Waves in disordered media and localisation phenomena - Exam

Friday 8 april 2022
Duration : 3 hours.
Lecture notes are allowed.
Pay attention to the appendices
A
Write your answers for the two parts on separate sheets
1

Part 1 : Weak localization correction in a hollow cylinder

Introduction : The aim of the problem is to analyze the weak localization correction to the conductivity of a hollow cylinder.

Figure 1: Correction to the electric resistance of a hollow cylinder as a function of the magnetic field $B=4 \pi \phi / L^{2}$ along the axis of the cylinder (denoted H on the figure ; 1 Oersted $=1$ Gauss $=$ 10^{-4} Tesla) at $T=1.1$ K ; from : Yu. V. Sharvin, Physica 126B, 288 (1984).

We recall that the weak localization correction to the conductivity is given by

$$
\begin{equation*}
\overline{\Delta \sigma}=-\frac{2_{s} e^{2}}{\pi \hbar} D \int_{0}^{\infty} \mathrm{d} t \mathcal{P}(\vec{r}, t \mid \vec{r}, 0) \mathrm{e}^{-t / \tau_{\varphi}} \tag{1}
\end{equation*}
$$

where $\mathcal{P}\left(\vec{r}, t \mid \vec{r}^{\prime}, 0\right)$ is the Cooperon in space/time representation Here we consider translation invariant devices, so that $\mathcal{P}(\vec{r}, t \mid \vec{r}, 0)$ is independent of \vec{r} [hence the absence of integration over \vec{r} in Eq.(1)].

1/ What is the role of the $\mathrm{e}^{-t / \tau_{\varphi}}$ in Eq. (1) ? What is the physical meaning of τ_{φ} and $L_{\varphi} \xlongequal{\text { def }}$ $\sqrt{D \tau_{\varphi}}$?
2/ Cooperon in the infinite line : We first consider the 1D case. Give the solution of the diffusion equation $\partial_{t} \mathcal{P}\left(x, t \mid x^{\prime}, 0\right)=D \partial_{x}^{2} \mathcal{P}\left(x, t \mid x^{\prime}, 0\right)$ (rapid answer, no demonstration).
A. Cooperon in an isolated ring.- Before considering the cylinder, we study the simpler case of an isolated ring (Fig. 22).

Figure 2: Isolated ring of perimeter L pierced by a magnetic flux $\phi=B L^{2} /(4 \pi)$.
3/ Inside the ring, the vector potential can be considered constant. Justify that $A_{x}=\phi / L$ where L is the perimeter of the ring and ϕ the magnetic flux through the ring.
4/ The solution for the Cooperon is $\partial_{t} \mathcal{P}\left(x, t \mid x^{\prime}, 0\right)=D\left(\partial_{x}-\frac{2 \mathrm{i} e}{\hbar} A_{x}\right)^{2} \mathcal{P}\left(x, t \mid x^{\prime}, 0\right)$ for initial condition $\mathcal{P}\left(x, 0 \mid x^{\prime}, 0\right)=\delta\left(x-x^{\prime}\right)$. We proceed through a spectral analysis. Argue that the solutions of

$$
\begin{equation*}
-D\left(\partial_{x}-\frac{2 \mathrm{i} e}{\hbar} A_{x}\right)^{2} \psi(x)=\lambda \psi(x) \quad \text { for } x \in[0, L] \tag{2}
\end{equation*}
$$

are plane waves $\psi_{n}(x)=\frac{1}{\sqrt{L}} \mathrm{e}^{2 \mathrm{in} \pi x / L}$, with $n \in \mathbb{Z}$, and deduce the related eigenvalues λ_{n}. What is the (formal) decomposition of $\mathcal{P}\left(x, t \mid x^{\prime}, 0\right)$ in terms of $\psi_{n}(x)$'s and λ_{n} 's ?
5/ Making use of the Poisson formula (appendix), deduce that the Cooperon at coinciding points can be written as

$$
\begin{equation*}
\mathcal{P}(x, t \mid x, 0)=\frac{1}{\sqrt{4 \pi D t}} \sum_{n \in \mathbb{Z}} \mathrm{e}^{-\frac{(n L)^{2}}{4 D t}} \mathrm{e}^{\mathrm{i} n \theta} \tag{3}
\end{equation*}
$$

Express θ in terms of the the magnetic flux ϕ and the quantum flux $\phi_{0}=h / e$.
B. Cooperon in a hollow cylinder.- Magneto-conductance oscillations have been first measured by D. Yu. Sharvin \& Yu. V. Sharvin with samples realized by deposition of a thin film of Lithium (thickness $w=127 \mathrm{~nm}$) on a quartz filament of 1 cm long and micrometric cross section (Fig. 11).
We now have to solve the "diffusion" equation

$$
\begin{equation*}
\partial_{t} \mathcal{P}\left(\vec{r}, t \mid \vec{r}^{\prime}, 0\right)=D\left(\vec{\nabla}-\frac{2 \mathrm{i} e}{\hbar} \vec{A}\right)^{2} \mathcal{P}\left(\vec{r}, t \mid \vec{r}^{\prime}, 0\right) \tag{4}
\end{equation*}
$$

in a cylinder. The vector potential is unchanged $\vec{A}=\vec{u}_{x} \phi / L$, if \vec{u}_{y} is the axis of the cylinder.
6/ Using a (simple) argument and the above results, argue that the Cooperon at coinciding points is

$$
\begin{equation*}
\mathcal{P}(\vec{r}, t \mid \vec{r}, 0)=\frac{1}{4 \pi D t} \sum_{n \in \mathbb{Z}} \mathrm{e}^{-\frac{(n L)^{2}}{4 D t}} \mathrm{e}^{\mathrm{i} n \theta} \tag{5}
\end{equation*}
$$

7/ The weak localization in the cylinder is computed with the expression

$$
\begin{equation*}
\overline{\Delta \sigma(\phi)}=-\frac{2_{s} e^{2}}{\pi \hbar} D \int_{0}^{\infty} \mathrm{d} t \mathcal{P}(\vec{r}, t \mid \vec{r}, 0)\left(\mathrm{e}^{-t / \tau_{\varphi}}-\mathrm{e}^{-t / \tilde{\tau}_{e}}\right) \tag{6}
\end{equation*}
$$

where $\tilde{\tau}_{e}=\ell_{e}^{2} / D$, with ℓ_{e} the ellastic mean free path. Why a second exponential was introduced in (6) ([compare to (1)] ?
8/ Introduce the n-th Fourier harmonic of the MC :

$$
\begin{equation*}
\Delta \sigma_{n} \stackrel{\text { def }}{=} \int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{2 \pi} \mathrm{e}^{-\mathrm{i} n \theta} \overline{\Delta \sigma(\phi)} \tag{7}
\end{equation*}
$$

Deduce a formula for $\Delta \sigma_{n}$ for $n>0$ (cf. appendix).
$\mathbf{9 /}$ - In order to get $\Delta \sigma_{0}$, treat $|n| L \rightarrow 0$ as a "regulator" in the expression of $\Delta \sigma_{n}$.

- For $n \neq 0$, simplify the expression of $\Delta \sigma_{n}$ by taking the limit $L / \ell_{e} \rightarrow \infty$.
- Write down the series $\overline{\Delta \sigma(\phi)}=\Delta \sigma_{0}+2 \sum_{n=1}^{\infty} \Delta \sigma_{n} \cos (n \theta)$ explicitly. Compare the nature of electronic trajectories contributing to $\Delta \sigma_{0}$ and $\Delta \sigma_{n}$.
10/ Explain physically the decrease of the resistance as B grows at small field (Fig. 17). Analyze the limiting behaviour of $\Delta \sigma_{n}$ for $L \gg L_{\varphi}$. Interpret physically. What is the expected behaviour of L_{φ} with temperature ? (\nearrow or \searrow as T grows ?)
11/ Estimate the value of the perimeter L from the experimental curve.
12/ BONUS : The experimental curve shows that the MC is not strictly periodic (oscillations are on the top of a smooth "envelope" and the amplitude of oscillations diminishes as B grows). What is the physical origin ? (hint : a similar effect was discussed to explain the MC of narrow wires in the lectures and/or tutorials).
We give $L_{\varphi}(1.1 \mathrm{~K})=2.2 \mu \mathrm{~m}$ and film thickness is $w=127 \mathrm{~nm}$; what is the expected value of the magnetic field scale B_{c} for damping of oscillations ? Compare with experimental data.

Appendix

Poisson formula :

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}} \mathrm{e}^{-(n-\alpha)^{2} y}=\sqrt{\frac{\pi}{y}} \sum_{n \in \mathbb{Z}} \mathrm{e}^{2 \mathrm{i} \pi n \alpha-\frac{\pi^{2}}{y} n^{2}} \tag{8}
\end{equation*}
$$

MacDonald function.- An integral representation of the MacDonald function (modified Bessel function of third kind) :

$$
\begin{equation*}
K_{\nu}(z)=K_{-\nu}(z)=\frac{1}{2}\left(\frac{z}{2}\right)^{\nu} \int_{0}^{\infty} \frac{\mathrm{d} t}{t^{\nu+1}} \mathrm{e}^{-t-z^{2} / 4 t} \quad \text { for } \operatorname{Re} z>0 \tag{9}
\end{equation*}
$$

Some limiting behaviours :

$$
\begin{align*}
& K_{\nu}(z) \underset{z \rightarrow+\infty}{\simeq} \sqrt{\frac{\pi}{2 z}} \mathrm{e}^{-z} \tag{10}\\
& K_{\nu}(z) \underset{z \rightarrow 0}{\simeq} \frac{\pi}{2 \sin \pi \nu} \frac{1}{\Gamma(1-\nu)}\left(\frac{z}{2}\right)^{-\nu} \quad \text { for } \nu \notin \mathbb{N} \tag{11}\\
& K_{0}(z) \underset{z \rightarrow 0}{\simeq} \ln \left(2 \mathrm{e}^{-\mathbf{C}} / z\right) \quad \text { where } \mathbf{C}=0.577 \ldots \text { is the Euler-Mascheroni constant } \tag{12}
\end{align*}
$$

Part 2: Speckle correlations and memory effect

In this exercise, we characterize the spatial correlations of a speckle pattern produced by a wave transmitted through a disordered medium of thickness L. To this aim, we examine the correlation function

$$
\begin{equation*}
\overline{T_{a b} T_{a^{\prime} b^{\prime}}} \tag{13}
\end{equation*}
$$

where $T_{a b}$ is the transmission coefficient associated with a wave field impinging on the medium with wave vector \boldsymbol{k}_{a} and detected in some direction \boldsymbol{k}_{b} in transmission (with a similar definition for $T_{a^{\prime} b^{\prime}}$). The overbar refers to the disorder average.

1/ By writing $T_{a b}=\sum_{j}\left|\psi_{a b}^{(j)}\right| e^{i \varphi^{(j)}}$ as a formal sum over all possible multiple scattering paths j (of amplitude $\left|\psi_{a b}^{(j)}\right|$ and phase $\varphi^{(j)}$) crossing the medium, see Fig. 3(i), explain qualitatively
(i)

(ii)

Figure 3: (i) Multiple scattering trajectory $\psi_{a b}^{(i)}$ crossing the medium. (ii) Diffuson diagram for $\overline{T_{a b}}=\sum_{i} \overline{\left|\psi_{a b}^{(i)}\right|^{2}}$. (iii) Diffuson diagram for $\sum_{i} \overline{\left|\psi_{a b}^{(i)} \psi_{a^{\prime} b^{\prime}}^{(i) *}\right|}$.
why, in the weak-disorder limit $k \ell \gg 1$ (with ℓ the mean free path and $k=\left|\boldsymbol{k}_{a}\right|=\left|\boldsymbol{k}_{b}\right|$), we have:

$$
\begin{equation*}
\overline{\left|T_{a b} T_{a^{\prime} b^{\prime}}\right|^{2}} \simeq \sum_{i} \overline{\left|\psi_{a b}^{(i)}\right|^{2}} \times \sum_{j} \overline{\mid \psi_{a^{\prime} b^{\prime}}^{(j)}}+\left(\sum_{i} \overline{\mid \psi_{a b}^{(i)} \psi_{a^{\prime} b^{\prime}}^{(i) *}}\right)^{2} \tag{14}
\end{equation*}
$$

2/ The first term in the right-hand side of Eq. 14$)$ is nothing but the product $\overline{T_{a b}} \times \overline{T_{a^{\prime} b^{\prime}}}$, where $\overline{T_{a b}} \propto \sum_{i} \overline{\left|\psi_{a b}^{(i)}\right|^{2}}$ is the average transmission coefficient, given by the diagram in Fig. 3(ii). For an incident plane wave $\Psi_{\text {in }}(\boldsymbol{r})=e^{i \boldsymbol{k}_{a} \cdot \boldsymbol{r}}$ covering a surface S of the front interface, this diagram reads:

$$
\begin{equation*}
\overline{T_{a b}}=\frac{\pi \nu}{2 k^{2} \tau^{2} S} \int d^{3} \boldsymbol{r}_{1} d^{3} \boldsymbol{r}_{2} e^{-z_{1} /\left(\ell \cos \theta_{a}\right)} \mathcal{P}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) e^{-\left(L-z_{2}\right) /\left(\ell \cos \theta_{b}\right)} \tag{15}
\end{equation*}
$$

where z_{1} and z_{2} are the projections of the points \boldsymbol{r}_{1} and \boldsymbol{r}_{2} on the z axis, $\nu=m k /\left(2 \pi^{2}\right)$ is the 3D density of states, τ is the mean free time and \mathcal{P} designates the (stationary) diffuson. Explain qualitatively the origin of thex terms within the integrals.

3/ From now on, we consider the limit of small angles, $\cos \theta_{a} \simeq \cos \theta_{b} \simeq 1$. By introducing $\boldsymbol{\rho}=\boldsymbol{r}_{1}^{\perp}-\boldsymbol{r}_{2}^{\perp}$, with $\boldsymbol{r}_{1}^{\perp}$ and $\boldsymbol{r}_{2}^{\perp}$ the projections of \boldsymbol{r}_{1} and \boldsymbol{r}_{2} on the interface, Eq. (15) simplifies to

$$
\begin{equation*}
\overline{T_{a b}}=\frac{\pi \nu}{2 k^{2} \tau^{2}} \int d^{2} \boldsymbol{\rho} \int_{0}^{L} d z_{1} \int_{0}^{L} d z_{2} e^{-z_{1} / \ell} \mathcal{P}\left(\boldsymbol{\rho}, z_{1}, z_{2}\right) e^{-\left(L-z_{2}\right) / \ell} \tag{16}
\end{equation*}
$$

Using Eqs. 22) and (23) of the appendix, show that for a long slab $L \gg \ell$, one has:

$$
\begin{equation*}
\overline{T_{a b}} \simeq \frac{3}{4 \pi} \frac{\ell}{L}, \tag{17}
\end{equation*}
$$

and comment this result.
4/ Defining the fluctuation of the transmission coefficient $\delta T_{a b}=T_{a b}-\overline{T_{a b}}$, we infer from Eq. (14) that

$$
\begin{equation*}
\overline{\delta T_{a b} \delta T_{a^{\prime} b^{\prime}}}=\left(\sum_{i} \overline{\mid \psi_{a b}^{(i)} \psi_{a^{\prime} b^{\prime}}^{(i) *}}\right)^{2} \tag{18}
\end{equation*}
$$

The correlator within the parenthesis is diagrammatically represented in Fig. 1(iii). Justify without calculation that, in the limit of small angles,

$$
\begin{equation*}
\overline{\delta T_{a b} \delta T_{a^{\prime} b^{\prime}}}=\left[\frac{\pi \nu}{2 k^{2} \tau^{2} S} \int d^{3} \boldsymbol{r}_{1} d^{3} \boldsymbol{r}_{2} e^{i\left(\Delta \boldsymbol{k}_{a} \cdot \boldsymbol{r}_{1}-\Delta \boldsymbol{k}_{b} \cdot \boldsymbol{r}_{2}\right)} e^{-z_{1} / \ell} \mathcal{P}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) e^{-\left(L-z_{2}\right) / \ell}\right]^{2} \tag{19}
\end{equation*}
$$

where $\Delta \boldsymbol{k}_{a}=\boldsymbol{k}_{a}-\boldsymbol{k}_{a^{\prime}}$ and $\Delta \boldsymbol{k}_{b}=\boldsymbol{k}_{b}-\boldsymbol{k}_{b^{\prime}}$.
5/ Show that

$$
\begin{equation*}
\overline{\delta T_{a b} \delta T_{a^{\prime} b^{\prime}}}=\left[\frac{\pi \nu}{2 k^{2} \tau} \delta_{\Delta \boldsymbol{k}_{a}, \Delta \boldsymbol{k}_{b}} \int d z_{1} d z_{2} e^{-z_{1} / \ell} \tilde{\mathcal{P}}\left(\Delta \boldsymbol{q}_{a}, z_{1}, z_{2}\right) e^{-\left(L-z_{2}\right) / \ell}\right]^{2} \tag{20}
\end{equation*}
$$

where $\tilde{\mathcal{P}}\left(\boldsymbol{q}, z_{1}, z_{2}\right) \equiv \int d^{2} \boldsymbol{\rho} e^{i \boldsymbol{q} \cdot \boldsymbol{\rho}} \mathcal{P}\left(\boldsymbol{\rho}, z_{1}, z_{2}\right)$ is the Fourier transform of \mathcal{P} and $\delta_{\Delta \boldsymbol{k}_{a}, \Delta \boldsymbol{k}_{b}}$ refers to the Kronecker symbol in two dimensions [see Eq. (24) of the appendix].

6/ Using the explicit expression of $\tilde{\mathcal{P}}$ given in the appendix, show that for a long slab, $L \gg \ell$, and for small angles $\left|\Delta \boldsymbol{k}_{a}\right| \ell \ll 1$:

$$
\begin{equation*}
\overline{\delta T_{a b} \delta T_{a^{\prime} b^{\prime}}} \simeq \overline{T_{a b}} \times \overline{T_{a^{\prime} b^{\prime}}} \times \delta_{\Delta \boldsymbol{k}_{a}, \Delta \boldsymbol{k}_{b}}\left[\frac{\left|\Delta \boldsymbol{k}_{a}\right| L}{\sinh \left(\left|\Delta \boldsymbol{k}_{a}\right| L\right)}\right]^{2} . \tag{21}
\end{equation*}
$$

$\boldsymbol{7}$ / Conclude: what happens to the speckle pattern when one performs a very small shift $\Delta \boldsymbol{k}_{a}$ of the direction of the incident beam? What is the angular range of this effect? This phenomenon, originally characterized in [1], is called the 'memory effect'. Nowadays, it is used as a very powerful tool for imaging objects behind scattering media [2, 3].

Appendix

Solution of the diffusion equation in a semi-infinite slab of length L :

$$
\begin{equation*}
\tilde{\mathcal{P}}\left(\boldsymbol{q}, z_{1}, z_{2}\right)=\int d^{2} \boldsymbol{\rho} e^{i \boldsymbol{q} \cdot \boldsymbol{\rho}} \mathcal{P}\left(\boldsymbol{\rho}, z_{1}, z_{2}\right)=\frac{\sinh \left(q z_{1}\right) \sinh \left(q\left(L-z_{2}\right)\right)}{D_{B} q \sinh (q L)} \tag{22}
\end{equation*}
$$

with D_{B} the 3D diffusion coefficient.

A useful integral

$$
\begin{equation*}
\int_{0}^{\infty} d x x \exp (-x / \ell)=\ell^{2} \tag{23}
\end{equation*}
$$

Integral representation of the Kronecker symbol

At large S :

$$
\begin{equation*}
\int_{S} d^{2} \boldsymbol{R} e^{i \boldsymbol{q} \cdot \boldsymbol{R}} \simeq S \delta_{\boldsymbol{q}, 0} \tag{24}
\end{equation*}
$$

with $\delta_{\boldsymbol{\rho}, 0}$ the Kronecker symbol in two dimensions ($\delta_{\boldsymbol{q}, 0}=1$ if $\boldsymbol{q}=0$, and 0 otherwise).

References

[1] I. Freund, M. Rosenbluh and S. Feng, Memory effects in propagation of optical waves through disordered media, Phys. Rev. Lett. 61, 2328 (1988).
[2] O. Katz, E. Small, and Y. Silberberg, Looking around corners and through thin turbid layers in real time with scattered incoherent light, Nat. Photonics 6, 549 (2012).
[3] O. Katz, P. Heidmann, M. Fink, S. Gigan, Non-invasive real-time imaging through scattering layers and around corners via speckle correlations, Nature Photonics 8, 794 (2014).

Solutions at http://www.lptms.u-psud.fr/christophe_texier//

