Sorbonne Université, Université Paris Cité, Université Paris Saclay Master 2 Physics of Complex Systems Stochastic processes

Tutorials 7 - FPE(1)

1 Propagator of the diffusion equation with a uniform drift

We consider the Fokker-Planck equation describing the diffusion for a uniform drift $F(x) = F_0$

$$\partial_t P_t(x) = \left(D \partial_x^2 - F_0 \partial_x \right) P_t(x) \tag{1}$$

1/ Analyze the spectrum of the forward generator $\mathscr{G}^{\dagger} = D\partial_x^2 - F_0\partial_x$ in a box [0, L] with periodic boundary conditions (eigenvalues, right and left eigenvectors).

What is the stationary state ?

2/ Decompose the propagator over the eigenfunction and get a series representation of $P_t(x|x_0)$ appropriate to study the $t \to \infty$ limit (what is the time scale to compare to t?).

Compute the conditional probability $P_t(x|x_0)$ in the limit $L \to \infty$.

2 Ornstein-Ulhenbeck process and the quantum oscillator

We consider a particle submitted to a spring constant F(x) = -kx and a friction force $F_f(v) = -\gamma v$ in the overdamped regime. It is described by the SDE

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = -\lambda \, x(t) + \sqrt{2D} \, \eta(t) \tag{2}$$

- 1/ How the parameter λ is related to k and γ ? Recall the relation between the diffusion constant D, the friction coefficient γ and the temperature (Einstein relation).
- 2/ Give the FPE related to this Langevin equation.
- 3/ Show that there exists an equilibrium state. Give the distribution $P_{eq}(x)$.
- 4/ Denote $\psi_0(x) = \sqrt{P_{eq}(x)}$ and perform the non unitary transformation $H_+ = -\psi_0(x)^{-1} (\mathscr{G}^{\dagger}) \psi_0(x)$. Give the operator H_+ .
- 5/ Discuss precisely the mapping onto the Hamiltonian operator for the quantum mechanical harmonic oscillator

$$H_{\omega} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2} m\omega^2 x^2$$
(3)

- 6/ We recall that the spectrum of eigenvalues of H_{ω} is given by $E_n = \hbar \omega (n + 1/2), n \in \mathbb{N}$, for eigenvectors $\psi_n(x) = c_n H_n(\xi) e^{-\xi^2/2}$ where $\xi = \sqrt{\frac{m\omega}{\hbar}} x$, where $H_n(\xi)$ is a Hermite polynomial. Argue that the right and left eigenvector of \mathscr{G}^{\dagger} are $\Phi_n^{\mathrm{R}}(x) = \psi_n(x)\psi_0(x)$ and $\Phi_n^{\mathrm{L}}(x) = \psi_n(x)/\psi_0(x)$. Give their expressions and the corresponding eigenvalue λ_n .
- 7/ We give (now $\hbar = 1$)

$$\langle x | \mathrm{e}^{-tH_{\omega}} | x_0 \rangle = \sqrt{\frac{m}{2\pi\omega \sinh \omega t}} \exp -\frac{m}{2\omega \sinh \omega t} \left[\cosh \omega t \left(x^2 + x_0^2 \right) - 2xx_0 \right]$$
(4)

Deduce the expression of the conditional probability for the Ornstein-Ulhenbeck process. 8/ Check that the identity $P_t(x|x_0)P_{eq}(x_0) = P_t(x_0|x)P_{eq}(x)$ holds.