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Tutorials 6 — SDE (2) : Anderson localization in 1D

1 Disordered Schrodinger equation & Anderson localization

We consider the one-dimensional Schrodinger equation with a disordered potential

—¢(z) + V(2)Y(z) = Ev(x). (1)

We choose the simplest model of disorder and assume that V' (z) is a Gaussian white noise (in
space)
(V(z)) =0 and (V(z)V(2'))=0d(z—2'), (2)

where o measures the disorder strength. The aim of the exercice is to study the statistical
properties of the wave function v (z). In the following we study the Cauchy (initial value)
problem, i.e. the solution obtained for given initial conditions 1(0) and v’(0) (and not the
Sturm-Liouville (spectral) problem defined by boundary conditions v (0) and (L)).

1/ We have chosen units such that 72/(2m) = 1, hence all dimensions can be expressed in terms
of length. What is the dimension of an energy ? And the disorder strength o ?

2/ Priifer variables.— We consider the solution of energy E = k? > 0 such that ¥(0) = 0
and ¢'(0) = k. Write two first order linear differential equations for ¢ and 1'. Performing
the change of variables 1(z) = p(z) sinf(z) and ¢'(x) = k p(x) cosf(x), show that p and
obey

df(x) V(x)

. .9 .
W = k — sin 0(z) (Stratonovich) (3)

dlnp(z)  V(z) . )
1w — 9 Sin 20(x) (Stratonovich) (4)

What are the initial conditions p(0) and 6(0) ?
3/ Introduce £{(z) = lnp(x) and give the two It6 SDE for 6(z) and £(z) : you can write
V(z)dz = /o dW (z) where W(z) is a Wiener process.

4/ Localization length.— The localization length &, is the characteristic length controlling
the exponential growth (or decay) of the wave function. We define it as

o &y = tim 2P0 _ ) (5)

T—00 T T dx

where 7 is the “Lyapunov exponent”. Which SDE (Stratonovich or 1td) is more convenient
in order to get v 7 Assuming the phase uniformly distributed in the limit Energy>>disorder,
deduce the energy dependence of the localization length in this limit.

5/ Localization of electromagnetic waves.— Consider now the Helmholtz equation for an
electromagnetic wave in a random medium

de(x)

€

E" () + k* (1 + > E(x)=0 (6)

where de(x) represents fluctuations of the dielectric constant. Transpose the results obtained
for the Schrodinger equation to this case.



2 Distribution of the transmission probability for disordered
wave equations

We consider the transmission of a wave through a one-dimensional disordered medium and derive
the distribution of the tranmission probability. The nature of the wave plays no role here.
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Figure 1: Transmission of a wave through a disordered region.

1/ Preliminary.— Given the It6 SDE dx(t) = a(x) dt + b(x) dW(t), what is (dz(t)) and what
is (da(t)?) 7

2/ Composition rule.— Scattering of a wave through a certain region is characterized by two
sets of left and right reflection/transmission amplitudes (r,¢) and (r/,t'), respectively (if the
wave is incoming from the right, the reflected amplitude is " and the transmission amplitude
t'). Show that the composition rule for transmission amplitudes of two regions is :

taty

tog1 = tot1 + to(rire)ty + -+ = ———
201 = toty + ta(ryr2)ts + 17

(7)

3/ Evolution of the transmission.— We denote 7(z) = |t1|2 = |#]|? the transmission proba-
bility of region 1 (corresponding to the interval [0, z]). We consider a small slice of disordered
medium in [z, z+dx], described by reflection and transmission amplitudes (12, t2) and (15, t5).
We introduce the reflection probability p = |rs|? < 1. Eq. gives

7(x)(1 - p)

T(x +dx) = 15 e /1= 7(0) 7P (8)
~ 7(z) — 2008(8) TVI — T/p+ [-7(2 = 7) + 47(1 — 7) cos*(¢)] p+ O(p*?)
Assumptions :

e (p) ~ dz/l, where ¢ is the scattering length (an effective parameter characterising the
strength of the disorder).

e The phase ¢ is independent of 7(z) and p and uniformly distributed (of course these
assumption are not exact).

Denoting 67(z) = 7(z + dz) — 7(z), express (67) and (672) in terms of averages of functions
of 7. Deduce that the transmission obeys

dr(z) = —72 d% +4/ %Tz(l —7)dW (x) (Itd) (9)

4/ Lyapunov exponent.— Using It6 calculus, give dIn7(z). Deduce the relation between the
effective parameter ¢ and the Lyapunov exponent v introduced in the first exercice.



5/ Distribution of the transmission probability.— We parametrise the transmission prob-
ability as 7(x) = 1/ cosh? u(z). Show that the noise becomes additive
du(z) = tanzl oo de — AV () (10)
Considering the limit of large z, simplify the SDE and deduce the distribution of u(x).
Deduce the corresponding distribution of In7(L), where 7(L) is the transmission probability
of a disordered region of length L. Compare the mean value and the variance.

6/ The above calculation is adapted from the famous article [2]. The ad hoc hypothesis made
above is equivalent to the Single Parameter Scaling hypothesis of the gang of four [I]. In
the article [3], we have compared (analytically and numerically) the two first cumulants of
the log of the wave function, v = limg 0 = (In [¢)(z)|) and v = lim,—s0 2 Var(In [¢(z)|) for
the disordered model introduced in the first exercice. The result is plotted on the Figure
Discuss the relation with the previous results.
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Figure 2: Left : The two first cumulants of In |¢(z)| for o =1 (1 in red and 2 in blue). Right :
Ratio as a function of the energy. From [3].

Appendix :

Beta function.— The Beta function is defined as B(u,v) = % Useful integrals :
1 w/2
B(u,v) = / deth— 11 —t)r 1 = 2/ df sin®*~1 9 cos? 19 . (11)
0 0

Ito-Stratonovich.— The It6 SDE dx; = a;(Z) dt + b;;(Z) dW;(t) and the stratonovich SDE
da; = a;(Z) dt + by;(Z) dW;(t) describe the same process if a; = a; — %bjkajbik.
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