Stochastic processes

Tutorials 2 – Probability (2)

1 Random variables with power law distribution

In the lectures, we have extended the central limit theorem to the case of i.i.d. random variables with a symmetric power law distribution $p(x) \sim |x|^{-1-\mu}$ for $\mu \in]0,2[$. However, in general, p(x) can be asymmetric (the power law tails for $x \to \pm \infty$ have same exponents but different weights). We denote $P_N(s)$ the distribution of the sum of N such i.i.d. random variables.

1/ For $\mu > 1$, argue that the distribution presents the scaling form

$$P_N(s) \underset{N \to \infty}{\simeq} \frac{1}{N^{\alpha}} F\left(\frac{s - c N^{\omega}}{N^{\alpha}}\right) \tag{1}$$

What are c and the two exponents α and ω ?

- 2/ What is the corresponding form for $\mu \in]0,1[$?
- 3/ We discuss the marginal case for $\mu = 1$. The stable Lévy laws are characterized by two indices, the tail exponent μ and an asymmetry parameter $\beta \in [-1, +1]$ ($\beta = 0$ for the symmetric case). For $\mu = 1$, the characteristic function is

$$\widehat{\mathcal{L}}_{1,\beta}(k) = e^{-|k| \left[1 - \frac{2i\beta}{\pi} \operatorname{sign}(k) \ln |k| \right]}$$
(2)

- a) Deduce $\mathcal{L}_{1,0}(x)$.
- b) We now consider the asymmetric case. Consider N i.i.d. random variables distributed according to the Lévy law $p(x) = \mathcal{L}_{1,\beta}(x)$. Deduce the expression of the distribution $P_N(s)$ in terms of $\mathcal{L}_{1,\beta}(x)$.
- c) Considering now the more general case where the distribution presents the tail $p(x) \propto x^{-2}$ for $x \to \infty$, discuss $P_N(s)$.
- 4/ Being imaginative, propose the scaling form corresponding to a power law tail $p(x) \sim |x|^{-3}$.

2 Random trap model

We consider a line with traps at regular positions. A particle is trapped during a random time τ_{α} , and eventually jumps to one of the two neighbouring traps with probability 1/2 (symmetric random walk with waiting times). After N jumps, the particle is typically at distance $x_t \sim N_t^{1/2}$. The question is now to determine how the time t scales with the number of jumps. We denote by

$$T = \sum_{\alpha=1}^{N} \tau_{\alpha} \tag{3}$$

the time after N jumps. The times are i.i.d. random variables with distribution $\psi(\tau)$.

- 1/ Assuming the power law tail $\psi(\tau) \sim \tau^{-1-\mu}$ to $\tau \to \infty$, discuss how T scales with N, depending on $\mu > 0$.
- 2/ Deduce the nature of the random walk on the traps.

3 Extreme statistics for Gaussian random variable

We consider N i.i.d. Gaussian random variables with distribution

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} \tag{4}$$

The aim it to study the distribution of the maximum M_N of N such variables.

1/ Express the cumulative distribution $F(x) = \int_{-\infty}^{x} dt f(t)$ in terms of the complementary error function

$$\operatorname{erfc}(z) \stackrel{\text{def}}{=} \frac{2}{\sqrt{\pi}} \int_{z}^{+\infty} dt \, e^{-t^{2}}$$
 (5)

- 2/ Get the asymptotic behaviour of $\operatorname{erfc}(z)$ (for $z \to +\infty$).
- 3/ We recall that the typical position a_N of the maximum of N variables is given by

$$F(a_N) = 1 - \frac{1}{N} \,. {6}$$

Recover that $a_N \approx \sqrt{2 \ln N}$ for the Gaussian case and find the next correction.

- 4/ Express $\Phi_N(x) = \text{Proba}\{M_N < x\}$, the cumulative distribution of the maximum, in terms of F(x).
- 5/ Show that $1/b_N \stackrel{\text{def}}{=} \frac{\mathrm{d}a_N}{\mathrm{d}\ln N} \simeq a_N$ for Gaussian variables. Given that $F(x) \simeq 1 \frac{1}{N} \mathrm{e}^{-(x-a_N)/b_N}$ in the neighbourhood of a_N , recover the Gumbel law.
- 6/ Large deviations: Compare $\Phi_N(x=a_N+b_Ny)$ for $x\sim a_N$ [i.e. $y\sim \mathcal{O}(1)$] and for $x\gg a_N$.