Waves in disordered media and localisation phenomena – Exam Friday 8 april 2022 Duration : 3 hours. Lecture notes are allowed. Pay attention to the appendices Write your answers for the two parts on separate sheets.

# Part 1 : Weak localization correction in a hollow cylinder

**Introduction :** The aim of the problem is to analyze the weak localization correction to the conductivity of a hollow cylinder.



Figure 1: Correction to the electric resistance of a hollow cylinder as a function of the magnetic field  $B = 4\pi\phi/L^2$  along the axis of the cylinder (denoted H on the figure ; 10ersted = 1Gauss =  $10^{-4}$  Tesla) at T = 1.1 K ; from : Yu. V. Sharvin, Physica **126**B, 288 (1984).

We recall that the weak localization correction to the conductivity is given by

$$\overline{\Delta\sigma} = -\frac{2_s e^2}{\pi\hbar} D \int_0^\infty \mathrm{d}t \, \mathcal{P}(\vec{r}, t | \vec{r}, 0) \, \mathrm{e}^{-t/\tau_\varphi} \tag{1}$$

where  $\mathcal{P}(\vec{r},t|\vec{r}',0)$  is the Cooperon in space/time representation Here we consider translation invariant devices, so that  $\mathcal{P}(\vec{r},t|\vec{r},0)$  is independent of  $\vec{r}$  [hence the absence of integration over  $\vec{r}$  in Eq.(1)].

- 1/ What is the role of the  $e^{-t/\tau_{\varphi}}$  in Eq.(1)? What is the physical meaning of  $\tau_{\varphi}$  and  $L_{\varphi} \stackrel{\text{def}}{=} \sqrt{D\tau_{\varphi}}$ ?
- 2/ Cooperon in the infinite line : We first consider the 1D case. Give the solution of the diffusion equation  $\partial_t \mathcal{P}(x,t|x',0) = D\partial_x^2 \mathcal{P}(x,t|x',0)$  (rapid answer, no demonstration).
- **A.** Cooperon in an isolated ring.– Before considering the cylinder, we study the simpler case of an isolated ring (Fig. 2).



Figure 2: Isolated ring of perimeter L pierced by a magnetic flux  $\phi = B L^2/(4\pi)$ .

- 3/ Inside the ring, the vector potential can be considered constant. Justify that  $A_x = \phi/L$  where L is the perimeter of the ring and  $\phi$  the magnetic flux through the ring.
- 4/ The solution for the Cooperon is  $\partial_t \mathcal{P}(x,t|x',0) = D\left(\partial_x \frac{2ie}{\hbar}A_x\right)^2 \mathcal{P}(x,t|x',0)$  for initial condition  $\mathcal{P}(x,0|x',0) = \delta(x-x')$ . We proceed through a spectral analysis. Argue that the solutions of

$$-D\left(\partial_x - \frac{2\mathrm{i}\,e}{\hbar}\,A_x\right)^2\psi(x) = \lambda\,\psi(x) \qquad \text{for } x\in[0,L]$$
(2)

are plane waves  $\psi_n(x) = \frac{1}{\sqrt{L}} e^{2in\pi x/L}$ , with  $n \in \mathbb{Z}$ , and deduce the related eigenvalues  $\lambda_n$ . What is the (formal) decomposition of  $\mathcal{P}(x,t|x',0)$  in terms of  $\psi_n(x)$ 's and  $\lambda_n$ 's ?

5/ Making use of the Poisson formula (appendix), deduce that the Cooperon at *coinciding* points can be written as

$$\mathcal{P}(x,t|x,0) = \frac{1}{\sqrt{4\pi Dt}} \sum_{n \in \mathbb{Z}} e^{-\frac{(nL)^2}{4Dt}} e^{in\theta} .$$
(3)

Express  $\theta$  in terms of the magnetic flux  $\phi$  and the quantum flux  $\phi_0 = h/e$ .

**B.** Cooperon in a hollow cylinder.– Magneto-conductance oscillations have been first measured by D. Yu. Sharvin & Yu. V. Sharvin with samples realized by deposition of a thin film of Lithium (thickness w = 127 nm) on a quartz filament of 1 cm long and micrometric cross section (Fig. 1).

We now have to solve the "diffusion" equation

$$\partial_t \mathcal{P}(\vec{r},t|\vec{r}',0) = D\left(\vec{\nabla} - \frac{2\mathrm{i}e}{\hbar}\vec{A}\right)^2 \mathcal{P}(\vec{r},t|\vec{r}',0) \tag{4}$$

in a cylinder. The vector potential is unchanged  $\vec{A} = \vec{u}_x \phi/L$ , if  $\vec{u}_y$  is the axis of the cylinder. 6/ Using a (simple) argument and the above results, argue that the Cooperon at coinciding points is

$$\mathcal{P}(\vec{r},t|\vec{r},0) = \frac{1}{4\pi Dt} \sum_{n\in\mathbb{Z}} e^{-\frac{(nL)^2}{4Dt}} e^{in\theta} \,. \tag{5}$$

7/ The weak localization in the cylinder is computed with the expression

$$\overline{\Delta\sigma(\phi)} = -\frac{2_s e^2}{\pi\hbar} D \int_0^\infty \mathrm{d}t \,\mathcal{P}(\vec{r},t|\vec{r},0) \,\left(\mathrm{e}^{-t/\tau_\varphi} - \mathrm{e}^{-t/\tilde{\tau}_e}\right) \tag{6}$$

where  $\tilde{\tau}_e = \ell_e^2/D$ , with  $\ell_e$  the ellastic mean free path. Why a second exponential was introduced in (6) ([compare to (1)] ?

8/ Introduce the *n*-th Fourier harmonic of the MC :

$$\Delta \sigma_n \stackrel{\text{def}}{=} \int_0^{2\pi} \frac{\mathrm{d}\theta}{2\pi} \mathrm{e}^{-\mathrm{i}n\theta} \,\overline{\Delta\sigma(\phi)} \tag{7}$$

Deduce a formula for  $\Delta \sigma_n$  for n > 0 (cf. appendix).

- 9/ In order to get  $\Delta \sigma_0$ , treat  $|n|L \to 0$  as a "regulator" in the expression of  $\Delta \sigma_n$ .

  - For n ≠ 0, simplify the expression of Δσ<sub>n</sub> by taking the limit L/ℓ<sub>e</sub> → ∞.
    Write down the series Δσ(φ) = Δσ<sub>0</sub> + 2 Σ<sub>n=1</sub><sup>∞</sup> Δσ<sub>n</sub> cos(nθ) explicitly. Compare the nature of electronic trajectories contributing to  $\Delta \sigma_0$  and  $\Delta \sigma_n$ .
- 10/ Explain *physically* the decrease of the resistance as B grows at small field (Fig. 1). Analyze the limiting behaviour of  $\Delta \sigma_n$  for  $L \gg L_{\varphi}$ . Interpret physically. What is the expected behaviour of  $L_{\varphi}$  with temperature ? ( $\nearrow$  or  $\searrow$  as T grows ?)
- 11/ Estimate the value of the perimeter L from the experimental curve.
- 12/ BONUS : The experimental curve shows that the MC is not strictly periodic (oscillations are on the top of a smooth "envelope" and the amplitude of oscillations diminishes as Bgrows). What is the physical origin? (hint : a similar effect was discussed to explain the MC of narrow wires in the lectures and/or tutorials).

We give  $L_{\varphi}(1.1 \text{ K}) = 2.2 \,\mu\text{m}$  and film thickness is  $w = 127 \,\text{nm}$ ; what is the expected value of the magnetic field scale  $B_c$  for damping of oscillations ? Compare with experimental data.

#### Appendix

#### **Poisson formula :**

$$\sum_{n \in \mathbb{Z}} e^{-(n-\alpha)^2 y} = \sqrt{\frac{\pi}{y}} \sum_{n \in \mathbb{Z}} e^{2i\pi n\alpha - \frac{\pi^2}{y}n^2}$$
(8)

MacDonald function.— An integral representation of the MacDonald function (modified Bessel function of third kind) :

$$K_{\nu}(z) = K_{-\nu}(z) = \frac{1}{2} \left(\frac{z}{2}\right)^{\nu} \int_{0}^{\infty} \frac{\mathrm{d}t}{t^{\nu+1}} \,\mathrm{e}^{-t-z^{2}/4t} \quad \text{for } \operatorname{Re} z > 0 \tag{9}$$

Some limiting behaviours :

$$K_{\nu}(z) \underset{z \to +\infty}{\simeq} \sqrt{\frac{\pi}{2z}} e^{-z}$$
(10)

$$K_{\nu}(z) \underset{z \to 0}{\simeq} \frac{\pi}{2 \sin \pi \nu} \frac{1}{\Gamma(1-\nu)} \left(\frac{z}{2}\right)^{-\nu} \qquad \text{for } \nu \notin \mathbb{N}$$

$$\tag{11}$$

$$K_0(z) \simeq_{z \to 0} \ln(2 \,\mathrm{e}^{-\mathbf{C}}/z)$$
 where  $\mathbf{C} = 0.577...$  is the Euler-Mascheroni constant (12)

## Part 2: Speckle correlations and memory effect

In this exercise, we characterize the spatial correlations of a speckle pattern produced by a wave transmitted through a disordered medium of thickness L. To this aim, we examine the correlation function

$$\overline{T_{ab}T_{a'b'}}\tag{13}$$

where  $T_{ab}$  is the transmission coefficient associated with a wave field impinging on the medium with wave vector  $\boldsymbol{k}_a$  and detected in some direction  $\boldsymbol{k}_b$  in transmission (with a similar definition for  $T_{a'b'}$ ). The overbar refers to the disorder average.

1/ By writing  $T_{ab} = \sum_{j} |\psi_{ab}^{(j)}| e^{i\varphi^{(j)}}$  as a formal sum over all possible multiple scattering paths j (of amplitude  $|\psi_{ab}^{(j)}|$  and phase  $\varphi^{(j)}$ ) crossing the medium, see Fig. 3(i), explain qualitatively



Figure 3: (i) Multiple scattering trajectory  $\psi_{ab}^{(i)}$  crossing the medium. (ii) Diffuson diagram for  $\overline{T_{ab}} = \sum_i \overline{|\psi_{ab}^{(i)}|^2}$ . (iii) Diffuson diagram for  $\sum_i \overline{|\psi_{ab}^{(i)}\psi_{a'b'}^{(i)*}|}$ .

why, in the weak-disorder limit  $k\ell \gg 1$  (with  $\ell$  the mean free path and  $k = |\mathbf{k}_a| = |\mathbf{k}_b|$ ), we have:

$$\overline{|T_{ab}T_{a'b'}|^2} \simeq \sum_i \overline{|\psi_{ab}^{(i)}|^2} \times \sum_j \overline{|\psi_{a'b'}^{(j)}|^2} + \left(\sum_i \overline{|\psi_{ab}^{(i)}\psi_{a'b'}^{(i)*}|}\right)^2$$
(14)

2/ The first term in the right-hand side of Eq. (14) is nothing but the product  $\overline{T_{ab}} \times \overline{T_{a'b'}}$ , where  $\overline{T_{ab}} \propto \sum_i \overline{|\psi_{ab}^{(i)}|^2}$  is the average transmission coefficient, given by the diagram in Fig. 3(ii). For an incident plane wave  $\Psi_{in}(\mathbf{r}) = e^{i\mathbf{k}_a \cdot \mathbf{r}}$  covering a surface S of the front interface, this diagram reads:

$$\overline{T_{ab}} = \frac{\pi\nu}{2k^2\tau^2 S} \int d^3 \boldsymbol{r}_1 d^3 \boldsymbol{r}_2 e^{-z_1/(\ell\cos\theta_a)} \mathcal{P}(\boldsymbol{r}_1, \boldsymbol{r}_2) e^{-(L-z_2)/(\ell\cos\theta_b)},\tag{15}$$

where  $z_1$  and  $z_2$  are the projections of the points  $r_1$  and  $r_2$  on the z axis,  $\nu = mk/(2\pi^2)$  is the 3D density of states,  $\tau$  is the mean free time and  $\mathcal{P}$  designates the (stationary) diffuson. Explain qualitatively the origin of thex terms within the integrals.

3/ From now on, we consider the limit of small angles,  $\cos \theta_a \simeq \cos \theta_b \simeq 1$ . By introducing  $\rho = r_1^{\perp} - r_2^{\perp}$ , with  $r_1^{\perp}$  and  $r_2^{\perp}$  the projections of  $r_1$  and  $r_2$  on the interface, Eq. (15) simplifies to

$$\overline{T_{ab}} = \frac{\pi\nu}{2k^2\tau^2} \int d^2\boldsymbol{\rho} \int_0^L dz_1 \int_0^L dz_2 e^{-z_1/\ell} \mathcal{P}(\boldsymbol{\rho}, z_1, z_2) e^{-(L-z_2)/\ell}.$$
(16)

Using Eqs. (22) and (23) of the appendix, show that for a long slab  $L \gg \ell$ , one has:

$$\overline{T_{ab}} \simeq \frac{3}{4\pi} \frac{\ell}{L},\tag{17}$$

and comment this result.

4/ Defining the *fluctuation* of the transmission coefficient  $\delta T_{ab} = T_{ab} - \overline{T_{ab}}$ , we infer from Eq. (14) that

$$\overline{\delta T_{ab}\delta T_{a'b'}} = \left(\sum_{i} \overline{|\psi_{ab}^{(i)}\psi_{a'b'}^{(i)*}|}\right)^2.$$
(18)

The correlator within the parenthesis is diagrammatically represented in Fig. 1(iii). Justify without calculation that, in the limit of small angles,

$$\overline{\delta T_{ab}\delta T_{a'b'}} = \left[\frac{\pi\nu}{2k^2\tau^2 S} \int d^3 \boldsymbol{r}_1 d^3 \boldsymbol{r}_2 e^{i(\Delta \boldsymbol{k}_a.\boldsymbol{r}_1 - \Delta \boldsymbol{k}_b.\boldsymbol{r}_2)} e^{-z_1/\ell} \mathcal{P}(\boldsymbol{r}_1, \boldsymbol{r}_2) e^{-(L-z_2)/\ell}\right]^2 \tag{19}$$

where  $\Delta \mathbf{k}_a = \mathbf{k}_a - \mathbf{k}_{a'}$  and  $\Delta \mathbf{k}_b = \mathbf{k}_b - \mathbf{k}_{b'}$ .

5/ Show that

$$\overline{\delta T_{ab}\delta T_{a'b'}} = \left[\frac{\pi\nu}{2k^2\tau}\delta_{\Delta \boldsymbol{k}_a,\Delta \boldsymbol{k}_b}\int dz_1 dz_2 e^{-z_1/\ell} \tilde{\mathcal{P}}(\Delta \boldsymbol{q}_a, z_1, z_2) e^{-(L-z_2)/\ell}\right]^2,\tag{20}$$

where  $\tilde{\mathcal{P}}(\boldsymbol{q}, z_1, z_2) \equiv \int d^2 \boldsymbol{\rho} \, e^{i \boldsymbol{q} \cdot \boldsymbol{\rho}} \mathcal{P}(\boldsymbol{\rho}, z_1, z_2)$  is the Fourier transform of  $\mathcal{P}$  and  $\delta_{\Delta \boldsymbol{k}_a, \Delta \boldsymbol{k}_b}$  refers to the Kronecker symbol in two dimensions [see Eq. (24) of the appendix].

6/ Using the explicit expression of  $\tilde{\mathcal{P}}$  given in the appendix, show that for a long slab,  $L \gg \ell$ , and for small angles  $|\Delta \mathbf{k}_a| \ell \ll 1$ :

$$\overline{\delta T_{ab} \delta T_{a'b'}} \simeq \overline{T_{ab}} \times \overline{T_{a'b'}} \times \delta_{\Delta \boldsymbol{k}_a, \Delta \boldsymbol{k}_b} \left[ \frac{|\Delta \boldsymbol{k}_a|L}{\sinh(|\Delta \boldsymbol{k}_a|L)} \right]^2.$$
(21)

7/ Conclude: what happens to the speckle pattern when one performs a very small shift  $\Delta k_a$  of the direction of the incident beam? What is the angular range of this effect? This phenomenon, originally characterized in [1], is called the 'memory effect'. Nowadays, it is used as a very powerful tool for imaging objects behind scattering media [2, 3].

#### Appendix

Solution of the diffusion equation in a semi-infinite slab of length L:

$$\tilde{\mathcal{P}}(\boldsymbol{q}, z_1, z_2) = \int d^2 \boldsymbol{\rho} \, e^{i \boldsymbol{q}.\boldsymbol{\rho}} \mathcal{P}(\boldsymbol{\rho}, z_1, z_2) = \frac{\sinh(q z_1) \sinh(q (L - z_2))}{D_B q \sinh(q L)},\tag{22}$$

with  $D_B$  the 3D diffusion coefficient.

#### A useful integral

$$\int_0^\infty dx x \exp(-x/\ell) = \ell^2.$$
(23)

### Integral representation of the Kronecker symbol

At large S:

$$\int_{S} d^2 \mathbf{R} \, e^{i \mathbf{q} \cdot \mathbf{R}} \simeq S \delta_{\mathbf{q},0} \tag{24}$$

with  $\delta_{\rho,0}$  the Kronecker symbol in two dimensions ( $\delta_{q,0} = 1$  if q = 0, and 0 otherwise).

### References

- I. Freund, M. Rosenbluh and S. Feng, Memory effects in propagation of optical waves through disordered media, Phys. Rev. Lett. 61, 2328 (1988).
- [2] O. Katz, E. Small, and Y. Silberberg, Looking around corners and through thin turbid layers in real time with scattered incoherent light, Nat. Photonics 6, 549 (2012).
- [3] O. Katz, P. Heidmann, M. Fink, S. Gigan, Non-invasive real-time imaging through scattering layers and around corners via speckle correlations, Nature Photonics 8, 794 (2014).

Solutions at http://www.lptms.u-psud.fr/christophe\_texier/