Tutorials 2 - Probability (2)

1 Random variables with power law distribution

In the lectures, we have extended the central limit theorem to the case of i.i.d. random variables with a symmetric power law distribution $p(x) \sim|x|^{-1-\mu}$ for $\left.\mu \in\right] 0,2[$. However, in general, $p(x)$ can be asymmetric (the power law tails for $x \rightarrow \pm \infty$ have same exponents but different weights). We denote $P_{N}(s)$ the distribution of the sum of N such i.i.d. random variables.

1/ For $\mu>1$, argue that the distribution presents the scaling form

$$
\begin{equation*}
P_{N}(s) \underset{N \rightarrow \infty}{\simeq} \frac{1}{N^{\alpha}} F\left(\frac{s-c N^{\omega}}{N^{\alpha}}\right) \tag{1}
\end{equation*}
$$

What are c and the two exponents α and ω ?
$2 /$ What is the corresponding form for $\mu \in] 0,1[$?
3/ We discuss the marginal case for $\mu=1$. The stable Lévy laws are characterized by two indices, the tail exponent μ and an asymmetry parameter $\beta \in[-1,+1]$ ($\beta=0$ for the symmetric case). For $\mu=1$, the characteristic function is

$$
\begin{equation*}
\widehat{\mathcal{L}}_{1, \beta}(k)=\mathrm{e}^{-|k|\left[1-\frac{2 \mathrm{i} \beta}{\pi} \operatorname{sign}(k) \ln |k|\right]} \tag{2}
\end{equation*}
$$

a) Deduce $\mathcal{L}_{1,0}(x)$.
b) We now consider the asymmetric case. Consider N i.i.d. random variables distributed according to the Lévy law $p(x)=\mathcal{L}_{1, \beta}(x)$. Deduce the expression of the distribution $P_{N}(s)$ in terms of $\mathcal{L}_{1, \beta}(x)$.
c) Considering now the more general case where the distribution presents the tail $p(x) \propto x^{-2}$ for $x \rightarrow \infty$, discuss $P_{N}(s)$.
4/ Being imaginative, propose the scaling form corresponding to a power law tail $p(x) \sim|x|^{-3}$.

2 Random trap model

We consider a line with traps at regular positions. A particle is trapped during a random time τ_{α}, and eventually jumps to one of the two neighbouring traps with probability $1 / 2$ (symmetric random walk with waiting times). After N jumps, the particle is typically at distance $x_{t} \sim N_{t}^{1 / 2}$. The question is now to determine how the time t scales with the number of jumps. We denote by

$$
\begin{equation*}
T=\sum_{\alpha=1}^{N} \tau_{\alpha} \tag{3}
\end{equation*}
$$

the time after N jumps. The times are i.i.d. random variables with distribution $\psi(\tau)$.
1/ Assuming the power law tail $\psi(\tau) \sim \tau^{-1-\mu}$ to $\tau \rightarrow \infty$, discuss how T scales with N, depending on $\mu>0$.

2/ Deduce the nature of the random walk on the traps.

3 Extreme statistics for Gaussian random variable

We consider N i.i.d. Gaussian random variables with distribution

$$
\begin{equation*}
f(x)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{1}{2} x^{2}} \tag{4}
\end{equation*}
$$

The aim it to study the distribution of the maximum M_{N} of N such variables.
1/ Express the cumulative distribution $F(x)=\int_{-\infty}^{x} \mathrm{~d} t f(t)$ in terms of the complementary error function

$$
\begin{equation*}
\operatorname{erfc}(z) \stackrel{\text { def }}{=} \frac{2}{\sqrt{\pi}} \int_{z}^{+\infty} \mathrm{d} t \mathrm{e}^{-t^{2}} \tag{5}
\end{equation*}
$$

2/ Get the asymptotic behaviour of $\operatorname{erfc}(z)$ (for $z \rightarrow+\infty$).
$3 /$ We recall that the typical position a_{N} of the maximum of N variables is given by

$$
\begin{equation*}
F\left(a_{N}\right)=1-\frac{1}{N} . \tag{6}
\end{equation*}
$$

Recover that $a_{N} \approx \sqrt{2 \ln N}$ for the Gaussian case and find the next correction.
4/ Express $\Phi_{N}(x)=\operatorname{Proba}\left\{M_{N}<x\right\}$, the cumulative distribution of the maximum, in terms of $F(x)$.

5/ Show that $1 / b_{N} \stackrel{\text { def }}{=} \frac{\mathrm{d} a_{N}}{\mathrm{~d} \ln N} \simeq a_{N}$ for Gaussian variables. Given that $F(x) \simeq 1-\frac{1}{N} \mathrm{e}^{-\left(x-a_{N}\right) / b_{N}}$ in the neighbourhood of a_{N}, recover the Gumbel law.

6/ Large deviations : Compare $\Phi_{N}\left(x=a_{N}+b_{N} y\right)$ for $x \sim a_{N}[$ i.e. $y \sim \mathcal{O}(1)]$ and for $x \gg a_{N}$.

