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Part 1 : Weak localization correction in a hollow cylinder

1/ e Y7 accounts for the decoherence and cut off the contribution of electronic trajectories

longer than the phase coherence length L, N Dr,. The time 7, is the phase coherence
time.
2/ Cooperon in the infinite line : The solution of the diffusion equation in 1D is P(z, t|2’,0) =

\/ﬁ exp{—22/4Dt}.

A. Cooperon in an isolated ring.
3/ The magnetic fluxis ¢ = §dr- A =L A,.

4/ We find the Cooperon inside the ring. We analyze the spectrum of the operator D (830 — % Am) 2
involved in the ”diffusion” equation. The solutions of

2i 2
-D (896 - %e Ax> Y(z) = Ap(x) for x € [0, L] (1)
are plane waves ¢(z) = ce** (from translation invariance). These plane waves should be

periodic in the ring ¢¥(x + L) = ¢(x) thus ¢, (z) = %em””ﬂ, with n € Z. Application of
the operator gives the eigenvalue
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where 7p = L?/(472D) is the Thouless time (time for the diffusion over length L). The
spectral decomposition of P(x,t|z’,0) is

ie 2
Pz, tla’,0) = (2”5 A o) = 3 i () gu(a’) e (4)
5/ Explicitly
1 2 - /
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nez
We only need the Cooperon at coinciding points:
1 2
- = —(n—2¢/¢0)t/T
P(z,t|x,0) = 7 geze )7/ TD (6)

We make use of the Poisson formula for

a=2/¢0 and  y=t/mp

hence

Pla,te,0) = ——— S o™ for 0= 4ro/o )
) ) = = am

VarDt ‘
For 6 = 0 this is simply the periodisation of the propagator of the infinite line.

B. Cooperon in a hollow cylinder
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7/

8/

9/

The cylinder is translation invariant along i, and along i, but also periodic in this direction.

The equation
2e  \?
(-2 a) 1o

8P (7, t|7,0) = D P(7,t|7,0)

h

is separable, thus

P17, 0) = Pz, tla’,0)] 10 X P, Y, 0)] (8)
(this is clear in the spectral representation). Hence
= 4|2 1 —("L)2 ind
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We need to cure the divergence of the integrql fo dt P(7,t|7,0) at short times. Indeed, the
cylinder is 2D, hence we have to introduce also a short scale cutoff to get the WL
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wh
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0
where 7, = Kg /D, with £, the ellastic mean free path. The cutoff at scale ¢, accounts for the
fact that this equation was obtained in the diffusion approximation, for scales 2 /..
We introduce the n-th Fourier harmonic of the propagator :
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which is interpreted as the return probability for a diffusive particle, conditioned to turn n
times around the cylinder. Hence

D dtP.(t) (e—t/w - e—t/%) (12)

Making use of the appendix, we get

2,62 1
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Aoy = — [Ko(In|L/Ly) = Ko(|n|L/L)] (13)

for n > 0.
e n = 0: we take the limit |n|L — 0 in the previous expression. Using the limiting behaviour
of the MacDonald function we get
252 1
Am:—zgm@ﬂg (14)
which is precisely the WL correction for a plane.

e n # 0 : we simplify the expression by making use of the fact that L/f. > 1 (take the limit
L/te — o)

25 1
Aoy = — ;K0(|”|L/L<p) (15)
for n > 0.
e The MC is now given by the Fourier series
2,62 >
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Clearly Aoy is controlled by Py(t), i.e. by diffusive electronic trajectories that do not wind
around the cylinder while Ag,, involves P, (t), i.e. trajectories that wind n times around the
cylinder.



10/ Aoy, ~ exp{—|n|L/L,} decays fast because its is unlikely to wind n times if |n|L > L.
The decoherence is activated by extrinsic processes, hence by temperature. L, decreases as
T grows. Thus the MC oscillations also decays with temperature, as a result of decoherence.
11/ We see on the experimental curve that four oscillations correspond to ~ 50 Gauss, i.e.
L? %o

gf):ExE)OGauss:le?

so L ~4m\/h/eB ~ 4.5 pm.
12/ BONUS : The penetration of the magnetic field in the thickness of the cylinder generate
an effective contribution to the phase coherence lentgh, like in a wire

1 1 1 /eBw\?
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where w is the thickness of the film.
For L,(1.1K) = 2.2 um, the typical field over which this effect is important is

h

EL,W

B. ~ ~ 20 Gauss

which is consistent with the experimental curve. Note that the envelope Aoy also depends
on Ly, hence the above substitution makes it B-dependent.
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