Master 2 iCFP

Waves in disordered media and localisation phenomena — Exam
Friday 8 april 2022

Duration : 3 hours.

Lecture notes are allowed.

2 Pay attention to the appendices c

Write your answers for the two parts on separate sheets.

Part 1 : Weak localization correction in a hollow cylinder

Introduction : The aim of the problem is to analyze the weak localization correction to the
conductivity of a hollow cylinder.
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Figure 1: Correction to the electric resistance of a hollow cylinder as a function of the magnetic
field B = 47¢/L? along the azis of the cylinder (denoted H on the figure ; 1Oersted = 1 Gauss =
107* Tesla) at T = 1.1K ; from : Yu. V. Sharvin, Physica 126B, 288 (1984).

We recall that the weak localization correction to the conductivity is given by
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Ao = _2° D/ At P(7, ¢, 0) et/ (1)
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where P(7,t|7#’,0) is the Cooperon in space/time representation Here we consider translation
invariant devices, so that P(7,¢|7,0) is independent of 7 [hence the absence of integration over

7 in Eq.(1))].

1/ What is the role of the e */7¢ in Eq. ? What is the physical meaning of 7, and L, o
D1, ?
2/ Cooperon in the infinite line : We first consider the 1D case. Give the solution of the
diffusion equation 9;P(z,t|2’,0) = DO?>P(z,t|z’,0) (rapid answer, no demonstration).

A. Cooperon in an isolated ring.— Before considering the cylinder, we study the simpler case
of an isolated ring (Fig. [2)).
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Figure 2: Isolated ring of perimeter L pierced by a magnetic flur ¢ = B L?/(47).

3/ Inside the ring, the vector potential can be considered constant. Justify that A, = ¢/L
where L is the perimeter of the ring and ¢ the magnetic flux through the ring.

4/ The solution for the Cooperon is ;P (x,t|2/,0) = D (0, — &£ A ) P(x,t|2',0) for initial
condition P(x,0|z’,0) = §(x — 2’). We proceed through a spectral analysis. Argue that the
solutions of ‘ )

-D (830 - 2%: Agc) P(z) = Np(x) for x € [0, L] (2)

are plane waves ¢, (z) = ﬁGQinﬂx/L

What is the (formal) decomposition of P(x,t|z’,0) in terms of i, (x)’s and \,’s 7
5/ Making use of the Poisson formula (appendix), deduce that the Cooperon at coinciding
points can be written as

, with n € Z, and deduce the related eigenvalues A,.

(nL)2 .

1Dt ™ (3)

P(x,t|z,0) = \/W I
nez

Express 0 in terms of the the magnetic flux ¢ and the quantum flux ¢y = h/e.

B. Cooperon in a hollow cylinder.— Magneto-conductance oscillations have been first mea-
sured by D. Yu. Sharvin & Yu. V. Sharvin with samples realized by deposition of a thin film
of Lithium (thickness w = 127 nm) on a quartz filament of 1 cm long and micrometric cross
section (Fig. [I)).

We now have to solve the ”diffusion” equation
oy - 2ie - o o
OP(7,t|7,0) = V- ?A P(r,t!r ,0) (4)
in a cylinder. The vector potential is unchanged A=i,¢ /L, if 1y is the axis of the cylinder.

6/ Using a (simple) argument and the above results, argue that the Cooperon at coinciding
points is

N (nL)? in
P(7, t|7,0) 4th Z e anr " (5)

7/ The weak localization in the cylinder is computed with the expression

2,62

> - Ay =t/
WhD/O dt P(7, 1|7, 0) (e e e ) (6)

Ao(¢) = -

where 7. = (?/D, with /. the ellastic mean free path. Why a second exponential was
introduced in (6) ([compare to ()] ?
8/ Introduce the n-th Fourier harmonic of the MC :

. 2T de S
Ady, & /0 e Ro(9) (7)

Deduce a formula for Ag,, for n > 0 (cf. appendix).



9/ e In order to get Aoy, treat |n|L — 0 as a "regulator” in the expression of Aoy,
e For n # 0, simplify the expression of Ao, by taking the limit L/¢, — co.
e Write down the series Ao (¢) = Aog+2> -2 | Aoy, cos(nb) explicitly. Compare the nature
of electronic trajectories contributing to Aoy and Aoy,.

10/ Explain physically the decrease of the resistance as B grows at small field (Fig. . Analyze
the limiting behaviour of Ao, for L > L,. Interpret physically. What is the expected
behaviour of L, with temperature ? (,* or N\, as T' grows ?7)

11/ Estimate the value of the perimeter L from the experimental curve.

12/ BONUS : The experimental curve shows that the MC is not strictly periodic (oscillations
are on the top of a smooth "envelope” and the amplitude of oscillations diminishes as B
grows). What is the physical origin 7 (hint : a similar effect was discussed to explain the
MC of narrow wires in the lectures and/or tutorials).

We give L,(1.1K) = 2.2 ym and film thickness is w = 127nm ; what is the expected value of
the magnetic field scale B, for damping of oscillations 7 Compare with experimental data.

Appendix

Poisson formula :

Ze—(n—a)Qy _ \/jzeﬁwna—”;rﬂ (8)

neZ nez
MacDonald function.— An integral representation of the MacDonald function (modified
Bessel function of third kind) :
1 Z\V o0 dt —t— 2 At
K,(2)=K_,(2) = 3 <§> /0 1 © =/ for Rez >0 9)

Some limiting behaviours :

T
K(2) = /50 (10)

K (2) m o G 3 (11)
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Ko(z) ~ In(2e€/z) where C = 0.577... is the Euler-Mascheroni constant (12)
z—0

Part 2: Speckle correlations and memory effect

In this exercise, we characterize the spatial correlations of a speckle pattern produced by a
wave transmitted through a disordered medium of thickness L. To this aim, we examine the
correlation function

TabTa/b’ (13)

where Ty, is the transmission coefficient associated with a wave field impinging on the medium
with wave vector k, and detected in some direction kj in transmission (with a similar definition
for T,y ). The overbar refers to the disorder average.

1/ By writing Tpp, = > j WC%) \ew(j) as a formal sum over all possible multiple scattering paths

j (of amplitude Wé?‘ and phase o)) crossing the medium, see Fig. (i), explain qualitatively



disordered medium

Figure 3: (i) Multiple scattering trajectory w(ib) crossing the medium. (ii) Diffuson diagram for

T =Y W&)\Q. (iii) Diffuson diagram for )", W 'b"

why, in the weak-disorder limit k¢ > 1 (with ¢ the mean free path and k = |ko| = |ks|), we
have:
L o 2
TaTaw P = D102 x D [yl + (Z [an¥ %2::) (14)
@ J

2/ The first term in the right-hand side of Eq. is nothing but the product Ty, x Ty, where

Top < >, |¢$)\2 is the average transmission coefficient, given by the diagram in Fig. (ii). For
an incident plane wave Wy, (1) = e« covering a surface S of the front interface, this diagram
reads:

v
T, — 3 3 —z1/(€cosba) —(L—22)/(£cos ) 1
wb = 513 9g /d r1d°roe P(ri,re)e , (15)

where 21 and zo are the projections of the points 71 and 72 on the z axis, v = mk/(272) is the
3D density of states, 7 is the mean free time and P designates the (stationary) diffuson. Explain
qualitatively the origin of thex terms within the integrals.

3/ From now on, we consider the limit of small angles, cosf, ~ cos, ~ 1. By mtroducmg

p= rf—r%, with rf and 73 the projections of 71 and r3 on the interface, Eq. (15) simplifies
to
T = 2/~c2 5 /d2 / dzl/ dzoe™ 21/473 (p, z1,22)€ —(L—z2)/¢ (16)
Using Egs. and (23] of the appendix, show that for a long slab L > ¢, one has:
— 3/
~ 2 1
ab ar L’ ( 7)

and comment this result.

4/ Defining the fluctuation of the transmission coefficient 6Ty, = Ty, — Ty, we infer from Eq.

that
2
5T b(sT 'y = (Z ’T/J /b/ ) . (18)

The correlator within the parenthesis is diagrammatically represented in Fig. 1(iii). Justify
without calculation that, in the limit of small angles,

2
m: |: Iz 2S/d3r1d3’l"26 i(Aka.m1—Aky.T2) 21/473(,',,1 ro)e —(L—22)/¢ (19)

4



where Ak, = k, — ky and Ak, = ky — ky.

5/ Show that

2
5Aka7Akb/ledZQQ_Zl/gﬁ(Aqa,2’1,2’2)6_(L_z2)/£ , (20)

S v
6Tab5Ta/b/ = I:%QT
where P(q, 21, 22) = [ d*>pe?PP(p,z1,22) is the Fourier transform of P and dag, Ak, refers to
the Kronecker symbol in two dimensions [see Eq. of the appendix].

6/ Using the explicit expression of P given in the appendix, show that for a long slab, L > ¢,
and for small angles |Ak,|¢ < 1:

2
Ak,|L )] o)

0T 0T gy =~ Top X Tory X 5Aka,Akb |:Slnh(’Ak|L
a

7/ Conclude: what happens to the speckle pattern when one performs a very small shift Ak, of
the direction of the incident beam? What is the angular range of this effect? This phenomenon,
originally characterized in [I], is called the 'memory effect’. Nowadays, it is used as a very
powerful tool for imaging objects behind scattering media [2], 3].

Appendix

Solution of the diffusion equation in a semi-infinite slab of length L:

- , sinh(qz ) sinh(q(L — 22))
— d2 iq.p — 29
P(q; 21, 22) / pe'TPP(p, 21, 2) Dpgsinh(gL) ; (22)
with Dpg the 3D diffusion coefficient.
A useful integral
oo
/ drxexp(—z/l) = (2. (23)
0
Integral representation of the Kronecker symbol
At large S:
/ PRTE ~ S5, (24)
S

with 0,0 the Kronecker symbol in two dimensions (64,0 = 1 if ¢ =0, and 0 otherwise).
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’ Solutions at http://www.lptms.u-psud.fr/christophe_texier/ ‘
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