
Master 2 iCFP

Waves in disordered media and localisation phenomena – Exam
Friday 8 april 2022

Duration : 3 hours.

Lecture notes are allowed.

!
Pay attention to the appendices

Write your answers for the two parts on separate sheets.
!

Part 1 : Weak localization correction in a hollow cylinder

Introduction : The aim of the problem is to analyze the weak localization correction to the
conductivity of a hollow cylinder.
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FIGURE 6 
Temperature dependence of I/~¢ for the Li 
sample. Circles are for ~¢/Zso=O , squares for 
x~/rso = 0.2 at I.i K. Data at T>2.6 K are obtain- 
ed from LMRmeasurements. The dashed line cor- 
responds to I/Z¢=2.8 T 2. 

hancement of the effect by superconducting fluc- 
tuations were reported by ~(22). 

3. DISCUSSION 
AAS (17) proposed for describing the oscilla- 

tory~N of hollow cylinders, influenced by spin- 
orbit interaction and superconducting fluctua- 
tions, the expression 

R(H) - R(O) e 2 2~r [ [ 3  Z~(L~ (H)) 1 1 
R2(O) : ~-2~ T 2-- - (2- + 13 ) Z$(L$(H)) 

J 

Z~ (L¢ (H))= i n ~  + 2~= [K °  "(n~j2~r~cos (2~n ~! -K o (n~0~) ] 

I/L~(H) = I/DT~ + (~a*H/¢o)2/3, I/L~2(H) = I/L{(H) + 2/DTso . 

3.1 

~Dre r is the mean radius of the cylinder, 
= ~r2H,Ko(x) is the McDonald function 

(K^(x)~e-X at x >i; practically we neglected 
th~ terms of the sum with n > 1 in eq.3.1). 

The parameter a* equals the film thickness a 
if the angle between the field and the cylinder 
axis @=0. As Altshuler has pointed out to us 

~.2 = G2COS2@ + 6r2sin2@, 3.2 

if @ is small and (c~/2eH sinO) ½ > 2r. The 
spin-orbit interaction is taken into account in 
eq 3 1 by introducing the time x The influ- 

• • So" M ence of superconducting fluctuatzons (the aki- 
Thompson correction) is described by parameter 
8(T) calculated by Larkin (23). 

I We have compared our results for the Li 
sample with eq.3.1 assuming TSO = ~ and 8 = 0. 

A good agreement of the calculated curve 
with the experimental one (fig.5) has been ob- 
tained with three fitting parameters r, a* and 
L¢(0) listed in table 1 (with L¢(0) = 2.2 ~m) 
(These data for Cd and Mg samples have only the 
estimative character, in all probability the 
values of a* for these samples are considerably 
larger than a).We have not measured the value 
of a by any other method. 

Some remarks should be made: 
a) according to (23) 8>0 even for nonsupercon- 

ducting materials, but for good metals is 

Figure 1: Correction to the electric resistance of a hollow cylinder as a function of the magnetic
field B = 4πϕ/L2 along the axis of the cylinder (denoted H on the figure ; 1Oersted = 1Gauss =
10−4 Tesla) at T = 1.1 K ; from : Yu. V. Sharvin, Physica 126B, 288 (1984).

We recall that the weak localization correction to the conductivity is given by

∆σ = −2se
2

πℏ
D

∫ ∞

0
dtP(r⃗, t|r⃗, 0) e−t/τφ (1)

where P(r⃗, t|r⃗ ′, 0) is the Cooperon in space/time representation Here we consider translation
invariant devices, so that P(r⃗, t|r⃗, 0) is independent of r⃗ [hence the absence of integration over
r⃗ in Eq.(1)].

1/ What is the role of the e−t/τφ in Eq.(1) ? What is the physical meaning of τφ and Lφ
def
=√

Dτφ ?

2/ Cooperon in the infinite line : We first consider the 1D case. Give the solution of the
diffusion equation ∂tP(x, t|x′, 0) = D∂2xP(x, t|x′, 0) (rapid answer, no demonstration).

A. Cooperon in an isolated ring.– Before considering the cylinder, we study the simpler case
of an isolated ring (Fig. 2).
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Figure 2: Isolated ring of perimeter L pierced by a magnetic flux ϕ = B L2/(4π).

3/ Inside the ring, the vector potential can be considered constant. Justify that Ax = ϕ/L
where L is the perimeter of the ring and ϕ the magnetic flux through the ring.

4/ The solution for the Cooperon is ∂tP(x, t|x′, 0) = D
(
∂x − 2i e

ℏ Ax

)2 P(x, t|x′, 0) for initial
condition P(x, 0|x′, 0) = δ(x− x′). We proceed through a spectral analysis. Argue that the
solutions of

−D
(
∂x −

2i e

ℏ
Ax

)2

ψ(x) = λψ(x) for x ∈ [0, L] (2)

are plane waves ψn(x) = 1√
L
e2inπx/L, with n ∈ Z, and deduce the related eigenvalues λn.

What is the (formal) decomposition of P(x, t|x′, 0) in terms of ψn(x)’s and λn’s ?

5/ Making use of the Poisson formula (appendix), deduce that the Cooperon at coinciding
points can be written as

P(x, t|x, 0) = 1√
4πDt

∑
n∈Z

e−
(nL)2

4Dt einθ . (3)

Express θ in terms of the the magnetic flux ϕ and the quantum flux ϕ0 = h/e.

B. Cooperon in a hollow cylinder.– Magneto-conductance oscillations have been first mea-
sured by D. Yu. Sharvin & Yu. V. Sharvin with samples realized by deposition of a thin film
of Lithium (thickness w = 127 nm) on a quartz filament of 1 cm long and micrometric cross
section (Fig. 1).

We now have to solve the ”diffusion” equation

∂tP(r⃗, t|r⃗ ′, 0) = D

(
∇⃗ − 2ie

ℏ
A⃗

)2

P(r⃗, t|r⃗ ′, 0) (4)

in a cylinder. The vector potential is unchanged A⃗ = u⃗x ϕ/L, if u⃗y is the axis of the cylinder.

6/ Using a (simple) argument and the above results, argue that the Cooperon at coinciding
points is

P(r⃗, t|r⃗, 0) = 1

4πDt

∑
n∈Z

e−
(nL)2

4Dt einθ . (5)

7/ The weak localization in the cylinder is computed with the expression

∆σ(ϕ) = −2se
2

πℏ
D

∫ ∞

0
dtP(r⃗, t|r⃗, 0)

(
e−t/τφ − e−t/τ̃e

)
(6)

where τ̃e = ℓ2e/D, with ℓe the ellastic mean free path. Why a second exponential was
introduced in (6) ([compare to (1)] ?

8/ Introduce the n-th Fourier harmonic of the MC :

∆σn
def
=

∫ 2π

0

dθ

2π
e−inθ ∆σ(ϕ) (7)

Deduce a formula for ∆σn for n > 0 (cf. appendix).
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9/ • In order to get ∆σ0, treat |n|L→ 0 as a ”regulator” in the expression of ∆σn.
• For n ̸= 0, simplify the expression of ∆σn by taking the limit L/ℓe → ∞.
• Write down the series ∆σ(ϕ) = ∆σ0+2

∑∞
n=1∆σn cos(nθ) explicitly. Compare the nature

of electronic trajectories contributing to ∆σ0 and ∆σn.

10/ Explain physically the decrease of the resistance as B grows at small field (Fig. 1). Analyze
the limiting behaviour of ∆σn for L ≫ Lφ. Interpret physically. What is the expected
behaviour of Lφ with temperature ? (↗ or ↘ as T grows ?)

11/ Estimate the value of the perimeter L from the experimental curve.

12/ Bonus : The experimental curve shows that the MC is not strictly periodic (oscillations
are on the top of a smooth ”envelope” and the amplitude of oscillations diminishes as B
grows). What is the physical origin ? (hint : a similar effect was discussed to explain the
MC of narrow wires in the lectures and/or tutorials).
We give Lφ(1.1K) = 2.2µm and film thickness is w = 127nm ; what is the expected value of
the magnetic field scale Bc for damping of oscillations ? Compare with experimental data.

Appendix

Poisson formula : ∑
n∈Z

e−(n−α)2y =

√
π

y

∑
n∈Z

e2iπnα−
π2

y
n2

(8)

MacDonald function.— An integral representation of the MacDonald function (modified
Bessel function of third kind) :

Kν(z) = K−ν(z) =
1

2

(z
2

)ν ∫ ∞

0

dt

tν+1
e−t−z2/4t for Re z > 0 (9)

Some limiting behaviours :

Kν(z) ≃
z→+∞

√
π

2z
e−z (10)

Kν(z) ≃
z→0

π

2 sinπν

1

Γ(1− ν)

(z
2

)−ν
for ν /∈ N (11)

K0(z) ≃
z→0

ln(2 e−C/z) where C = 0.577... is the Euler-Mascheroni constant (12)

Part 2: Speckle correlations and memory effect

In this exercise, we characterize the spatial correlations of a speckle pattern produced by a
wave transmitted through a disordered medium of thickness L. To this aim, we examine the
correlation function

TabTa′b′ (13)

where Tab is the transmission coefficient associated with a wave field impinging on the medium
with wave vector ka and detected in some direction kb in transmission (with a similar definition
for Ta′b′). The overbar refers to the disorder average.

1/ By writing Tab =
∑

j |ψ
(j)
ab |e

iφ(j)
as a formal sum over all possible multiple scattering paths

j (of amplitude |ψ(j)
ab | and phase φ(j)) crossing the medium, see Fig. 3(i), explain qualitatively
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disordered medium

(i)

(ii)

(iii)

Figure 3: (i) Multiple scattering trajectory ψ
(i)
ab crossing the medium. (ii) Diffuson diagram for

Tab =
∑

i |ψ
(i)
ab |2. (iii) Diffuson diagram for

∑
i |ψ

(i)
ab ψ

(i)∗
a′b′ |.

why, in the weak-disorder limit kℓ ≫ 1 (with ℓ the mean free path and k = |ka| = |kb|), we
have:

|TabTa′b′ |2 ≃
∑
i

|ψ(i)
ab |2 ×

∑
j

|ψ(j)
a′b′ |2 +

(∑
i

|ψ(i)
ab ψ

(i)∗
a′b′ |

)2

(14)

2/ The first term in the right-hand side of Eq. (14) is nothing but the product Tab×Ta′b′ , where
Tab ∝

∑
i |ψ

(i)
ab |2 is the average transmission coefficient, given by the diagram in Fig. 3(ii). For

an incident plane wave Ψin(r) = eika·r covering a surface S of the front interface, this diagram
reads:

Tab =
πν

2k2τ2S

∫
d3r1d

3r2e
−z1/(ℓ cos θa)P(r1, r2)e

−(L−z2)/(ℓ cos θb), (15)

where z1 and z2 are the projections of the points r1 and r2 on the z axis, ν = mk/(2π2) is the
3D density of states, τ is the mean free time and P designates the (stationary) diffuson. Explain
qualitatively the origin of thex terms within the integrals.

3/ From now on, we consider the limit of small angles, cos θa ≃ cos θb ≃ 1. By introducing
ρ = r⊥1 −r⊥2 , with r⊥1 and r⊥2 the projections of r1 and r2 on the interface, Eq. (15) simplifies
to

Tab =
πν

2k2τ2

∫
d2ρ

∫ L

0
dz1

∫ L

0
dz2e

−z1/ℓP(ρ, z1, z2)e
−(L−z2)/ℓ. (16)

Using Eqs. (22) and (23) of the appendix, show that for a long slab L≫ ℓ, one has:

Tab ≃
3

4π

ℓ

L
, (17)

and comment this result.

4/ Defining the fluctuation of the transmission coefficient δTab = Tab − Tab, we infer from Eq.
(14) that

δTabδTa′b′ =

(∑
i

|ψ(i)
ab ψ

(i)∗
a′b′ |

)2

. (18)

The correlator within the parenthesis is diagrammatically represented in Fig. 1(iii). Justify
without calculation that, in the limit of small angles,

δTabδTa′b′ =

[
πν

2k2τ2S

∫
d3r1d

3r2e
i(∆ka.r1−∆kb.r2)e−z1/ℓP(r1, r2)e

−(L−z2)/ℓ

]2
(19)
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where ∆ka = ka − ka′ and ∆kb = kb − kb′ .

5/ Show that

δTabδTa′b′ =

[
πν

2k2τ
δ∆ka,∆kb

∫
dz1dz2e

−z1/ℓP̃(∆qa, z1, z2)e
−(L−z2)/ℓ

]2
, (20)

where P̃(q, z1, z2) ≡
∫
d2ρ eiq.ρP(ρ, z1, z2) is the Fourier transform of P and δ∆ka,∆kb

refers to
the Kronecker symbol in two dimensions [see Eq. (24) of the appendix].

6/ Using the explicit expression of P̃ given in the appendix, show that for a long slab, L ≫ ℓ,
and for small angles |∆ka|ℓ≪ 1:

δTabδTa′b′ ≃ Tab × Ta′b′ × δ∆ka,∆kb

[
|∆ka|L

sinh(|∆ka|L)

]2
. (21)

7/ Conclude: what happens to the speckle pattern when one performs a very small shift ∆ka of
the direction of the incident beam? What is the angular range of this effect? This phenomenon,
originally characterized in [1], is called the ’memory effect’. Nowadays, it is used as a very
powerful tool for imaging objects behind scattering media [2, 3].

Appendix

Solution of the diffusion equation in a semi-infinite slab of length L:

P̃(q, z1, z2) =

∫
d2ρ eiq.ρP(ρ, z1, z2) =

sinh(qz1) sinh(q(L− z2))

DBq sinh(qL)
, (22)

with DB the 3D diffusion coefficient.

A useful integral ∫ ∞

0
dxx exp(−x/ℓ) = ℓ2. (23)

Integral representation of the Kronecker symbol
At large S: ∫

S
d2R eiq·R ≃ Sδq,0 (24)

with δρ,0 the Kronecker symbol in two dimensions (δq,0 = 1 if q = 0, and 0 otherwise).
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Solutions at http://www.lptms.u-psud.fr/christophe_texier/
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