## Tutorials 7 - FPE (1)

## 1 Propagator of the diffusion equation with a uniform drift

We consider the Fokker-Planck equation describing the diffusion for a uniform drift $F(x)=F_{0}$

$$
\begin{equation*}
\partial_{t} P_{t}(x)=\left(D \partial_{x}^{2}-F_{0} \partial_{x}\right) P_{t}(x) \tag{1}
\end{equation*}
$$

1/ Analyze the spectrum of the forward generator $\mathscr{G}^{\dagger}=D \partial_{x}^{2}-F_{0} \partial_{x}$ in a box $[0, L]$ with periodic boundary conditions (eigenvalues, right and left eigenvectors).
What is the stationary state?
2/ Decompose the propagator over the eigenfunction and get a series representation of $P_{t}\left(x \mid x_{0}\right)$ appropriate to study the $t \rightarrow \infty$ limit (what is the time scale to compare to $t$ ?).
Compute the conditional probability $P_{t}\left(x \mid x_{0}\right)$ in the limit $L \rightarrow \infty$.

## 2 Ornstein-Ulhenbeck process and the quantum oscillator

We consider a particle submitted to a spring constant $F(x)=-k x$ and a friction force $F_{f}(v)=$ $-\gamma v$ in the overdamped regime. It is described by the SDE

$$
\begin{equation*}
\frac{\mathrm{d} x(t)}{\mathrm{d} t}=-\lambda x(t)+\sqrt{2 D} \eta(t) \tag{2}
\end{equation*}
$$

1/ How the parameter $\lambda$ is related to $k$ and $\gamma$ ? Recall the relation between the diffusion constant $D$, the friction coefficient $\gamma$ and the temperature (Einstein relation).
2/ Give the FPE related to this Langevin equation.
3/ Show that there exists an equilibrium state. Give the distribution $P_{\text {eq }}(x)$.
4/ Denote $\psi_{0}(x)=\sqrt{P_{\text {eq }}(x)}$ and perform the non unitary transformation $H_{+}=-\psi_{0}(x)^{-1}\left(\mathscr{G}^{\dagger}\right) \psi_{0}(x)$. Give the operator $H_{+}$.
5/ Discuss precisely the mapping onto the Hamiltonian operator for the quantum mechanical harmonic oscillator

$$
\begin{equation*}
H_{\omega}=-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+\frac{1}{2} m \omega^{2} x^{2} \tag{3}
\end{equation*}
$$

6/ We recall that the spectrum of eigenvalues of $H_{\omega}$ is given by $E_{n}=\hbar \omega(n+1 / 2), n \in \mathbb{N}$, for eigenvectors $\psi_{n}(x)=c_{n} H_{n}(\xi) \mathrm{e}^{-\xi^{2} / 2}$ where $\xi=\sqrt{\frac{m \omega}{\hbar}} x$, where $H_{n}(\xi)$ is a Hermite polynomial. Argue that the right and left eigenvector of $\mathscr{G} \dagger$ are $\Phi_{n}^{\mathrm{R}}(x)=\psi_{n}(x) \psi_{0}(x)$ and $\Phi_{n}^{\mathrm{L}}(x)=\psi_{n}(x) / \psi_{0}(x)$. Give their expressions and the corresponding eigenvalue $\lambda_{n}$.
7/ We give (now $\hbar=1$ )

$$
\begin{equation*}
\langle x| \mathrm{e}^{-t H_{\omega}}\left|x_{0}\right\rangle=\sqrt{\frac{m}{2 \pi \omega \sinh \omega t}} \exp -\frac{m}{2 \omega \sinh \omega t}\left[\cosh \omega t\left(x^{2}+x_{0}^{2}\right)-2 x x_{0}\right] \tag{4}
\end{equation*}
$$

Deduce the expression of the conditional probability for the Ornstein-Ulhenbeck process.
8/ Check that the identity $P_{t}\left(x \mid x_{0}\right) P_{\text {eq }}\left(x_{0}\right)=P_{t}\left(x_{0} \mid x\right) P_{\text {eq }}(x)$ holds.

