{�x2/4Dt}.

A. Cooperon in an isolated ring.
3/ The magnetic flux is � =

H
d~r · ~A = LAx.

4/ We find the Cooperon inside the ring. We analyze the spectrum of the operatorD
�
@x � 2i e

~ Ax
�2

involved in the ”di↵usion” equation. The solutions of

�D

✓
@x �

2i e

~ Ax

◆2

 (x) = � (x) for x 2 [0, L] (1)

are plane waves  (x) = c eikx (from translation invariance). These plane waves should be
periodic in the ring  (x + L) =  (x) thus  n(x) =

1p
L
e2in⇡x/L, with n 2 Z. Application of

the operator gives the eigenvalue

�D

✓
@x �

2i e

~ Ax

◆2

 n(x) = D

✓
2⇡n

L
� 2 e�

~L

◆2

 n(x) ⌘ �n  n(x) (2)

thus

�n = D

✓
2⇡

L

◆2

(n� 2�/�0)
2 ⌘ (n� 2�/�0)

2/⌧D (3)

where ⌧D = L2/(4⇡2D) is the Thouless time (time for the di↵usion over length L). The
spectral decomposition of P(x, t|x0, 0) is

P(x, t|x0, 0) = hx |eDt(@x� 2i e
~ Ax)

2

|x0 i =
X

n

 n(x) n(x
0)⇤ e��nt (4)

5/ Explicitly

P(x, t|x0, 0) = 1

L

X

n2Z
e�(n�2�/�0)2t/⌧D+2in⇡(x�x0)/L (5)

We only need the Cooperon at coinciding points:

P(x, t|x, 0) = 1

L

X

n2Z
e�(n�2�/�0)2t/⌧D (6)

We make use of the Poisson formula for

↵ = 2�/�0 and y = t/⌧D

hence

P(x, t|x, 0) = 1p
4⇡Dt

X

n2Z
e�

(nL)2

4Dt ein✓ for ✓ = 4⇡�/�0 (7)

For ✓ = 0 this is simply the periodisation of the propagator of the infinite line.

B. Cooperon in a hollow cylinder
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6/ The cylinder is translation invariant along ~uy, and along ~ux, but also periodic in this direction.
The equation

@tP(~r, t|~r 0, 0) = D

"✓
@x �

2i e

~ Ax

◆2

+ @2y

#
P(~r, t|~r 0, 0)

is separable, thus
P(~r, t|~r 0, 0) = P(x, t|x0, 0)

��
ring

⇥ P(y, t|y0, 0)
��
line

(8)

(this is clear in the spectral representation). Hence

P(~r, t|~r, 0) = 1

4⇡Dt

X

n2Z
e�

(nL)2

4Dt ein✓ . (9)

7/ We need to cure the divergence of the integrql
R
0 dtP(~r, t|~r, 0) at short times. Indeed, the

cylinder is 2D, hence we have to introduce also a short scale cuto↵ to get the WL

��(�) = �2se2

⇡~ D

Z 1

0
dtP(~r, t|~r, 0)

⇣
e�t/⌧' � e�t/⌧̃e

⌘
(10)

where ⌧̃e = `2e/D, with `e the ellastic mean free path. The cuto↵ at scale `e accounts for the
fact that this equation was obtained in the di↵usion approximation, for scales & `e.

8/ We introduce the n-th Fourier harmonic of the propagator :

Pn(t) =

Z 2⇡

0

d✓

2⇡
e�in✓P(~r, t|~r, 0) = 1

4⇡Dt
e�

(nL)2

4Dt (11)

which is interpreted as the return probability for a di↵usive particle, conditioned to turn n
times around the cylinder. Hence

��n � 2se2

⇡~ D

Z 1

0
dtPn(t)

⇣
e�t/⌧' � e�t/⌧̃e

⌘
(12)

Making use of the appendix, we get

��n = �2se2

h

1

⇡
[K0(|n|L/L')�K0(|n|L/`e)] (13)

for n > 0.
9/ • n = 0 : we take the limit |n|L ! 0 in the previous expression. Using the limiting behaviour

of the MacDonald function we get

��0 = �2se2

h

1

⇡
ln(L'/`e) (14)

which is precisely the WL correction for a plane.
• n 6= 0 : we simplify the expression by making use of the fact that L/`e � 1 (take the limit
L/`e ! 1)

��n = �2se2

h

1

⇡
K0(|n|L/L') (15)

for n > 0.
• The MC is now given by the Fourier series

��(�) = �2se2

⇡h

"
ln(L'/`e) + 2

1X

n=1

K0(|n|L/L') cos(4⇡n�/�0)

#
(16)

Clearly ��0 is controlled by P0(t), i.e. by di↵usive electronic trajectories that do not wind
around the cylinder while ��n involves Pn(t), i.e. trajectories that wind n times around the
cylinder.
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10/ ��n ⇠ exp{�|n|L/L'} decays fast because its is unlikely to wind n times if |n|L � L'.

The decoherence is activated by extrinsic processes, hence by temperature. L' decreases as
T grows. Thus the MC oscillations also decays with temperature, as a result of decoherence.

11/ We see on the experimental curve that four oscillations correspond to ⇠ 50 Gauss, i.e.

� =
L2

4⇡
⇥ 50 Gauss ' 4⇥ �0

2

so L ' 4⇡
p
~/eB ' 4.5 µm.

12/ Bonus : The penetration of the magnetic field in the thickness of the cylinder generate
an e↵ective contribution to the phase coherence lentgh, like in a wire

1

L2
'
�! 1

L2
'
+

1

3

✓
eBw

~

◆2

(17)

where w is the thickness of the film.
For L'(1.1 K) = 2.2 µm, the typical field over which this e↵ect is important is

Bc ⇠
~

eL'w
⇡ 20 Gauss

which is consistent with the experimental curve. Note that the envelope ��0 also depends
on L', hence the above substitution makes it B-dependent.

To know more

• Mesure de la magnétorésistance du cylindre : B. L. Al’tshuler, A. G. Aronov, B. Z. Spivak,
D. Yu. Sharvin and Yu. V. Sharvin, Observation of the Aaronov-Bohm E↵ect in hollow metal
cylinders, JETP Lett. 35(11), 588 (1982) ; Yu. V. Sharvin, Weak localization and oscillatory
magnetoresistance of cylindrical metal films, Physica 126B, 288 (1984).
• Revue sur les anneaux et châınes d’anneaux (discussion des e↵ets de moyennage) : S. Washburn
and R. A. Webb, Aharonov-Bohm e↵ect in normal metal. Quantum coherence and transport,
Adv. Phys. 35(4), 375–422 (1986).
• L’analyse précise de la localisation faible des anneaux (e↵et des fils de contact) des châınes
d’anneaux, etc (plus avancé) : C. Texier, P. Delplace and G. Montambaux, Quantum oscillations
and decoherence due to electron-electron interaction in networks and hollow cylinders, Phys.
Rev. B 80, 205413 (2009).
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