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1 Introduction

This set of lectures is devoted to stochastic processes and out-of-equilibirum statistical physics.
Equilibrium statistical physics provides a well defined procedure to study the thermodynamic
properties of systems with complex dynamics. The main idea is to replace the study of the
complex dynamics of the system, i.e. how its state ~�(t) evolves in time (here ~� represents a
point in phase space), by some statistical information, i.e. the probability ⇢(~�) to find the system
in a given state. The first approach would require to solve a macroscopic number of di↵erential
equations, while the beauty of the second approach lies on the fact that the determination of
the probability density relies on very few information, what can be understood as a result of a
maximum entropy principle. The choice of the distribution, microcanonical, canonical, grand
canonical, etc, is driven by physical considerations or simply by convenience.

Out-of-equilibirum statistical physics requires a statistical treatment of the dynamics, which
can be achieved by various approaches, phenomenoligical or microscopic. On the more phe-
nomenological side : the Langevin equation, the master equation and the Fokker-Planck equation
provide di↵erent approaches for the analysis of stochastic processes. On the more microscopic
side : kinetic equations (BBGKY hierarchy, Boltzmann equation, Vlasov equation, hydrody-
namic equations,...). Note that the frontier between phenomenological and microscopic is not so
sharp, as we will see by deriving a Langevin equation from a microscopic model (§ e) page 58).

2 Probability : some useful concepts

I give a physicist’s introduction of several useful concepts. For a mathematical monograph, see
the standard book of Feller [15].

2.1 Events, probability and random variable

Random events occur when the underlying dynamics is too complex (for example when one
plays heads or tails, 1 the motion of the coin in the fluid is too di�cult to predict and can be
considered random).

Consider an event ! belonging to the set of events ⌦ (e.g. ⌦ = {head, tail} when tossing a
coin). We denote by P(!) > 0 the probability of occurence of the event, which is the relative
frequency of occurence of ! when a large number of observations is made. Obviously, P(⌦) = 1.

For a physicist, an event can be identified by making an observation, i.e. a measure of an
”observable” whose value depends on the event, X(!). Hence several observations would lead to
a random sequence of values and X(!) is called a ”random variable”. Mathematically, a random
variable is a function defined over a certain space (the set of events). Rather to manipulate the
distribution of events P(!), we will introduce the distribution of the random variable

P (x) = Proba{X(!) = x} =
X

!2⌦

P(!) �X(!),x (1)

Importantly, the distribution satisfies the normalisation condition

X

x

P (x) = P(⌦) = 1 . (2)

For a random variable varying continuously, the Kronecker �X(!),x is replaced by a Dirac
�(X(!)� x) and the sum by an integral, then P (x) is a density.

1”pile ou face” ; ”testa o croce”.
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Example : Bernoulli distribution.— Consider a random variable ⇠ 2 {0, 1} (e.g. when
tossing a coin, the two values correspond to head and tail). The Bernoulli distribution is
Proba{⇠ = 1} = p and Proba{⇠ = 0} = 1� p.

Example : binomial distribution.— Play to heads or tails N times and denote HN the
number of heads, p being the probability to get ”head” (p = 1/2 for an unbiased coin and
p 6= 1/2 for a biased coin). The distribution of HN is the binomial distribution

Proba{HN = n} = C
n

N p
n (1� p)N�n (3)

Note that the random variable may be decomposed as the sum of N independent Bernoulli
variables (the n-th one counts if one gets head at step n) : HN =

P
N

n=1
⇠n.

Example : Poisson distribution.— The distribution of the number of occurences of un-
correlated events occuring with constant rate during a finite time

Proba{X = n} =
q
n

n!
e�q (4)

Example : Gaussian distribution.— It is characterised by two parameters

gµ,�(x) =
1

p

2⇡�2
e�(x�µ)

2
/(2�

2
)
. (5)

This is the distribution of one component vx of the velocity of molecules in a classical fluid (then
µ = 0 and �2 = kBT/m).

Example : Cauchy distribution.— A distribution with power law tail

Cµ,a(x) =
a/⇡

(x� µ)2 + a2
. (6)

Probability in mathematics (if you want to read the first lines of math’s papers) :
Mathematicians have axiomatised probability theory.

• They first introduce the concept of �-algebra. Considering a given set ⌦ (the set of events),
one first define the family A of all subsets of ⌦ , such that (i) ; 2 A, (ii) if A 2 A, the
complementary of A is also in A, (iii) if A1, A2, · · · 2 A, then

S
n
An 2 A. We say that “A

is a �-algebra on ⌦”.

• The probability axioms are : (i) P(A) > 0 for all A 2 A, (ii) P(⌦) = 1, (iii) if A1, A2, · · · 2

A is a countable set of nonoverlapping sets (Ai \Aj = ;, 8 i 6= j), then

P
�[

i

Ai

�
=
X

i

P(Ai)

• (⌦, A, P) is called a probability space.

If you like this style, you can look at Øksendal’s book [43].

- Exercice 1 – Student distribution : The student distribution of index µ > 0 is defined
as

S
(µ)(x) = c

�
1 + x

2
/µ
�� 1+µ

2 (7)

a) Compute the normalisation constant

4



b) We denote by C
(µ)(x) =

R
x

�1
dt S(µ)(t) the cumulative distribution. Give C

(1)(x).

c) check that C(2)(x) = 1

2
+ x

2
p
2+x2

.

d) What is limµ!1 S
(µ)(x) ?

Transformation of random variables

Sometimes we are interested in the distribution of a function of a random variable whose dis-
tribution is known. For example, the distribution of the velocity vx of the molecules in a gas is
well known (Maxwell distribution), and one could be interested in the distribution of the kinetic
energy 1

2
mv

2
x. Let us consider a random variable X with known distribution p(x). Given the

monotonous function '(x), what is the distribution q(y) of

Y = '(X) ? (8)

(the case of a non monotonous ' is not much more di�cult). It is important to remember
that only probabilities can be made equal (not densities, which bytheway may have di↵erent
physical dimensions) : p(x) dx = Proba{X 2 [x, x+ dx]} = Proba{Y 2 ['(x),'(x) + d'(x)]} =
q('(x))'0(x)dx, i.e. p(x) = q('(x))'0(x). To be short, remember

p(x) dx = q(y) dy with y = '(x) . (9)

Note that it can also be convenient to write

q(y) = h�(y � '(X))i =

Z
dx p(x) �(y � '(x)) (10)

(this form allows to deal with a non monotonous function).

- Exercice 2 – Generate random numbers with a computer : A computer generates
a random number Y with a box distribution B(y) = 1 for y 2 [0, 1] and B(y) = 0 otherwise.
Consider a monotonously inscreasing function

� : [a, b] 7! [0, 1]

where the interval [a, b] is arbitrary (boundaries can be sent to ±1).

a) What is the distribution of X such that Y = �(X) ?

b) Deduce a method to generate a random number X with arbitrary distribution p(x) from the
computer random number Y .

c) Application n°1 : Exponential distribution p(x) = (1/a)e�x/a for x > 0.

d) Application n°2 : Cauchy distribution p(x) = ⇡
�1(x2 + 1)�2 for x 2 R.

e) Application n°3 : Student distribution S
(2)(x) for x 2 R.

- Exercice 3 – Box-Muller algorithm : The exercise explains how to generate a Gaussian
random number with a computer (preliminary : you should study at least the first questions of
exercise 2).
We consider two i.i.d. Gaussian random variables X and Y with zero mean and unit variance.

a) What is the distribution of the radius R =
p
X2 + Y 2 ? What is the distribution of the

angle ⇥ ?

b) What is the distribution of ⇠ = 1

2
(X2 + Y

2) ?

c) Deduce a method to generate a Gaussian random number from a box distribution.
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- Exercice 4 – : We show here how to generate easily a random number with power law
distribution.

a) We first consider the distribution

p(x) = µx
�1�µ for x > 1 . (11)

Deduce how to generate such a random variable from a box distribution.

b) Same question for the symmetric distribution q(x) = µ

2
(1 + |x|)�1�µ defined on R.

2.2 Stochastic independence – Joint and conditional probabilities

Let us consider A and B, two subsets of ⌦. The joint probability is the probability that both
A and B occur, which is possible if the two sets share some events : we denote P (A \ B)
the probability. The conditional probability is the probability that A occurs, given that B has
occured :

P (A |B) =
P (A \B)

P (B)
(12)

As a consequence it is clear that P (A \B) = P (A |B)P (B) = P (B |A)P (A) (Bayes theorem).

If A and B are stochastically independent, the conditional probability is independent of
B, hence P (A |B) = P (A), i.e. P (A \B) = P (A)P (B).

It is probably more intuitive to define the concept for random variables. Let us consider X
and Y two random variables. For example the number of mice and cats in an ecological system,
which both evolve over time at random. We denote by

P (m, c) = Proba{# of mice = m & # of cats = c} (13)

the joint probability distribution to have m mice and c cats at a certain time ; we assume for
simplicity that the two populations are stable, i.e. that the joint distribution does not depend
on time. The marginal distribution of the mouse number is

p(m) =
X

c

P (m, c) (14)

(probability to havemmice, irrespectively of the number of cats). We denote q(c) =
P

m
P (m, c)

the marginal distribution of the number of mice. We then introduce the conditional probability

P (m | c) =
P (m, c)

q(c)
(15)

which is the distribution of the population of mice given that the number of cats equals c. Note
that it is normalised X

m

P (m | c) = 1 . (16)

• If we consider mice in Paris and cats in Torino, we expect the two random variables to be
independent, 2 hence

P (m, c) = p(m) q(c) : stochastic independence (17)
2unless the people of Torino bring their cats in Paris and/or the Parisians their mice in Torino.
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• If instead we focus on Parisian cats and mice, we expect that the two populations interact
and their numbers are not independent, 3 hence the conditional probability P (m | c) does not
coincide with p(m) and

P (m, c) 6= p(m) q(c) (18)

- Exercice 5 – Conditional probability for 2 Gaussian variables : Consider two real
random variables distributed according to the Gaussian distribution P (x, y) = N exp

⇥
�

1

2
ax

2+
bxy �

1

2
cy

2
⇤
.

a) Compute the normalisation constant N . What is the condition on a, b and c ? Determine
the conditional probability P (x|y).

b) Deduce hX |Y = yi the average of X conditioned by Y = y.

c) Application to the Brownian motion : We consider a mesoscopic particle at equilibrium in
a homogeneous fluid. We assume that the joint distribution P (xt, x0) of its position at time
t = 0 and at time t is Gaussian. For simplicity assume hx0i = hxti = 0. Deduce the conditional
probability P (xt|x0) and the conditioned mean hXt |X0 = x0i.
Hint : you can determine the coe�cients a, b and c by noticing that

⌦
(xt � x0)2

↵
= 2Dt, where D is the

di↵usion constant.

- Exercice 6 – Independence and correlations : Consider a random angle ✓ uniformly
distributed over [0, 2⇡]. We introduce the two coordinates on the circle, x = cos ✓ and y = sin ✓.
Compute the correlation C = hx(✓)y(✓)i � hx(✓)i hy(✓)i. Are the coordinates correlated ? Are
they independent ?

2.3 Mean, variance, moments and generating function

Let us consider a random variable X, now assumed to vary continuously in R, and its probability
distribution P (x), i.e. P (x) dx = Proba{X 2 [x, x + dx]}. The average, or ”mean value” 4 of
the variable is hXi =

R
dxP (x)x. For any known function �(x), the average of �(X) is

h�(X)i =

Z
dxP (x)�(x) . (19)

a) Moments

We denote by
µn = hXn

i (20)

the n-th moment. It exists if the integral
R
dxP (x)xn is convergent, which requires that P (x)

decays su�ciently rapidly, at least like |x|
�1�n�✏ for any ✏ > 0.

b) Generating function

If all moments exist, i.e. P (x) decays faster than any power law, we can define the generating
function

G(k)
def

= hekXi =
1X

n=0

µn

n!
k
n
, (21)

where k is the ”conjugated variable”. Often, the generating function is more simple to obtain
than the moments : this is why one computes partition functions in statistical physics. Given

3unless all Parisian cats are domestic cats who never meet a mouse in their life!
4The Mathematicians talk about ”expectation value”, denoted E(X).... However, unless the distribution is

very narrow, there is no reason to ”expect” the mean value!

7



G(k), one can deduce the moments by simple derivations

µn = G
(n)(0) , (22)

the function G ”generates” the moments (by derivations).

- Exercice 7 – Gamma distribution : The Gamma distribution is defined by

P
(µ)(x) = c ✓H(x)x

µ�1 e�x (23)

where µ > 0. We introduce the Heaviside function ✓H(x) and c is a normalisation constant.

a) compute c.

b) Compute the moments µn.

c) Compute the generating function G(k). Specify when it is defined.

d) Expand G(k) in order to recover the moments.

e) Discuss more specifically the case µ = 1.

- Exercice 8 – : Compute the moments of the symmetric Gaussian distribution g0,�(x) and
the generating function.
Hint : express the moments in terms of the Euler Gamma function �(z) =

R1
0

dt tz�1 e�t
.

c) The case of divergent moments

If the distribution does not decay su�ciently fast, highest moments are divergent. However, it
is always possible to choose k purely imaginary, which corresponds to consider the characteristic
funtion, i.e. the Fourier transform of the distribution

bP (k) = he�ikXi ⌘ G(�ik) (24)

which always exists (the integral
R
dxP (x) e�ikx is absolutely convergent).

For example, consider a positive random variable X with distribution with power law tail
P (x) ⇠ x

�1�µ for x!1. Clearly hXn
i <1 for n < µ and hXn

i =1 for n > µ.

- Exercice 9 – : Discuss the moments of the Cauchy distribution (6).
Compute its characteristic function bCµ,a(k).

When all moments are finite, we can write bP (k) =
P
1

n=0

µn
n!
(�ik)n, i.e. bP (k) is an analytic

function of the variable k. When some moments are infinite, such a series representation does
not exist. Because µn is related to bP (n)(0), the derivatives exist as long as moments are finite.
For the tail P (x) ⇠ x

�1�µ, moments up to n = bµc are finite, thus bP (k) is di↵erentiable bµc
times but higher derivatives are infinite for k = 0. We illustrate this on two examples.

Example : We consider a random variable X with distribution P (x) = 4/⇡

4+x4 . Only the two

first moments are finite : hXi = 0, hX2
i = 2 and hX2n

i = 1 for n > 1 (odd moments being
zero by symmetry).
The characteristic function is Using residue theorem, on gets bP (k) = he�ikXi =

⇥
cos k +

sin |k|
⇤
e�|k|. Expansion of the function for k ! 0 reads bP (k) = 1 � k

2 + 2

3
|k|

3 + O(k4), which

shows that bP (k) 2 C2(R) (continuous function di↵erentiable twice everywhere).

- Exercice 10 – : Use the residue theorem to show that bP (k) =
⇥
cos k + sin |k|

⇤
e�|k|.

- Exercice 11 – : Consider a random variable X distributed according to the law

w(x) =
1

�(µ)x1+µ
e�1/x , (25)
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where µ > 0. Compute the moments and the generating function w̃(�) = G(��) = he��Xi.
Discuss its expansion for � ! 0.
Hint : use the integral representation of the MacDonald function (cf. appendix).

Remark : the law for µ = 1/2 is known as the Lévy distribution.

- Exercice 12 – : In this exercise we show that the x!1 behaviour of the distribution is
related to the k ! 0 of its Laplace transform. We consider a positive random variable X > 0,
with distribution with tail p(x) ' c x

�1�µ with µ 2]0, 1[. Then it is possible to define its Laplace
transform (i.e. the generating function).

a) Show that the characteristic function (Laplace transform) presents the behaviour p̃(�)
def
=

G(��) ' 1�A�
µ for � ! 0 (give the constant A).

Hint : start from p̃(�) =
R1
0

dx p(x) e��x = 1�
R1
0

dx p(x) (1� e��x).

b) Consider now µ 2]1, 2[. How could you adapt the same trick. Without performing the precise
calculation, give the � ! 0 behaviour of p̃(�).

2.4 Variance and cumulants

a) Variance and standard deviation

The fluctuations of a random variables around its average can be quantified by considering the
variance

var(X)
def

=
D
[X � hXi]2

E
=
⌦
X

2
↵
� hXi

2 (26)

We also introduce the standard deviation

�
def

=
p
var(X) (27)

which gives the order of the fluctuations of the variable.
The average tells us where the distribution of the random variable is centered, while the vari-

ance characterizes the width of the distribution. To some extent, the variance is the information
about the distribution which remains when we forget the average (if we center the distribution
by performing a shift by �hXi). Can we proceed and remove the information carried by the
variance ? The answer is yes and corresponds to introduce cumulants.

b) Generating function of the cumulants

Cumulants are defined from the generating function

W (k) = lnG(k) =
1X

n=1

n

n!
k
n (28)

where n is the cumulant of order n.

- Exercice 13 – : ExpandW (k) = lnG(k) = ln
�P

1

n=0

µn
n!
k
n
�
and deduce that the expression

of the four first cumulants are

1 = µ1 (29)

2 = µ2 � µ
2

1 = h[X � hXi]
2
i (30)

3 = µ3 � 3µ2µ1 + 2µ3

1 = h[X � hXi]
3
i (31)

4 = µ4 � 4µ3µ1 � 3µ2

2 + 12µ2µ
2

1 � 6µ4

1 = h[X � hXi]
4
i � 3h[X � hXi]2i2 (32)

- Exercice 14 – : Give all cumulants of the Gaussian distribution gµ,�(x).
Sketch a symmetric distribution with 4 > 0 and one with 4 < 0.
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Convexity of W (k) : The cumulant generating function is a convex function. We can deduce

this property from the Hölder inequality
P

i
|xiyi| 6

�P
i
|xi|

1/↵
�↵ �P

i
|yi|

1/�
��
, with ↵+ � = 1

and ↵, � 2 [0, 1]. The substitution xi �! e↵kXi and yi �! e�k
0
Xi leads to the form :

ln

 
X

i

e↵kXi+�k
0
Xi

!
6 ↵ ln

 
X

i

ekXi

!
+ � ln

 
X

i

ek
0
Xi

!
(33)

Because W (k) has the form of a sum ln
�P

i
ekXi

�
!W (k), we can write

W
�
↵k + (1� ↵)k0

�
6 ↵W (k) + (1� ↵)W (k0) 8 ↵ 2 [0, 1] (34)

which means that W (k) is convex (draw a plot).

The Marcinkiewicz theorem : A theorem proved by Marcinkiewicz in 1939 [37] (see also
[7]). If it is polynomial, the function W (k) is necessary of degree 1 or 2. In other terms, either
cumulants n all vanish for n > 2 (Gaussian variable), or all cumulants are non zero.

Meaning of the first cumulants.— The third cumulant 3 indicates whether positive (3 >
0) or negative (3 < 0) fluctuations are favoured. In order to introduce a dimensionless quantity,
it is customary to define the ”skewness”

skewness = 3/
3/2

2
. (35)

-6 -4 -2 2 4 6 x

0.1

0.2

0.3

c3>0

-6 -4 -2 2 4 6 x

0.1

0.2

0.3

c3<0

Figure 1: À gauche : la loi de Gumbel f(x) = exp(�x � e�x) a pour premiers cumulants :
1 = C = 0.577... (constante d’Euler), 2 = ⇡

2
/6, 3 = 2⇣(3) (fonction zeta de Riemann),

4 = ⇡
4
/15, etc. Le signe de 3 indique si les fluctuations positives ou négatives (relativement

à hXi) sont favorisées. From [51].

The fourth cumulant 4 shows whether fluctuations larger (4 > 0) or smaller (4 < 0) than
Gaussian fluctuations are favoured. One defines the ”kurtosis”

kurtosis = 4/
2

2 . (36)

c) Addition of random variables

- Exercice 15 – Addition of independent random variables : ( important) Consider
X and Y two independent random variables. Show that the cumulants of X and Y are additive.

Hint: consider the generating function of the sum S = X + Y .

10
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Figure 2: La distribution ga(x) =
a

p
�(3/a)

2�(1/a)3/2
exp

⇣
�

���
q

�(3/a)

�(1/a)
x

���
a
⌘
, ici tracée pour a = 1 (à

gauche) et a = 4 (à droite), a pour premiers cumulants (non nuls) : 2 = 1, 4 =
�(1/a)�(5/a)

�(3/a)2
�3,

etc. Le quatrième cumulant change de signe pour a = 2 (les grandes fluctuations sont favorisées
si a < 2). La courbe en tirets est la distribution gaussienne (a = 2). From [51].

2.5 Multivariate Gaussian distribution

We consider N Gaussian random variables x1, · · · , xN . The most general Gaussian distribution
has the form

P (X) =

s
detA

(2⇡)N
e�

1

2
(X�X0)

T
A(X�X0) (37)

where X and X0 are column vectors 2 RN and A is a real and strictly positive 5 symmetric
matrix.

The first interesting question is to characterize the correlations hxixji between the random
variables. The most simple way is to compute the generating function

G(K) =
D
eK

T
X

E
= eK

T
X0+

1

2
K

T
A

�1
K (38)

Remark that this does not even require to compute the multiple integral over X as it is su�cient
to manipulate the quadratic form :

(X �X0)
T
A(X �X0)� 2KT

X

= (X �X0)
T
A(X �X0)� (X �X0)

T
K �K

T(X �X0)� 2KT
X0

=
⇥
X �X0 �A

�1
K
⇤
T
A
⇥
X �X0 �A

�1
K
⇤
�K

T
A
�1

K � 2KT
X0

From the knowledge of the generating function G(K) =
D
eK

T
X

E
we can deduce any cor-

relation function from simple derivation operations : hxii = @G(K)

@ki

��
K=0

=
D
xieK

T
X

E ��
K=0

,

hxixji =
@
2
G(K)

@ki@kj

��
K=0

, etc. We can also compute the connex correlation function (cumulant)

hxixjic

def

= hxixji � hxii hxji

hxixjic =
@
2

@ki@kj
lnG(K)

��
K=0

(39)

For Gaussian variables, from the above expression, we deduce the important relation

hxixjic =
�
A
�1
�
ij

(40)

The result is remarkable : it is su�cient to identify the matrix A in the Gaussian
measure (and inverse it) to get the correlation function (no need to compute a multiple
integral). This is also true for any correlation function, as we show below (Wick theorem).

5with positive e.v.
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- Exercice 16 – Discrete Ornstein-Uhlenbeck process : We consider random Gaussian
variables (· · · ,�n, · · · ) with probability weight P (�) / exp[�S] where the action is

S =
1

2

X

t2Z

⇥
(�t+1 � �t)

2 + µ
2
�
2

t

⇤
(41)

Write the action as S = 1

2
�
T
A� and show that the matrix A involves the discrete Laplace

operator �n,m = �n,m+1 � 2�n,m + �n,m�1.
Give the eigenvalues and (normalised) eigenvectors of � on the infinite line (n 2 Z). Deduce
the correlation function h�t�t0i.
Discuss the limit µ! 0.

Hint : we give the integral
R
2⇡

0

d✓

2⇡

sinh�

cosh�+cos ✓
ein✓ = e��|n|

.

- Exercice 17 – ”discrete Furutsu-Novikov theorem” : We consider f(X), a function
of X = (x1, · · · , xN )T 2 RN . Show that for Gaussian random variables with hxii = 0 one has

hxif(X)i =
X

j

hxixji

⌧
@f

@xj

�
. (42)

- Exercice 18 – Wick theorem : We consider N Gaussian random variables with distribu-
tion P (X) / e�

1

2
X

T
AX .

a) Compute the four point correlation function hxixjxkxli.
b) Generalize to the 2n-point correlation function hx1x2 · · ·x2ni.

- Exercice 19 – Gaussian random walk and the Wiener measure : We consider N

i.i.d. Gaussian random numbers of zero mean and unit variance, ⇠1, · · · , ⇠N .

a) Write the joint PDF WN (⇠N , · · · , ⇠1).

We now consider the Gaussian random walk (RW)

xn = xn�1 + ⇠n with x0 = 0 . (43)

b) Argue that the Jacobian related to the change of variables ⇠1, · · · , ⇠N ! x1, · · · , xN is unity.

c) Give the joint PDF of the RW PN (xN , · · · , x1). Express the distribution under the form

PN (X) / e�
1

2
X

T
ANX and give the N ⇥N matrix AN .

d) Argue that the probability for a configuration of the RW passing through (x1, x2, · · · , xN )
has the form

PN (xN , · · · , x1) =

✓ NY

i=2

P (xi|xi�1)

◆
P1(x1) (44)

e) Wiener measure : What is the form of the measure e�
1

2
X

T
ANX in the continuum limit

xt ! x(t) ?

2.6 The central limit theorem

A fundamental theorem of probability theory is the “central limit theorem”, which provides sta-
tistical informations for the sum of N identically and independently distributed (i.i.d.) random
variables X1, · · · , XN . We denote their sum

SN =
NX

n=1

Xn . (45)

12



• Assuming that the first moment exists, hXii <1, the law of large numbers holds :

SN

N
�!
N!1

hXii (46)

• Assuming that the second moment exists,
⌦
X

2

i

↵
< 1, the central limit theorem holds :

the distribution of SN is a universal Gaussian law centered on N hXii and with variance
var(SN ) = Nvar(Xi).

a) Proof of the theorem

It is useful to recall the proof of the theorem. We denote by p(x) the distribution of one variable
Xi. The distribution of the sum is 6

PN (s) =
D
�

⇣
s�

NX

i=1

Xi

⌘E
indep.
= (p ⇤ · · · ⇤ p| {z }

N times

)(s) =

Z

R

dk

2⇡
eiks p̂(k)N (47)

where we have found convenient to write the convolution in terms of the Fourier transform. We
now want to analyze the integral in the limit N !1. For this reason we use the expansion in
terms of the cumulants

p̂(k) = eW (�ik) = e�i1 k+
1

2
2(�ik)

2
+O(k

3
) (48)

This leads to

PN (s) =

Z

R

dk

2⇡
eiks�iN1 k�

N
2
2k

2
+O(Nk

3
) (49)

Then we rescale the argument of the distribution as

s = N1 +
p

N2 y (50)

and change the variable of integration as k = t/
p
N2 leading to

PN (N1 +
p
N2 y) =

1

2⇡
p
N2

Z

R
dt eity�

1

2
t
2
+O(N

�1/2
t
3
) (51)

Finally we use

lim
N!1

Z

R
dt eity�

1

2
t
2
+O(N

�1/2
t
3
) =
p
2⇡ e�

1

2
y
2

(52)

leading to
p
N2 PN (N1 +

p
N2 y) '

N!1

1
p
2⇡

e�
1

2
y
2

(53)

which completes the proof.

b) Beyond the central limit theorem

What are the limitations of the central limit theorem ? Of course, we could ask for generalizations
when one relaxes various hypothesis :

• What about the case where
⌦
X

2

i

↵
= 1 ? This might occur when p(x) presents a power law.

We will discuss this below.

• What about the case of correlated variables ? The story is then more complicated as there are
many ways to introduce correlations. At the end of the lectures (chapter 7) we will explain
a method to study the distribution of

P
N

t=1
 (xt) when xt is a stochastic process (like a

Brownian motion).

6Start with P2(s) =
R
dx1 p(x1) dx2 p(x2) �(s� x1 � x2) =

R
dx1 p(x1) p(s� x1) = (p ⇤ p)(s).

13



• The last point is the more subtle, as it is somehow hidden in the previous demonstration.
The permutation of the limit limN!1 and the integral

R
R dt is in fact only licit when y is not

too large, being the origin of the theorem’s name. The theorem only characterizes the central
universal Gaussian part of the distribution, of width �S ⇠ O(

p
N). Where does the Gaussian

approximation breaks down ? Can we determine the form of the tails of the distribution
PN (s), for s!1 ? To shed light on this subtle point, we will introduce the concept of large
deviations.

At this point it is important to check that one is comfortable with the steepest descent
method : cf. § in the Appendix page 99.

2.7 Large deviations : typical and atypical fluctuations

Let us now consider more precisely the distribution of SN . This time, we find more convenient
to use the Laplace transform. We introduce the cumulant generating function

W (k) = lnhekXi (54)

The distribution of SN can be written as an inverse Laplace transform : 7

PN (s) = (p ⇤ · · · ⇤ p| {z }
N times

)(s) =

Z

iR

dk

2i⇡
e�ks+N W (k)

. (57)

In the exponential, we write s = N y with y = s/N ⇠ O(1). Then the integral has the formR
dk e�N [ky�W (k)] which suggests to use the steepest descent method. Assuming that the integral

is dominated by a single (real) saddle point at k⇤, we have

PN (s = Ny) '
N!1

1p
2⇡NW 00(k⇤)

e�N [k⇤y�W (k⇤)] (58)

where the saddle point is given by
W
0(k⇤) = y (59)

(i.e. k⇤ is function of y). It is important to note that W (k) being a convex function (general
property of the cumulant generating function), W 0(k) is monotonous and the equation W

0(k⇤) =
y has a unique solution (the function is invertible). We now introduce the “large deviation

function” �(y)
def

= k⇤y �W (k⇤). This shows that the cumulant generating function W (k) and
the large deviation function �(y) are related through a Legendre transform, i.e. we can write

PN (s) ⇠
N!1

exp
n
�N �

⇣
s

N

⌘o
where �(y) = max

k

{k y �W (k)} (60)

7Laplace transform : a little reminder (with the standard convention). Consider a function f(x) such that

f̃(p) =

Z

R
dx f(x) e�px (55)

exists. Then the inverse Laplace transform involves an integral over the vertical axis in the complex plane, called
the “Bromwich contour B” :

f(x) =

Z

B

dp
2i⇡

f̃(p) e+px (56)

B is the vertical line (parallel to imaginary axis) at the right of all singularities.

Example : consider f̃(p) = 1/(p + a). Then the Bromwich contour is at the right of p = �a in the complex

plane of p (it can be the imaginary axis for Re(a) > 0 : f(x) =
R

+i1
�i1

dp
2i⇡

e
px

p+a ). Since |e+px| = exRe(p), we can
use the residue theorem and close the contour from the left for x > 0 and from the right for x < 0 : this gives
f(x) = ✓H(x) e

�ax.
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This result is known as the Gärtner-Ellis theorem.
Let us stress that the central limit theorem corresponds to a limiting case : consider the

limit y ! 0 (i.e. consider that the argument of the distribution PN (s) is s = N y ⌧ N),
we expect that k⇤ ! 0 as well, so that we can use the expansion in terms of the cumulants
W (k) ' 1k + (1/2)2k2. The saddle point is such k⇤ ' (y � 1)/2 and we get

�(y) '
y!1

(y � 1)2

22
, (61)

i.e. the distribution has a Gaussian form

PN (s) ⇠
�s⌧N

exp
⇥
� (s�N1)

2
/(2N2)

⇤
(central limit theorem). (62)

where �s = s � N1. This now makes clear over which range the Gaussian form is expected :
the quadratic behaviour is obtained for |y � 1|⌧ 1, i.e. |�SN |⌧ O(N). Above this scale, for
�SN & O(N), the distribution deviates from the Gaussian form.

Universal typical fluctuations and non universal large deviations.— The sum SN =P
N

i=1
Xi is a random variable with typical fluctuations scaling like �SN ⇠

p
N (width of the

distribution). The typical fluctuations are characterized by the central limit theorem and have
a universal Gaussian character. However rare events for �SN & O(N) are not forbidden :
probability of such extreme events are described by the large deviation tails, controlled by �(y)
for y � 1. The behaviour of �(y) for y & 1 is not universal and depends strongly on W (k)
i.e. on the details of the law p(x) : large deviation tails for |s �N hXi | & O(N) characterizes
atypical fluctuations (rare events), which are non universal.

(non Gaussian in gen.)

rare events

(s)

~N

Gaussian

s−NX

Non universal
Universal :

Large
deviations

Non universal

Large
deviations

~  N

PN

Figure 3: The distribution of the sum of i.i.d. variables present a Gaussian universal central
part of width ⇠

p
N (central limit theorem) and large deviation tails which are in general non

Gaussian.

- Exercice 20 – Large deviation function of the binomial distribution : Using the
Stirling formula, show that the binomial distribution (3) obeys the large deviation principle, i.e.
has the form Proba{HN = n} ⇠

N!1

exp
�
�N �

�
n

N

� 
. Give the large deviation fuction �(y).

Few remarks on the Legendre transform.— The Gärtner-Ellis theorem allows to deduce
the LDF �(y) from the cumulant generating function W (k). Another Legendre transform allows
to go in the other way

W (k) = max
y

{k y � �(y)} (63)

which simply follows from the steepest descent approximation of the Laplace transform

eNW (k) =
D
ekSN

E
=

Z
ds PN (s) eks ⇠ N

Z
dy eN

⇥
ky��(y)

⇤
⇠ e

Nmax
y

{k y��(y)}

(64)
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Let us now simplify the notation and write the Legendre transforms as

(
�(y) = ky �W (k) where y = W

0(k)

W (k) = ky � �(y) where k = �0(y)
(65)

It is convenient to write (
�(W 0(k)) = kW

0(k)�W (k)

W (�0(y)) = y�0(y)� �(y)
(66)

Setting k = 0 in the first equation gives �(1) = �W (0) = 0, which is the minimum of the
function. Di↵erentiations of the two equations give �0(W 0(k)) = k and W

0(�0(y)) = y as it
should (the two functions W 0 and �0 are inverse). Di↵erentiating once more gives

(
�00(W 0(k)) = 1/W 00(k)

W
00(�0(y)) = 1/�00(y)

(67)

or in short �00(y) = 1/W 00(k) with y = W
0(k), i.e. the curvatures are inverse.

- Exercice 21 – Legendre transform : Consider the cumulant generating function with
limiting behaviour

W (k) '

(
1k + (1/2)2k2 for k ! 0

c |k|
1+↵ for k ! ±1

(68)

Performing the Legendre transform, deduce the limiting behaviours of the large deviation func-
tion �(y) close to its minimum and at infinity.

- Exercice 22 – Large deviations and statistical physics : In statistical physics, the
fundamental function is the entropy S(E) characterizing the number of microstates at a given
energy E : ⌦(E) = eS(E) (here kB = 1). Argue that the canonical partition function Z(�) is
related to ⌦(E) through a Laplace transform.
Deduce that the free energy eF (�) = � lnZ(�) and S(E) are related through a Legendre trans-
form. Argue that S(E) is a large deviation function.

The role of the large deviations in statistical physics has been emphasized in a review article
by Touchette [52].

- Exercice 23 – : Consider the symmetric distribution

p(x) =
1

2
e�|x| . (69)

Compute the generating function W (k) = lnhekXi and discuss where it is defined. Deduce the
two first cumulants.
Get the large deviation function from the Legendre transform �(y) = max

k

{k y �W (k)}.

Analyze the k ! 0 result to check your result (compare to the central limit theorem).

- Exercice 24 – : For p(x) = 1

2
e�|x|, the distribution of the sum can be expressed in terms

of the MacDonald function

Pn+1(s) =
1

2
p
⇡ n!

���
s

2

���
n+1/2

K
n+

1

2

(s) =
e�|s|

22n+1n!

nX

m=0

(n+m)!

m!(n�m)!
(2|s|)n�m . (70)

Using the asymptotic of the MacDonald function (exercise 84), check the large deviation form
obtained in the previous exercise.
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(More advanced) Does the large deviation form PN (s) ⇠ exp {�N �(s/N)} always
holds ?

The previous exercise reveals some interesting observation : for a distribution with purely ex-
ponential tail p(x) ⇠ e�|x|, the large deviation is also linear �(y) ⇠ |y| at large y, hence N in
absent in the exponential tail of the distribution of the sum : PN (s) ⇠ exp[�|s|]. On the other
hand, the domain of definition of G(k) =

⌦
ekX

↵
is a bounded domain in this case. From these

two remarks we can guess that such a tail is a kind of threshold in the space of distributions.
Indeed, if we consider distribution with tail

p(x) ⇠
x!1

e�|x|
↵

for ↵ 2]0, 1] (71)

all the moments exist µn = hXn
i <1 however the generating function does not exist G(k) =1

for k 2 R. In this case, it is possible to show that the distribution of the sum presents a di↵erent
large deviation form

PN (s) ⇠
N!1

exp
n
�N

↵
2�↵ �

⇣
N
�

1

2�↵ s

⌘o
(72)

We indeed check that it matches with the usual form when ↵ = 1.
In statistical physics, there are many occurences of such large deviation form PN (X) ⇠

e�N
a
�(X/N

b
) : the large deviation function �(y) is also called the rate function, Na is the speed

and N
b the scale.

- Exercice 25 – : Consider i.i.d. random variables with distribution

p(x) =
1

4
p
|x|

e�
p

|x| (73)

a) Compute the moments µn.

b) Compute the convergence radius of the series
P

n

µn
n!
k
n.

c) Give the large deviation form (72).

Summary : if one considers i.i.d. random variables with distribution presenting an exponen-
tial tail p(x) ⇠ e�|x|

↵
for x!1, the situation is as follows :

• For ↵ > 1 : the distribution of the sum presents the usual large deviation form PN (s) ⇠
exp {�N �(s/N)}.

• For 0 < ↵ 6 1 : the distribution of the sum presents the form (72), involving non trivial
powers of N .

2.8 Generalization of the central limit theorem for power law distribution

The central limit theorem applies when the second moment is finite,
⌦
X

2
↵
< 1, meaning that

the characteristic function behaves as p̂(k) = �iµ1k �
1

2
µ2k

2 + o(k2). When
⌦
X

2
↵
= 1 (or

hXi = 1), we have seen that the characteristic function is non analytic for k ! 0 and the
central limit theorem does not apply. Because the characteristic function is well defined, we
can as well characterize the distribution of the sum PN (s) with the help with a large deviation
function.

a) Case of symmetric distributions p(x)

Let us first consider the specific case of a symmetric distribution p(x) = p(�x), then p̂(k) is real
symmetric : this will simplify the discussion. There are three situations in general :
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(i) p̂(k) is analytic for k ! 0, all moments are finite, the central limit theorem holds.

(ii) p̂(k) is not analytic for k ! 0, however the second moment is finite, meaning that p̂(k) '
1� 1

2
2k

2 + · · ·+ c |k|
µ where µ > 2 is non integer. The central limit theorem still holds.

(iii) p̂(k) is not analytic for k ! 0, and behaves as

p̂(k) ' 1� c |k|
µ for µ 2]0, 2[ (74)

meaning that
⌦
X

2
↵
=1 and the central limit theorem does not hold.

We now examine further this last situation. We analyze PN (s) =
R
R

dk

2⇡
eiks+N ln p̂(k)and

proceed as for the central limit theorem. The behaviour (74) however suggests to introduce a
di↵erent scaling variable. We now write

N
1/µ

PN (s = N
1/µ

y) '
N!1

N
1/µ

Z

R

dk

2⇡
eN

1/µ
iky�Nc|k|

µ
'

Z

R

dq

2⇡
eiqy�c|q|

µ
(75)

In other terms

PN (s) '
N!1

1

(cN)1/µ
Lµ,0

✓
s

(cN)1/µ

◆
where Lµ,0(x)

def

=

Z

R

dk

2⇡
eikx�|k|

µ
(76)

is a new universal function called a Lévy law. Clearly the distribution also presents the same
power law tail as the initial distribution p(x) :

Lµ,0(x) ⇠
x!1

|x|
�1�µ

. (77)

(see exercise 12). Thus PN (s) ⇠ N/|s|
1+µ for s!1.

Eq. (76) can be understood as an extension of the central limit theorem, which now involves
a family of universal functions Lµ,0(x) for 0 < µ < 2, replacing the Gaussian distribution.

Let us discuss more into detail the scaling of the sum SN with N . The present discussion
holds for symmetric power law distribution for µ 2]0, 2[. The fluctuations of SN now scale with
N as

SN ⇠ N
1/µ

. (78)

(for the marginal case µ = 2, there is a logarithmic correction, SN ⇠
p
N lnN). This has some

important consequences :

• For 1 < µ < 2 the relative fluctuations go to zero, SN
N
⇠ N

1/µ�1
! 0 for N ! 1, hence

the distribution of SN/N is sharply peaked. The law of large numbers holds.

• For 0 < µ < 1, the relative fluctuations grow with N as SN/N ⇠ N
1/µ�1

!1 for N !1,
and the law of large numbers does not hold. Indeed, we will argue below that the sum is
dominated by few extreme values (the largest Xi’s).

The mechanism which explains the scaling is di↵erent in the two cases : in the first case, in
general (for non symmetric p(x)), all terms equally contribute to the sum SN ⇠ N (+ fluct. of
order N1/µ

⌧ N), hence the main linear behaviour is explained by the fact that the sum has N
terms. In the second case, when 0 < µ < 1, the sum is dominated by the largest contribution ;
as N grows it becomes more and more probable to pick a larger Xi, which explains the scaling
as N1/µ

� N .
To emphasize this point, I have performed some simulations (Fig. 4) : generating i.i.d.

random numbers, the sum SN =
P

N

i=1
Xi is plotted as a function of N . This is similar to the

random walk problem. For Gaussian random numbers, the random walk seems continuous at
large scale. For power law distribution with µ > 1, the random walk exhibits some moderate
jumps. For power law distribution with µ <, the random walk is dominated by jumps, and the
sum is clearly dominated by very few large values.

18



200 400 600 800 1000

-20

20

40

200 400 600 800 1000

-50

50

200 400 600 800 1000

-600

-400

-200

200

200 400 600 800 1000

-40000

-20000

20000

40000

60000

Figure 4: We plot SN =
P

N

i=1
Xi as a function N for two di↵erent distributions p(x) of the

Xi’s. Top : Gaussian distribution (three realizations). Bottom : Power law distribution with
decreasing exponent from left to right : µ = 2.5 (left), µ = 1.5 (center) and µ = 0.75 (right). As
µ decreases, large jumps become more important and few large jumps dominate the sum when
µ 6 1. (the random numbers with power law distribution are generated thanks to the method of
exercise 4).

Universal large deviations.— As we have seen above with the central limit theorem when⌦
X

2
↵
< 1, typical fluctuations are described by the universal Gaussian form, while non uni-

versality manifests in the atypical fluctuations (large tails). For the new universality classes
corresponding to Lévy laws, one obtains distributions characterized by power law tails, hence
universality is stronger as it extends to large deviations.

Figure 5: Paul Lévy (1886-1971).

b) Stable Lévy laws (More advanced)

In the central limit theorem, the origin of the universal Gaussian law lies in the stability of the
law against addition, which is clear from the expression of the characteristic function ĝµ,�(k) =

e�iµk�
1

2
�
2
k
2

, leading to
ĝµ1,�1

(k)ĝµ2,�2
(k) = ĝ

µ1+µ2,

p
�
2

1
+�

2

2

(k) .

Stable laws against addition have been classified by Paul Lévy and are known as ↵-stable Lévy
laws (because the exponent µ is often denoted ↵). They provide the correct extension of the
central limit theorem to the case where the distribution exhibits power law tails with µ < 2,
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being non symmetric. The characteristic function is [4]

bLµ,�(k) =

8
<

:
e�|k|

µ
⇥
1+i� sign(k) tan(⇡µ/2)

⇤
for µ 2]0, 2] & µ 6= 1

e�|k|
⇥
1�

2i�
⇡ sign(k) ln |k|

⇤
for µ = 1

(79)

The index µ controls the power of the tail Lµ,�(x) ⇠ |x|
�1�µ and the parameter � 2 [�1,+1]

controls the asymmetry. For � = 0, the distribution is symmetric. Few concrete remarks

• For � = 0, there exist expansions for x! 0 :

Lµ,0(x) =
1

⇡µ

1X

n=0

(�1)n�
�
(2n+ 1)/µ

�

(2n)!
x
2n (80)

and x!1

Lµ,0(x) =
1

⇡

1X

n=1

(�1)n�1
�(1 + nµ) sin(⇡µn/2)

n!
|x|
�1�µn (81)

• bL1,0(k) = e�|k| corresponds to the Cauchy distribution L1,0(x) =
1/⇡

x2+1
.

• For � 6= 0, the asymptotic of the Lévy distribution is (wikipedia)

Lµ,�(x) '
x!±1

sin(⇡µ
2
)�(µ+ 1)

⇡

1 + � sign(x)

|x|µ+1
(82)

• For � = +1, the characteristic function is bLµ,1(k) = e�cµ(ik)
µ
, where cµ is a positive constant.

For µ 2]0, 1[, the support of the distribution is R+. For µ 2]0, 1[ and � = �1, the support
is R�.

• bL1/2,1(k) = e�
p
2ik corresponds to the Lévy distribution mentioned above 8

L 1

2
,1
(x) =

1
p
2⇡x3/2

e�1/2x (83)

• For µ 2]1, 2[, the support of Lµ,+1(x) is R (and not R+), although the power law only exists
on R+ (and the decay is faster on R�). Example :

L 3

2
,1
(x) =

p
3

p
⇡|x|

e
x3

27

8
><

>:

W 1

2
,
1

6

⇣
�

2x
3

27

⌘
for x 6 0

1

6
W
�

1

2
,
1

6

⇣
2x

3

27

⌘
for x > 0

'

8
<

:

1

3

q
�2x

⇡
e

2x3

27 for x! �1
3

2
p
2⇡ x5/2 for x! +1

(84)

where Wµ,⌫(z) is the Whittaker function.

• L2,�(x) = L2,0(x) is the Gaussian distribution.

- Exercice 26 – : Get the convergence radius of the two series representations (80) and (81).

Remark : The Lévy law L2,�(x) = L2,0(x) is the Gaussian distribution. A distribution with
power law tail |x|�3 is in the basin of attraction of the Gaussian distribution, although the
variance is infinite (the typical fluctuations of the sum SN scale as

p
N lnN). The characteristic

function presents an additional logarithmic term, i.e. is of the type e�k
2
(1�ln |k|), whose Fourier

transform is Gaussian in the central part, with non Gaussian large deviation tails.

8To check this, it is more easy to compute the Laplace transform of the distribution, which is related to the
MacDonald function K1/2(

p
2�), leading to

R1
0

dxL1/2,1(x) e
��x = e�

p
2� .
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c) Scaling of SN in the general case

Let us now discuss the scaling of SN with N for power law distribution p(x) ⇠ |x|
�1�µ. I denote

X ⌘ hXii when it exists.

CLT µ1 µ2 PN (s) F

µ > 2 yes <1 <1 PN (s) '
1
p
N

F

✓
s�NX
p
N

◆
Gaussian

µ = 2 yes <1 1 PN (s) '
1

p
N lnN

F

✓
s�NX
p
N lnN

◆
Gaussian

1 < µ < 2 no <1 1 PN (s) '
1

N1/µ
F

✓
s�NX

N1/µ

◆
Lµ,�(x)

µ = 1 no 1 1 PN (s) '
1

N
F

✓
s� cN lnN

N

◆
L1,�(x)

0 < µ < 1 no 1 1 PN (s) '
1

N1/µ
F

⇣
s

N1/µ

⌘
Lµ,�(x)

To learn more : The review article by Bouchaud and Georges [5] contains a nice appendix
(I borrowed few remarks from it).

- Exercice 27 – Marginal case µ = 1 : We discuss the distribution of the sum corresponding
to the case µ = 1.

a) We assume that the random variables have a distribution given by the stable Lévy law
p(x) = L1,�(x), with characteristic function (79). Show that the distribution of SN is

PN (s) =
1

N
L1,�

 
s�

2�

⇡
N lnN

N

!
(85)

b) Consider now random variables with a distribution with tail p(x) ⇠ x
�2. Discuss the distri-

bution of the sum PN (s).

- Exercice 28 – Random trap model : We consider a line with traps at regular positions. A
particle is trapped during a random time ⌧↵, and eventually jumps to one of the two neighbouring
traps with probability 1/2 (symmetric random walk with waiting times). At time t, the particle

has done Nt jumps, and is typically at distance xt ⇠ N
1/2

t
(the number of jumps Nt is random).

The question is now to determine how the time t scales with the number of jumps. We denote
by

T =
NX

↵=1

⌧↵ (86)

the time after N jumps (here it is fixed). The times are i.i.d. random variables with distribution
 (⌧).
a) Assuming the power law tail  (⌧) ⇠ ⌧�1�µ for ⌧ !1, discuss how T scales with N depending
on µ.
b) Deduce the nature of the random walk.

2.9 Extreme value statistics

Study of extreme events has become very important these last decades, in climate (hurricane,
typhoon,...), economy (market cracks,...), earthquakes, etc. In statistics, “ordered statistics” or
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“extreme value statistics” amounts to obtain the distribution of the largest among a collection
of random variables (or the distribution of the second largest, etc). The case of independent
identically distributed (i.i.d) random variables is well documented since the pioneering work of
Fréchet [16] and Gumbel [22]. We will only focus on this case here (see books [23, 24, 10]). For
a recent review discussing the case of correlated variables in the context of statistical physics,
see Ref. [36].

The question is as follows : consider a set of N random variables x1, · · · , xN with the same
law f(x) and joint distribution PN (x1, · · · , xN ). What is the distribution of the maximum

MN = max(x1, · · · , xN ) ?

In general, the cumulative distribution of the maximum involves a multiple integral of the joint
distribution

�N (x) = Proba{MN 6 x} = Proba{x1 6 x & · · · & xN 6 x} (87)

=

Z
x

�1

dx1 · · ·

Z
x

�1

dxN PN (x1, · · · , xN ) (88)

which can be extremely di�cult to analyze for large N .

Figure 6: Maurice Fréchet (1878-1973) and Emil Julius Gumbel (1891-1966).

If now the random variables are independent, introducing the cumulative distribution of
one random variable

F (x) =

Z
x

�1

dy f(y) = Proba{xn 6 x} (89)

we have the simple form
�N (x) = [F (x)]N (90)

As we will see, the analysis of this distribution for N !1 is interesting and reveals some uni-
versal character. For this, we introduce aN , the expected largest value among the N variables :

F (aN ) = 1�
1

N
(91)

Let us give few examples in the following table :

Distribution f(x) F (x) aN bN

Exponential (1/a)e�x/a for x > 0 1� e�x/a a ln(N) a

Gaussian 1
p
2⇡a

e�x
2
/(2a

2
) 1

2

⇥
1 + erf(x/

p
2a)

⇤
a

p
2 ln(N) a/

p
2 ln(N)

Power law µAx
�µ�1 for x!1 1�Ax

�µ (AN)1/µ aN/µ

For the power law tail, the scale of variation is given by aN (bN ⇠ aN ), hence there is only one
relevant scale.

- Exercice 29 – : Argue that aN '
⇥
ln(N)]1/↵ for a distribution with tail f(x) ⇠ exp[�x↵].
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Consequence for the generalised central limit theorem : This table allows us to un-
derstand precisely the remark about the law of large numbers. We consider the sum of i.i.d.
random variables SN =

P
N

n=1
Xn. Let us denote by MN the maximum of the N variables {Xn}.

• When the decay of the probability f(x) is of exponential type, f(x) ⇠ exp[�x↵], the maximum
scales as MN ⇠

⇥
ln(N)]1/↵, hence it cannot dominate the sum of N terms.

• When f(x) ⇠ x
�1�µ, we have instead MN ⇠ N

1/µ. When µ > 1, the scaling of the maximum
is slower than N , hence SN scales as N and the law of large numbers holds.

• When 0 < µ < 1, the scaling of the maximum is faster than N , hence the sum is dominated
by its maximum, not by the N terms. The law of large numbers breaks down.

Now we come back to the analysis of the distribution of the maximum and discuss the three
universality classes.

a) Gumbel class

We consider the case where f(x) presents a decay of exponential type at large x. It is useful to
introduce the scale bN which is the typical scale of variation of F (x) around aN . For large x,
F (x) is close to one, hence the decay of 1� F (x) is of exponential type and we can obtain the
scale by writing

1/bN =
F
0(aN )

1� F (aN )
= N f(aN ) . (92)

This scale also measures the sensitivity of aN as a function of N : indeed, di↵erentiation of (91)
with respect to N gives f(aN )daN

dN
= 1/N2 i.e.

bN =
daN

d ln(N)
. (93)

Examples are given in the table.
From the definition of bN , we see that the behaviour of the cumulative distribution in the

vicinity of aN is

F (x) '
x⇠aN

1�
1

N
e�(x�aN )/bN (94)

Note that we don’t assume that the distribution is exponential, however it decays locally expo-
nentially (consider the example of the Gaussian distribution, cf. exercise 32). Introducing this
form in the expression of the cumulative of the maximum, we have

�N (x) '
x⇠aN


1�

1

N
e�(x�aN )/bN

�
N

' exp
h
e�(x�aN )/bN

i
(95)

Hence, introducing the variable
y = (x� aN )/bN (96)

we deduce the scaling form

�N (x = aN + bN y) '
N!1

exp
⇥
�e�y

⇤
⌘  (y) (97)

in the vicinity of aN , i.e. for y ⇠ O(1). This also shows that bN measures the fluctuations of
the maximum MN .

The distribution of the maximum �N (x) = �0
N
(x) is known as the Gumbel distribution and

involves the universal scaling function  (y) =  0(y)

 (y) = exp
⇥
�y � e�y

⇤
(98)
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Figure 7: Gumbel distribution (98).

It reaches its maximum for y = 0 and is strongly asymmetric : for y ! +1 its decay is
reminiscent of the exponential decay of the distribution f(x), while for y ! �1 it is strongly
suppressed (exponential of exponential). Note that this universal form has been obtained by
keeping y ⇠ O(1), while sending N ! 1, hence it only describes the distribution close to the
typical value of the maximum, in the ”central part”. Going further away, large deviation tails
are non universal (cf. exercise 32).

- Exercice 30 – Maximum for the exponential distribution : Consider the distribution
f(x) = e�x for x > 0. Compute F (x) and deduce explicitly �N (x). Deduce aN and bN

- Exercice 31 – Maximum for the Gaussian distribution : Now consider a Gaussian
distribution f(x)? i.e. F (x) = 1� 1

2
erfc(x/

p
2). Find aN and bN .

a

~bN

N

x

N (x)φ
Universal :Non universal Non universal
Gumbel

Figure 8: Sketch of the distribution of the maximum in the Gumbel class. The Gumbel distri-
bution describes the universal (central) part of the distribution of width ⇠ bN . There exists also
non universal tails [similar to large deviation tails of PN (s)].

- Exercice 32 – Typical value and large deviations for the maximum of Gaussian

variables : We consider i.i.d. random Gaussian variables with zero mean and unit variance.

a) Argue that we can write the cumulative of the maximmum under the form �N (x) ' exp
⇥
�

N

2
erfc(x/

p
2)
⇤
.

b) Compare the behaviour for y = (x� aN )/bN ⇠ O(1) and x ⇠ O(1). We give aN '
p
2 lnN �

ln(4⇡ lnN)

2

p
2 lnN

and bN ' 1/aN .

We can also extend the analysis and ask the question of the distribution of the position the
of N � k+1-th largest value, for k = 1, 2, · · · (the maximum corresponding to k = 1). We have
now to consider

�N,k(x) = Proba{x1 6 x & · · · & xN�k 6 x & xN�k+1 > x & · · · & xN > x}

= [F (x)]N�k+1 [1� F (x)]k�1 (99)
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i.e. �N (x) ⌘ �N,1(x) for the cumulative distribution of the largest value. Introducing again
(94) we obtain the scaling form

�N,k (x = aN + bN y) '
N!1

(· · · ) exp
⇥
�(k � 1) y � k e�y

⇤
⌘  k(y) (100)

for y ⇠ O(1). The related distribution is  0
k
(y) =  k(y) with

 k(y) =
k
k

(k � 1)!
exp

⇥
�k y � k e�y

⇤
. (101)

The typical value (max of the distribution) is still for y = 0.

b) Fréchet class

The second university class corresponds to distributions with power law tail f(x) ' µAx
�1�µ

for x!1. As shown in the table above, the typical position of the maximum among N variable
is aN = (AN)1/µ and therefore we can rewrite F (x) ' 1�Ax

�µ for x!1 as

F (x) '
x&aN

1�
1

N

⇣
aN

x

⌘
µ

(102)

Inserting this form in �N (x) = [F (x)]N we eventually obtain the scaling form

�N (x = aN y) '
N!1

e�y
�µ
⌘  (y) (103)

The corresponding (Fréchet) distribution is  (y) =  0(y)

 (y) =
µ

yµ+1
e�y

�µ
. (104)

I.e. we have obtained another universal function describing the distribution of the maximum for
variable with power law distribution.

c) Weibull class

The last universality class corresponds to a distribution with a bounded domain of definition.
For example, consider that xn > 0 and we now ask the question of the distribution of the
minimum. Assume that f(x) ⇠ x

µ�1 for x! 0 (with µ > 0). The distribution of the minimum
is given by the universal scaling function

 (y) = µ y
µ�1 e�y

µ
(105)

Note that the result can be deduced from the Fréchet one with µ! �µ.

, Important points

• Basic concepts : random variable, moments, cumulants, generating functions, independence,...
• The case of divergent moments : power law p(x) ⇠ |x|

�1�µ for x ! 1 is related to p̂(k) '
1� c |k|

µ for k ! 0 when µ 2]0, 1[, p̂(k) ' 1� ik x� c |k|
µ when µ 2]1, 2[, etc.

• Gaussian random variables : relate correlations to the measure.
• Central limit theorem and its generalisation for power law distributions.
• Large deviations, large deviation function : typical and atypical fluctuations.
• Extreme value statistics.
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3 The Langevin equation for a particle in a fluid

The aim of this introductory paragraph is to start the discussion of stochastic processes with a
concrete and simple example : consider a particle in a fluid, submitted to a friction force. The
usual phenomenological model is friction proportional to the velocity (Stokes regime),

Ff = �� v , (106)

where � is the friction coe�cient. For a spherical particle of radius R, fluid mechanics gives
� = 6⇡⌘R where ⌘ is the viscosity of the fluid (for example, ⌘ ' 10�3 kg.m�1.s�1 for water at
T = 20 oC). In the absence of any other external force, the Newton equation of motion takes
the form mv̇ = �� v. The friction coe�cient has dimension of a mass divided by a time, hence
we can write

� =
m

⌧
(107)

where ⌧ is the relaxation time for the velocity.

3.1 Fluctuations and Langevin force

In 1827, the scottish botanist Robert Brown observed with a microscope that pollen grains at the
surface of watter move erratically. 9 It was understood later that this observation supports the
atomist description of matter as it is the manifestation of the fluctuations in the fluid (erratic
motion of the molecules). A clear description of the phenomenom was given much later by
Albert Einstein in 1905 [14]. If the particle (the pollen grain) is small, it is not only submitted
to the friction force but it is also sensitive to the fluctuations in the fluid, i.e. the collisions
with molecules. The typical collision time between molecules in a fluid is ⌧coll ⇠ 10�15 s, thus
we expect that the Brownian particle experiences collisions with the rate 1/⌧coll and which can
be considered as independent. The friction force is due to the e↵ect of these collisions over a
much larger time scale. Additionally to the friction force, we model the frequent collisions by
introducing a force ⇠(t) fluctuating in time, called the “Langevin force” :

m
dv(t)

dt
= �� v(t) + ⇠(t) (108)

dx(t)

dt
= v(t) (109)

Because the collisions are exerted at random along all directions, we expect that

h⇠(t)i = 0 (110)

where h· · ·i denotes statistical averaging 10 (it is also true if we consider averaging over time
for a single history). As the Langevin force models the force exerted on the particle by the
molecules, it is natural to assume short time correlations h⇠(t)⇠(t0)i = C

⌧coll
'((t� t

0)/⌧coll) where

' is normalised function of width ⇠ 1 centered on the origin (like (1/2)e�|x| or ⇡�1/2e�x
2

) and C

the strength of the fluctuations. As we are interested in the dynamics of the Brownian particle
over time � ⌧coll we can simply consider

⌦
⇠(t)⇠(t0)

↵
= C �(t� t

0) (111)

(which corresponds formally to ⌧coll ! 0). A random function characterised by such local
correlations is called a “white noise”.

9You can find some historical perspectives in the excellent article of Bertrand Duplantier [13].
10Statistical averaging corresponds to average over di↵erent histories of the particle, with same initial conditions

but in a di↵erent environments (di↵erent realisations of the Langevin force). This is the procedure followed by
Jean Perrin in his experiments [44] ; cf. figure below.
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Figure 9: Robert Brown (1773-1858), Albert Einstein (1879-1955), Paul Langevin (1872-1946)
and Jean Perrin (1870-1942).

This model was introduced by Paul Langevin [30]. Why studying a model for the motion
of a pollen grain at the surface of a fluid (or more generally a “colloid” in a fluid) is an impor-
tant problem ? The reason is that several ideas of the Langevin model have a much broader
application in out-of-equilibrium statistical physics.

We now analyse the statistical properties of the particle. Taking advantage that the equation
of motion is linear, its integration gives

v(t) = v(0) e�t/⌧ +
1

m

Z
t

0

dt0 ⇠(t0) e�(t�t
0
)/⌧

. (112)

This representation makes easy to deduce the statistical properties of v(t) from those of ⇠(t). If
the initial velocity is non random, we have

hv(t)i = v(0) e�t/⌧ . (113)

After a time larger than ⌧ = m/�, the memory of the initial velocity is lost and the velocity is

independent of v(0). We also get the correlator hv(t)v(t0)i
c

def

= hv(t)v(t0)i � hv(t)i hv(t0)i :

⌦
v(t)v(t0)

↵
c
=

C ⌧

2m2

⇣
e�|t�t

0
|/⌧
� e�(t+t

0
)/⌧

⌘
. (114)

The correlations decay in time over the same time scale ⌧ .

- Exercice 33 – Comparison between time and statistical averaging : One considers
the random ”function” given by the sum of impulses ⇠(t) =

P
N

n=1
n �(t� tn) defined over the

interval [0, T ], where
• the tn’s are independent and identically distributed (i.i.d) random times uniformly distributed
over [0, T ] (i.e. one tn has distribution p(tn) = 1/T ). We denote by � = N/T (for N !1 and
T !1) the rate of occurence of the random times.
• The n’s are i.i.d random variables with common distribution w() with finite

⌦

2
n

↵
.

a) Compute the time average of ⇠(t), over the time interval [0, T ]. Compare with the statistical
average (over tn’s and n’s).

b) What is the condition on the random function ⇠(t) allowing to define a time averaged cor-
relator eC(t � t

0) = ⇠(t)⇠(t0)
c

= ⇠(t)⇠(t0) � ⇠(t) ⇠(t0) ? Compare to C(t � t
0) = h⇠(t)⇠(t0)i

c
=

h⇠(t)⇠(t0)i � h⇠(t)i h⇠(t0)i.

3.2 A fluctuation-dissipation relation

We now introduce another assumption : after a su�cient long time, we expect that the particle
is at thermal equilibrium, like the fluid, hence hv(t)2i = kBT/m (equipartition theorem). This
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requires a constraint between the strength C of the Langevin noise (the fluctuations in the fluid),
the friction coe�cient � and the temperature :

C
#

fluctuations

= 2

dissipation

"
� kBT (115)

this is a first formulation of the fluctuation-dissipation theorem (FDT). We could write
the correlator of the noise ⌦

⇠(t)⇠(t0)
↵
= 2� kBT �(t� t

0) . (116)

The phenomenological coe�cients C, the strength of the Langevin force, and �, the friction
coe�cient, are not two independent parameters (at least when thermal equilibrium holds).
Below (§ e)), we will introduce a microscopic model of friction and try to clarify the origin of
this relation.

- Exercice 34 – Langevin equation for random initial velocity : The correlator (114)
corresponds to a fixed initial velocity. Consider now the case where the initial velocity is random,

distributed according to P (v0) / exp
�
�

mv
2

0

2kBT

 
.

a) Compute the new correlator, denoted hv(t)v(t0)iequil.

b) Can we compare the two correlators ?

- Exercice 35 – Measure of the Ornstein-Uhlenceck process : In the stationary regime,
compare the correlator with the one obtained in Exercise 16. Deduce what is the measure of
the Ornstein-Uhlenbeck process.

3.3 Di↵usion

In the stationary regime the correlator of the speed is a ”narrow function” of width ⌧ , with
weight Z

+1

�1

d(t� t
0)
⌦
v(t)v(t0)

↵
stat

c
=

2kBT

�
. (117)

As a result, neglecting the transient regime at short times, we can write 11

⌦
x(t)2

↵
'

Z
t

0

dt1

Z
t

0

dt2 hv(t1)v(t2)i
stat

c
' t

Z
+1

�1

d(t1 � t2) hv(t1)v(t2)i
stat

c
= 2D t (118)

In other terms, we have obtained a general relation between the velocity correlator and the
di↵usion constant

D
def

=

Z
1

0

dt hv(t)v(0)i (119)

For the present model, we get the expression

D =
kBT

�
(120)

which is known as the “Einstein relation”, obtained in his 1905’s article on Brownian motion [14].
This is another formulation of the FDT, relating three di↵erent physical quantities, the di↵usion
constant characterizing the fluctuations of the motion, the friction coe�cient characterizing the
dissipation and the temperature.

11We recall the definition of the di↵usion constant D
def

= limt!1
1

2t

⌦
x(t)2

↵
c
.
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- Exercice 36 – : Choose initial conditions for a fixed initial velocity x(0) = 0 and v(0) = v0.
Compute hx(t)i. Then, Study precisely

⌦
x(t)2

↵
c
. Analyze the crossover between the short time

and large time
⌦
x(t)2

↵
c
/ t di↵usive behaviour.

Figure 10: Measurements of Jean Perrin (1908) ; from [44]. Left : few examples of trajectories.
Right : final points after the several histories (for a fixed time).

- Exercice 37 – Mean square displacement from the Langevin equation : Our aim is
to compute the mean square displacement

⌦
x(t)2

↵
of a Brownian particle in a fluid We assume

that x(0) = 0 and that the particle is initially at equilibrium with the fluid. We apply the
method proposed by Langevin in his famous article [30].

a) Prove that d
2

dt2
x(t)2 + 1

⌧

d

dt
x(t)2 = 2v(t)2 + 2

m
x(t) ⇠(t).

b) Give an argument to justify hx(t) ⇠(t)i = 0. What is
⌦
v(t)2

↵
?

c) Argue that d

dt

⌦
x(t)2

↵ ��
t=0

= 0 and deduce

⌦
x(t)2

↵
=

2kBT

�

h
t� ⌧

⇣
1� e�t/⌧

⌘i
(121)

Analyze carefully the limiting behaviours (interpret the t! 0 behaviour) and plot the function.

3.4 Large scale properties and the overdamped regime

Over large time scales (� ⌧), the correlator seems a narrow function which can be replaced by
a delta function

⌦
v(t)v(t0)

↵
stat

c
=

kBT

m
e�|t�t

0
|/⌧ =

C

�2

e�|t�t
0
|/⌧

2⌧

large scale

⇡
C

�2
�(t� t

0) =
1

�2

⌦
⇠(t)⇠(t0)

↵
. (122)

This corresponds to write

v(t)
large scale

⇡
1

�
⇠(t) (123)

i.e. to neglect the acceleration term in Newton’s equation :

0 ⇡ ��v(t) + ⇠(t) (overdamped regime) . (124)

This approximation is called the “overdamped regime”, which is achieved either by studying
the process over large time scales, t� ⌧ , or by formally considering the limit of strong damp-
ing, � ! 1. As a result we obtain that the velocity equals the force. If an additional
(conservative) force F (x) is introduced in the equation of motion, we have

dx(t)

dt
⇡

1

�
[F (x(t)) + ⇠(t)] (overdamped regime) . (125)
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This is similar to the pre-Galileo-Newtonian postulate, proposed by Aristote, which makes sense
for the motion of a particle in a viscous fluid. We will come back later to a general analysis of
this stochastic di↵erential equation.

3.5 The free Brownian motion (the Wiener process)

In the overdamped regime, in the absence of the external force F (x), the position is just the
integral of a Gaussian white noise

x(t) = x(0)|{z}
=0

+
1

�

Z
t

0

du ⇠(u) (126)

Figure 11: A Brownian trajectory : W (t) as a function of t.

Let us simplify the notations and introduce a normalised Gaussian white noise ⌘(t) =
⇠(t)/

p
C so that

h⌘(t)i = 0 and
⌦
⌘(t)⌘(t0)

↵
= �(t� t

0) . (127)

We now consider the normalised free Brownian motion (the “Wiener process”)

W (t) =

Z
t

0

du ⌘(u) (128)

thus
⌦
W (t)W (t0)

↵
=

Z
t

0

du

Z
t
0

0

dv �(u� v) =

Z
min(t,t

0
)

0

du (129)

Finally ⌦
W (t)W (t0)

↵
= min

�
t, t
0
�

(130)

Interpretation : consider the case t < t
0, we have hW (t)W (t0)i = h[W (t0)�W (t)]W (t)i +⌦

W (t)2
↵
. The second term is t (di↵usion) ; the first term vanishes as the two increments

W (t0)�W (t) =
R
t
0

t
du ⌘(u) and W (t) =

R
t

0
du ⌘(u) are independent.

- Exercice 38 – : Check that the increment depends only on the time di↵erence

h
⇥
W (t)�W (t0)

⇤
2
i = |t� t

0
| (131)

In the limit t! t
0 we get limt!t0h

⇥
W (t)�W (t0)

⇤
2
i = 0. One rewrites this property as

ms-lim
t0!t

⇥
W (t)�W (t0)

⇤
= 0 (132)
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where ms-lim is the “mean-square limit”. This last equation implies that the curve W (t) is
continuous. Mathematicians have proven that this is true for all Brownian curves (atypical
discontinuous curves do not exist). Another consequence of (131) is that

*✓
W (t)�W (t0)

t� t0

◆
2
+

=
1

|t� t0|
(133)

which goes to infinity when t ! t
0, i.e. W (t) is non di↵erentiable. The curve is extremely

irregular (see Fig. 11). This irregularity is related to scale invariance and fractal behaviour
(with fractal dimension 1/2). For ↵ > 0, it is clear that

⌦
W (↵t)W (↵t0)

↵
= ↵ min

�
t, t
0
�
= ↵

⌦
W (t)W (t0)

↵
(134)

Because W (t) is Gaussian, all statistical information is encoded in the two point function,
hence this equality means that we can identify the statistical properties of W (↵t) with those of
p
↵W (t). Mathematicians express this through and “equality in law”

W (↵t)
(law)

=
p
↵W (t) (135)

(their ”laws” are equal). Because Ẇ (t) = ⌘(t), we can also write the equation for the Gaussian
white noise as

⌘(↵t)
(law)

=
1
p
↵
⌘(t) . (136)

- Exercice 39 – From the Wiener process to the Ornstein-Uhlenbeck process : We
consider the Wiener process described by the equation dW (u)

du
= ⌘(u), where ⌘(u) is a normalised

Gaussian white noise.

a) Consider '(u) a monotonous function. Argue that

⌘('(u))
(law)
=

1p
|'0(u)|

⌘(u) (137)

b) Deduce the stochastic di↵erential equation for

x(t) =
W (u)
p
u

with u = u0e
2�t (138)

, Important points

• Master the analysis of the linear Langevin equation (108) (integrate, average, etc)
• Fluctuation-dissipation relation (di↵erent forms) : Langevin force and damping force have the
same origin, hence the relation.
• Wiener process : main properties.
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4 Markov processes and the master equation

We have discussed above few simple stochastic processes (the Wiener process and the Ornstein-
Uhlenbeck process). Let us now introduce some tools (vocabulary) allowing for a general analysis
of stochastic processes.

Figure 12: Marian von Smoluchowski (1872-1917) is considered as the father of the theory of
stochastic processes.

4.1 Generalities : joint probabilities, conditional probabilities

The aim of the section is to introduce some useful tools and concepts needed to describe random
processes. In the previous section, we have obtained an integral representation of the trajectory
in terms of the Langevin force, which has been used in order to analyze its statistical properties.
In general, one considers a random process X(t), i.e. a random function of the time, and one is
interested in its statistical properties. Its probability should be given by a functional P [X(t)],
which is rather complicate to manipulate (for example an explicit calculation of an average
might be di�cult, e.g. hX(t)i =

R
DX(t)P [X(t)]X(t) where one should define how to perform

the integral over the functions). For this reason we will introduce other tools more simple
conceptually and practically.

Joint probability : In order to characterize the statistical properties of the random process,
we can introduce the joint probability or the n-point function

Pn(xn, tn; · · · ;x2, t2;x1, t1)| {z }
 �
time

= h�(xn �X(tn)) · · · �(x1 �X(t1))i (139)

corresponding to the probability (density) for the process to be equal to x1, · · · , xn at times
t1, · · · , tn. We can also write

Pn(xn, tn; · · · ;x2, t2;x1, t1) dx1 · · · dxn = Proba{X(t1) 2 [x1, x1+dx1] & · · · &X(tn) 2 [xn, xn+dxn]}

From the definition, it is clear that one integration connect the n-point to the n � 1-point
functions

Z
dxk Pn(xn, tn; · · · ;xk+1, tk+1;xk, tk;xk�1, tk�1; · · · ;x1, t1) (140)

= Pn�1(xn, tn; · · · ;xk+1, tk+1;xk�1, tk�1; · · · ;x1, t1) (141)
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Conditional probability : Another important concept is the one of conditional probability
corresponding to the probability for the process to pass through x1, · · · , xn at successive times
t1, · · · , tn, given that it has passed through y1, · · · , yn at successive times ⌧1, · · · , ⌧n :

Pn|m(xn, tn; · · · ;x1, t1 | ym, ⌧m; · · · ; y1, ⌧1) =
Pn+m(xn, tn; · · · ;x1, t1; ym, ⌧m; · · · ; y1, ⌧1)

Pm(ym, tm; · · · ; y1, ⌧1)
(142)

4.2 Markov processes

A very important class of random processes areMarkov processes. A Markov process is a random
process whose evolution only depends on its initial value, and not in his history before the initial
time. Hence we can write

Pn|m(xn, tn; · · · ;x1, t1 | ym, ⌧m; · · · ; y1, ⌧1) = Pn|1(xn, tn; · · · ;x1, t1 | ym, ⌧m) (143)

which expresses that history prior to ⌧m does not matter... only the last position ym at time
⌧m determines the future evolution.

Figure 13: Andrëı Andrëıevich Markov (1856-1922).

Let us examine the consequences of this assumption. Consider for example the three point
function :

P3(x3, t3;x2, t2;x1, t1) = P1|2(x3, t3|x2, t2;x1, t1)P2(x2, t2;x1, t1) (144)

= P1|2(x3, t3|x2, t2;x1, t1)P1|1(x2, t2|x1, t1)P1(x1, t1) (145)

Markov
= P1|1(x3, t3|x2, t2)P1|1(x2, t2|x1, t1)P1(x1, t1) (146)

We can generalize this to any joint distribution. We simplify the notation as P1|1(x, t|y, t0) ⌘
P (x, t|y, t0) and P1(x, t) ⌘ P (x, t) and we conclude that

A Markov process is fully characterized by

P (x, t|y, t0) and P (x, t) only.

Chapman-Kolmogorov equation : Start from the general property
Z

dx2 P3(x3, t3;x2, t2;x1, t1) = P2(x3, t3;x1, t1) . (147)

For a Markov process, using (146), one gets the Chapman-Kolmogorov equation

Z
dx2 P (x3, t3|x2, t2)P (x2, t2|x1, t1) = P (x3, t3|x1, t1) (148)
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The probability to go from x1 to x3 is the sum over x2 of the probabilities conditioned to passed
through x2.

Now multiply this equation by P (x1, t1) and integrate over x1. We get (x3, t3 ! xf , tf and
x2, t2 ! xi, ti)

P (xf , tf ) =

Z
dxi P (xf , tf |xi, ti)P (xi, ti) (149)

Which shows that the conditional probability relates the distribution at initial time ti to the
distribution at final time tf . For this reason, P (xf , tf |xi, ti) is sometimes called the “propagator”.

Figure 14: Andrëı Nikoläıevitch Kolmogorov (1903-1987), well-known by physicists for his major
contributions to the theory of dynamical systems and probability.

Homogeneous Markov processes : In the following we will restrict ourselves to Markov
processes such that the transition probability is invariant under time translation

P (x2, t2|x1, t1) = P (x2, t2 � t1|x1, 0) (150)

Such random processes are denoted “homogeneous”. I will sometimes denote the propagator as
Pt(x|x0).

An example of Markov process : we can come back to the Langevin equation (108) for
the velocity. This equation is first order and involves a white noise (⇠ uncorrelated in time),
hence the evolution is fully determined by v(0) = v0 and the process is Markovian. Assuming
furthermore that the Langevin noise is Gaussian, 12 we can get easily the two fundamental
probabilities characterizing the process. From the above calculations we have, cf. (113,114)

hv(t)i = v0 e
�t/⌧ (151)

Var[v(t)] =
kBT

m

⇣
1� e�2t/⌧

⌘
(152)

The process v(t) is a convolution of the Gaussian Langevin force ⇠(t), hence it is also Gaussian.
The knowledge of these two moments is su�cient to characterize the full distribution, which is
here conditioned by the initial velocity :

Pt(v|v0) =
r

m

2⇡kBT
�
1� e�2t/⌧

� exp

(
�

m (v � v0 e�t/⌧ )2

2kBT
�
1� e�2t/⌧

�
)

. (153)

12The distribution of the noise is a Gaussian : P [⇠] / exp
�
� 1

2C

R
dt ⇠(t)2

 
. On can deduce from this that

h⇠(t)⇠(t0)i = C �(t� t
0) [hint : discretize the time to check this].

34



At large time, the conditional probability converges toward the equilibrium distribution

Pt(v|v0) �!
t!1

P (v) =

r
m

2⇡kBT
e
�

m
2kBT v

2

(154)

(the Gibbs distribution). Here, the ”one point distribution” P (v) is independent of the time
due to the existence of a stationary state (this is not always the case). This is also why the con-
ditional probability rapidly converges (exponentially fast) toward the equilibrium distribution.
The process described by equation (108), or the conditional probability (153), is known as the
Ornstein-Uhlenbeck process. It is the subject of the Doob theorem (the only homogeneous
Gaussian stationary random process is the Ornstein-Uhlenbeck process). 13

- Exercice 40 – : Recover the correlator hv(t)v(t0)i
c
given by (114) from the conditional

probability. Consider both cases of initially fixed velocity and random velocity.

Let us now discuss two instructive examples of stochastic processes, Markovian and non
Markovian. Let us recall that the Markovian nature of the process defined by the Langevin
equation (108) originates from the two reasons : (i) the di↵erential equation is first order, hence
the solution depends only on some initial value v(0) ; (ii) the noise is �-correlated, hence there
is no memory.

A non Markovian process : if we consider now the position of the particle described by the
Langevin equation (108,109), the di↵erential equation is mẍ = �� ẋ + ⇠(t) : the noise is still
�-correlated, however the di↵erential equation is now second order, hence the solution depends
on both the initial position x(0) and the initial velocity ẋ(0), which depends on the history
before t = 0 : the process x(t) is not Markovian.

We could also argue that the position obeys a first order stochastic di↵erential equation,
ẋ = v(t) where v(t) is a ”noise”, however this latter is characterized by a finite correlation time
(memory time), hv(t)v(t0)i = kBT

m
e�|t�t

0
|/⌧ . Hence x(t) is non Markovian because the noise is

not �-correlated (from this point of view, one says that the SDE for x(t) involves a ”colored
noise”).

These are two di↵erent points of view to assert that the process x(t) is not Markovian.

A 2D Markov process : x(t) is a non Markovian process, however it can be considered as
the first component of a two-dimensional Markovian process ~ (t) = (x(t), v(t)) : the system
of di↵erential equations is first order, and can be written under the more general form of a
multidimensional Langevin equation

 ̇i = �i(~ ) +Bij ⌅j(t) (155)

where ~� = (v, F (x) � � v) is the drift (we have added a conservative force). The noise ~⌅(t) =
(0, ⇠(t)) is uncorrelated in time and the matrix is Bxx = Bxv = Bvx = 0 and Bvv = 1. Hence it
is a 2D Markovian process. We will see that the joint distribution Pt(x, v) obeys the “Kramers
equation” @tPt =

⇥
� @xv � @v(F (x)� � v) + �kBT @

2
v

⇤
Pt.

The analysis of this example shows that the identification of a Markov process is sometimes
a question of perspective, and also illustrates that Markov processes are elementary building
blocks.

13The Ornstein-Uhlenbeck process is more frequently introduced as a model for a particle attached to a spring
in the overdamped regime : ẋ(t) = �x(t) + ⇠(t).
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4.3 Master equation

Continuous processes.— Let us start with the case of continuous processes, which is more
general. As we have seen, Eq. (149), the evolution of the distribution of a Markov process can
be represented in terms of the conditional probability which plays the role of a “propagator”

P (x, t) =

Z
dx0 P (x, t|x0, t0)P (x0, t0) . (156)

However, this equation and (148) are not of great help to determine the two fundamental func-
tions P (x, t) and P (x, t|x0, t0). The distribution is more conveniently obtained by solving an
evolution equation for an infinitesimal time : such an evolution equation can be related to the
above integral equation by considering the evolution during an infinitesimal time �t ! 0. In
this case we expect

P (x, t+ �t|x0, t) ' �(x� x0) + �tWt(x|x0) +O(�t2) (157)

The linear correction follows from the Markov assumption : at short time, the transition proba-
bility is linear with time and involves a transition rate Wt(x|x0)dx for performing the transition
from x0 to [x, x+ dx].

In the following, we will restrict ourselves to homogeneous processes (time translation
invariant) such that

Wt(x|x0)!W (x|x0) (homogeneous process) (158)

is independent of time. For homogeneous processes, we find the di↵erential equation (in time)

@P (x, t)

@t
=

Z
dx0W (x|x0)P (x0, t) (159)

Note that the conservation of probability requires that
Z

dxf W (xf |xi) = 0 )
@

@t

Z
dxP (x, t) = 0 8 t (160)

so that probability
R
dxP (x; t) = 1 is conserved. This condition follows from the normalization

condition of the conditional probability, in the expansion (157). Obviously, the conditional
probability obeys the same equation

@Pt(x|x0)

@t
=

Z
dx0W (x|x0)Pt(x

0
|x0) for initial condition P0(x|x0) = �(x� x0) . (161)

In a specific problem, the transition ”rates” W (x|x0) are given and the aim is to solve the master
equation (159), or (161).

In the most general case, a Markov process can combine

• a di↵usion : in this case the integral kernel is replaced by a second order di↵erential operator

• jumps : leading to an integral term in the master equation, like in (159).

Below, we will give concrete examples.
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Discrete processes.— For simplicity, let us first consider a random process which takes
discrete values X(t) 2 {x1, · · · , xM} and denote Pn(t) = Proba{X(t) = xn}. The Markovian
nature of the process implies that Pn(t+ �t) depends on the state of the process at time t, hence
it can be related to the probability Pn(t), i.e. the distribution obeys a first order di↵erential
equation

d

dt
Pn(t) =

X

m

Wn,mPm(t) (162)

where the transition rates Wn,m form a M⇥M matrix (with Wn,m > 0 for n 6= m), and satisfy
X

n

Wn,m = 0 (163)

ensuring the conservation of probability
P

n
Pn(t) = 1 8 t (hence Wn,n = �

P
m ( 6=n)

Wm,n is the
only negative matrix element). The evolution equation (162) is known as the master equation.
Note that by using Wn,n = �

P
m ( 6=n)

Wm,n we can rewrite the master equation as

d

dt
Pn(t) =

X

m ( 6=n)

[Wn,mPm(t)�Wm,nPn(t)] (164)

(we can further replace
P

m ( 6=n)
!

P
n
). This form avoids to add the restriction (163).

Birth and death processes.— A subclass of these discrete processes are “birth and death
processes”. They correspond to the case where the transition matrix is tridiagonal, i.e. allows
only transitions between nearest neighbour states. The master eqaution has the form

d

dt
Pn(t) = dn+1 Pn+1(t) + bn�1 Pn�1(t)� (dn + bn)Pn(t) (165)

where dn > 0 and bn > 0 are death and birth rates, respectively. A simple example is the
Poisson process studied below.

We discuss below several examples for various Markov processes.

- Exercice 41 – Random telegraph process : We consider the most simple Markov process
X(t), taking only two possible values X1 or X2 (this is a ”two level system” for stochastic
processes). The transition rates are �1 (from X1 to X2) and �2 (from X2 to X1). We denote by
Pi(t) = Proba{X(t) = Xi} with i 2 {1, 2}.

a) Write the set of di↵erential equations for P1(t) and P2(t). Deduce a matricial form d

dt
P (t) =

W P (t), where P = (P1 P2)T is the column vector (T denotes tranposition).

b) Find the stationary solution, denoted by P
⇤

i
, and give the general solution of the master

equation.

c) Determine the conditional probability Pt(i|j). Discuss detailed balance.

d) Express hX(t)i and hX(t)X(t0)i in the stationary regime. For simplicity, choose X1 = 0 and
X2 = 1. Compute C(t� t

0) = hX(t)X(t0)i � hX(t)i hX(t0)i.

e) Deduce the power spectrum S(!) of the telegraphic noise (use the Wiener-Khintchine theorem
and the relation with the correlation function C(t)).

a) Example : the Poisson process (statistics of uncorrelated events)

The Poisson process takes integer values N (t) 2 N with N (0) = 0. With probability rate �,
the process is incremented by one, i.e. during an interval of time of duration dt, the process
increases by one with probability � dt. We denote Pn(t) = Proba{N (t) = n} its probability.
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The Poisson process (PP) counts the occurences of independent events. For instance the
number of drops of rain falling on the floor during a time interval t. Or the number of desinte-
grations in a radioactive material.

Figure 15: An instance of Poisson process : N (t) as a function of t.

- Exercice 42 – Master equation for the PP :

a) Show that the master equation for the Poisson process is

d

dt
Pn(t) = �Pn�1(t)� �Pn(t) (166)

for n > 0 (and dP0(t)

dt
= ��P0(t)). In other terms, the rate ”matrix” has elements on the

diagonal and just below the diagonal Wn,m = �
�
� �m,n + �m,n�1

�
.

b) Introduce the generating function G(z; t)
def
=
P
1

n=0
z
n
Pn(t). What is the value of G(z; 0) ?

Get a di↵erential equation for G(z; t) and solve it.

c) Deduce that

Pn(t) =
(�t)n

n!
e��t (167)

d) Determine the moments the cumulants hN (t)kic of the Poisson process.

e) Give the distribution q(⌧) of the time separating two successive events [indication : relate q(⌧)
and P0(t)].

Note that (167) corresponds to the initial condition N (0) = 0, hence the conditional proba-
bility of the Poisson process is Pt(n|m) = Pn�m(t) for n > m and Pt(n|m) = 0 for n < m. Here
we have used translation invairance in ”space”.

- Exercice 43 – : Consider the Poisson process with N (0) = 0.
Check that

P
n0

Pt(n|n0)Pn0
(t0) = Pn(t+ t0).

- Exercice 44 – Derivative of the Poisson process : We consider the noise ⇠(t) =P
n
�(t � tn), where the times are i.i.d. for a uniform density �. I.e., when they are ordered,

the events occur randomly and independently with rates �. In other terms, the noise is the
derivative of the Poisson process introduced above ⇠(t) = N 0(t).

We introduce the generating function of the noise G[h]
def
=
⌦
exp

R
dt h(t) ⇠(t)

↵
, where h•i is the

averaging over the random times tn’s.

a) Show that G[h] = exp
�
�
R
dt(eh(t) � 1)

 
.

Hint: Consider that the N times are not ordered, distributed over [0, T ]N with measure dt1 · · · dtN/T
N .

b) Deduce the connex correlation functions (cumulants) : h⇠(t)i = � and h⇠(t1) · · · ⇠(tn)ic =
� �(t1 � t2) · · · �(t1 � tn).
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Hint: Consider functional derivatives of lnG[h].

In conclusion, ⇠(t) = N 0(t) is a non Gaussian white noise.

b) Another example : the compound Poisson process

A natural generalization of the Poisson process is the compound Poisson process (CPP) 14 : we
consider now that the process X(t) makes random jumps

X(t+n ) = X(t�n ) + ⌘n (168)

where the ⌘n’s are i.i.d., distributed according to a distribution w(⌘). As for the Poisson process,
the jumps occur at random times tn with rate �. After a time t, the number of jumps N (t) is
random (it is a PP). The CPP can be written in terms of this PP as

X(t) =

N (t)X

n=0

⌘n (169)

with ⌘0 = X(0) = 0.

Figure 16: Compound Poisson process X(t) for Gaussian jumps.

- Exercice 45 – Master equation for the CPP :

a) Show that the master equation for the CPP is

@P (x, t)

@t
= �

Z
d⌘w(⌘) [P (x� ⌘, t)� P (x, t)] (170)

i.e. of the form (159) for W (x|x0) = �
⇥
w(x� x0)� �(x� x0)

⇤
. Note that here, the transition

rate is translation invariant.

b) Continuum limit.— Study the limit � ! 1 with w ! 0 such that a = �h⌘ni and b = �h⌘
2
ni

are kept finite (argue that, in this limit, �h⌘kni ! 0 for k > 2).

c) Introducing the Fourier transforms bP (k, t) =
R
dx e�ikx P (x; t) and ŵ(k) =

R
d⌘ e�ik⌘ w(⌘),

show that the solution is

P (x, t) =

Z
+1

�1

dk

2⇡
e�t [ŵ(k)�1]+ikx

. (171)

Discuss the continuum limit.

d) When h⌘2ni =1, the process belongs to the class of Lévy flights. For example, if w(⌘) ⇠ c/⌘
2

for ⌘ ! ±1 we have ŵ(k) ' 1� c|k| for k ! 0. Deduce P (x, t) over large scales. Discuss also
the more general case where ŵ(k) ' 1� c|k|

µ for k ! 0, with µ 2]0, 2[.
14in French: “processus de Poisson composé”.
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- Exercice 46 – Derivative of the CPP - a non Gaussian white noise :

a) Using the representation ⇠(t) = X
0(t) =

P
n
⌘n �(t � tn), where both the times tn’s and the

coe�cients ⌘n’s are random, derive the connex correlation function of the noise h⇠(t1) · · · ⇠(tn)ic.
Hint: follow the same steps as in exercise 44.

b) Show that the noise becomes a Gaussian white noise in a certain limit.

4.4 Markov chains

An important class of random processes are Markov chains, which are homogeneous random
processes, discrete with respect to both the time and the state. This makes such processes
rather convenient for numerical analysis.

a) Stochastic matrix

We consider a random process X(t) 2 {1, · · · ,M} and denote Pn(t) = Proba{X(t) = n}. The
master equation (162) introduced above involves transitions at random times. For Markov chain,
the jumps occur at regular discrete times, thus the master equation takes the form

Pn(t+ 1) =
X

m

Mnm Pm(t) (172)

where
Mnm = Proba{m! n} 2 [0, 1] (173)

is the M⇥M matrix of transition probabilities. M is called a “stochastic matrix”. It satisfies

X

n

Mnm = 1 (174)

Example of Markov chain : the biased RW.— A simple example is the case of the
random walk on the line, where, at each time step, the walker jumps to the left with probability
q or to the right with probability p. Then

Mnm = p �m,n�1 + q �m,n+1 (175)

(with p+ q = 1).

For the following, it is useful to rewrite the master equation (172) in a form closer to the
di↵erential equation (164) by using (174)

Pi(t+ 1)� Pi(t) =
X

j( 6=i)

[Mij Pj(t)�Mji Pi(t)] (176)

- Exercice 47 – Continuum limit of the Markov chain : Consider a Markov chain with
jumps occuring every �t. Argue that the master equation (162) is recovered by considering the
continuum limit

Mij = �ij + �tWij with �t! 0 . (177)

If M is a stochastic matrix, what is the constraint on the matrix W ?
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b) The Perron-Fröbenius theorem and the stationary state

We can interpret the condition (174) as the existence of a left eigenvector L(0) = (1, · · · , 1)T for
eigenvalue �0 = 1 :

L
(0)T

M = L
(0)T or M

T
L
(0) = L

(0)
, (178)

where (·)T denotes transposition (the vectors are column vectors). The Perron-Fröbenius the-
orem states that (i) �0 = 1 is non-degenerate, (ii) it is the largest eigenvalue, (iii) the related
right eigenvector

M R
(0) = R

(0)
, (179)

has positive components. For a finite number of states M, this corresponds to the stationary
solution, R

(0) = (P ⇤
1
, · · · , P

⇤

M
)T. Normalization condition reads L

(0)T
R

(0) = 1 (the scalar
product is the product of the line and the column vectors). We can rewrite equation (179) as

X

j( 6=i)

⇥
Mij P

⇤

j �Mji P
⇤

i

⇤
= 0 . (180)

c) Classification of Markov processes

We now discuss the di↵erent scenarii which might occur. We keep considering the case of Markov
chains, although a similar discussion could be developed within the master equation.

(i) Equilibrium.— Often, the existence of a stationary solution is ensured by a condition
stronger than (180), called the detailed balance condition

Mij P
⇤

j �Mji P
⇤

i = 0 (detailed balance) (181)

If detailed balance is fulfilled, one says that P
⇤
i

is an equilibrium state. We can also
conveniently relate the ratio of rates to the ratio of probabilities

Mij

Mji

=
P
⇤

i

P
⇤

j

(detailed balance ⌘ equilibrium) (182)

The relation should hold 8(i, j). This is a probabilistic definition of equilibrium.

(ii) NESS (non-equilibrium steady state).— If the detailed balance condition (181) is
not fulfilled but the condition

X

j( 6=i)

⇥
Mij P

⇤

j �Mji P
⇤

i| {z }
6=0

⇤
= 0 (stationarity) (183)

holds, one says that the stationary state is a non-equilibrium steady state. Such states are
characterised by the existence of non zero probability fluxes.

(iii) Transient process.— When M!1 it is possible that the eigenvector (· · · , P ⇤
i
, · · · )T

is not normalisable, so that there is no stationary state. One says that the process is
transient.

Depending on the matrix Mij which defines the Markov chain, one encounters one of the three
situations.
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d) Spectral decomposition - Relaxation

The stochastic matrix M , with positive matrix elements, is not symmetric in general, MT
6= M .

We have seen above that its eigenvalue �0 = 1 is associated with a couple of left and right
eigenvectors L(0) and R

(0). If M is diagonalisable, its eigenvalues �n < 1 are associated with a
biorthogonal set of left and right eigenvectors L(n) and R

(n). We can choose the orthonormali-
sation condition as L(n)T

R
(m) = �n,m, which leads to the spectral representation

M =
X

n

�nR
(n)

L
(n)T

. (184)

This is useful in order to solve the master equation (172). Denoting by P (0) = (P1(0), · · · , PM(0))T

the initial conditions, we can write

P (t) = M
t
P (0) i.e. Pn(t) =

X

j

�
t

j R
(j)

n L
(j)T

P (0)| {z }
cj

def
=

(185)

cj is the coe�cient of the initial vector on the basis of eigenvectors P (0) =
P

j
cjR

(j). Note that

c0 = L
(0)T

P (0) =
P

j
Pj(0) = 1 carries all the normalisation.

An example of initial condition is Pn(0) = �nm i.e. coe�cients cj = L
(j)

m . Then, the solution
of the master equation (172) is the conditional probability

Pt(n|m) =
�
M

t
�
nm

(186)

Now let us discuss the large time behaviour. Using that �0 = 1 > �1 > �2 > · · · , the large
time behaviour takes the form

Pn(t) '
t!1

P
⇤

n|{z}
⌘R

(0)

n

+ c1 �
t

1R
(1)

n| {z }
�!
t!1

0

(187)

where we have used c0 = 1 (normalisation). This shows that 1/⌧relax = � ln�1 is the relaxation
rate towards the stationary state. Relaxation is usually exponentially fast, unless the gap in the
spectrum vanishes and the spectrum is continuous.

Remark 1 : apart �0 = 1, the eigenvalues are not real in general , however complex eigenvalues
should come in conjugate pairs since M is a real matrix (and the same for eigenvectors). Thus,
in the general case, the rate of relaxation towards stationary state is

1

⌧relax
= � ln |�1| (188)

Remark 2 : When M is non symmetric, it is not always diagonalisable. However it can always
be decomposed in terms of Jordan blocks.

- Exercice 48 – : In the same spirit, solve Eq. (162). If probability is conserved, what is
expected for the eigenvalues of Wnm ?

- Exercice 49 – Biased random walk on a ring : Consider the random walk on a ring
with L sites, such that withMnm = p �n,m+1+q �n,m�1 for n, m 2 {1, · · · , L}. Periodic boundary
conditions are M1L = p and ML1 = q.

a) Argue that the stationary state is an equilibrium state when p = q = 1/2 and a NESS for
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p 6= q.

b) Give the spectrum of eigenvalues �k and eigenvectors (left/right) of the stochastic matrix M .
Write p = 1+v

2
and q = 1�v

2
with v 2 [�1,+1]. Check that the ”spectral radius” is unity, i.e.

|�k| 6 1 8 k.

c) Decompose the conditional probability Pt(n|m) over the eigenvalues and the eigenvectors.

d) Consider the limit L!1 and discuss the bottom of the spectrum. Compute Pt(n|m) in the
two limiting cases v = 0 and v = ±1.

e) Simple examples :

Molecular vapour at thermal equilibrium : consider a vapour of molecules at thermal
equilibrium. Each molecule has energy levels "n, expected to be occupied according to canonical
weights P ⇤n / e��"n . The molecule in an excited state falls in a state with lower energy by emis-
sion. Equilibrium and detailed balance imply that the absorption and emission rates between
two levels fulfill the relation

�n m

�m n

= e��("n�"m) (189)

i.e. emission is more probable than absorption (the di↵erence is spontaneous emission).

- Exercice 50 – Master equation: the three scenarii : Let us consider the master equa-
tion describing the one dimensional di↵usion on Z with transitions between nearest neighbour
sites

@tPn(t) = Wn,n�1Pn�1(t) +Wn,n+1Pn+1(t)� (Wn�1,n +Wn+1,n)Pn(t) (190)

i.e. Wn,m is a tridiagonal (infinite) matrix with Wn,n = �Wn�1,n �Wn+1,n. Hence, this is an
example of birth and death process.

a) Current : check that the master equation can be rewritten under the form

@tPn = �Jn + Jn�1 (191)

and express the probability current Jn(t) related to the distribution Pn(t) (Jn measures the
current at time t between sites n and n+ 1).

We now choose the matrix such that

Wn,m = e[V (m)�V (n)]/2 (192)

where V (x) is a known function.

b) Equilibrium (J = 0).— Show that

P
⇤

n = C e�V (n) (193)

is a stationary solution corresponding to a vanishing probability current. Discuss the normalis-
ability.

c) NESS (J 6= 0).— Find the stationary solution corresponding to Jn = J 8n. Show that it is

P
⇤

n = J e�V (n)

1X

m=n

e[V (m+1)+V (m)]/2 (194)

Discuss the normalisability (consider the continuum limit for simplicity).

d) Provide an example where there is no stationary state.
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f) Detailed balance, reversibility and ergodicity

Let us consider a Markov chain with master equation (172), such that detailed balance is fulfilled.
We denote by P

⇤

i
the equilibrium solution. Define

Dt

def

=
X

i

(Pi(t)� P
⇤

i
)2

P
⇤
i

=
X

i

Pi(t)2

P
⇤
i

� 1 > 0 (195)

One can study the evolution of the quantity by considering �Dt = Dt+1 � Dt. Some algebra
making use of detailed balance (182) leads to

�Dt = �
1

2

X

i,j,k

MjiMkiP
⇤

i

 
Pj(t)

P
⇤

j

�
Pk(t)

P
⇤

k

!
2

6 0 (196)

Conclusion :

• Dt > 0

• �Dt 6 0

• We conclude that Dt & and thus Pi(t)! P
⇤

i
.

This shows that detailed balance ensures that the system reaches equilibrium. This remark is
borrowed from [33].

g) A practical (and important) application of Markov chains : the Monte Carlo
method

Consider a physical observable O. At thermal equilibrium, the probability of a microstate
is P` / e��E` . If the number of states Nstate is too large, it might be di�cult to compute
numerically the sum

hOi
eq

=
NstateX

`=1

P`O` (197)

For example, if one considers N Ising spins, the sum runs over Nstate = 2N microstates, which
becomes rapidly untracktable if N is large (a square of 10 ⇥ 10 spins 1/2 has Nstate ⇠ 1030

microstates).

Figure 17: Nicholas Metropolis (1915-1999).

The central idea of equilibrium statistical physics is to replace the study of the microscopic
(deterministic) dynamics by a probabilistic description. The Monte Carlo method replaces the
probabilistic description by a stochastic dynamics defined as follows : if the system is in state
| i i at time t, a move to another state |f i chosen randomly is made with probability

Proba{i! f} ⌘Mfi = min
⇣
1, e��(Ef�Ei)

⌘
. (198)
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For example, in a spin system, one chooses a spin randomly and flip it, thus the di↵erence of
energy Ef � Ei is due to a local change, and the energy di↵erence is very easy to compute.
This means that the matrix Mnm changes randomly at each time step. Assuming Ef > Ei, the
stochastic matrix has the form

M =

0

BBBB@

. . .

1� e��(Ef�Ei) 1
e��(Ef�Ei) 0

. . .

1

CCCCA
 | i i

 |f i
(199)

All other diagonal matrix elements are equal to one and all other non diagonal matrix elements
equal to zero. This is the Metropolis algorithm (from the name of the inventor of the method,
Nicholas Metropolis). Because Mfi/Mif = e��(Ef�Ei), such dynamics converges towards the
Gibbs equilibrium. Finally the statistical average is replaced by the time average over the
stochastic dynamics involving Nstep

O(t) =
1

Nstep

NstepX

t=1

O(t) . (200)

The number of steps Nstep can be chosen orders of magnitude smaller than Nstate, still large
enough in order to ensure some ergodicity (see the book [29] for a detailed discussion).

Going from the microscopic dynamics to the Monte Carlo method, the scheme is the follow-
ing :

Classical mechanics Equilib. statistical physics Monte Carlo method
deterministic �! probabilistic �! stochastic
evolution description dynamics

4.5 Beyond the master equation : renewal processes

I discuss here another type of stochastic processes, known as Markov renewal processes, which
generalize the jump processes described by the master equation (159), or its discrete version
(162). Consider the master equation (293) given below, which does not assume any constraint
on the kernel W (x|x0). This last form makes clear that the master equation describes a situation
where the process in the state x

0 performs a jump with rate � =
R
dyW (y|x0). Hence it stays

at its initial position during a random time ⌧ distributed with an exponential law q(⌧) = �e��⌧

(this was discussed in exercise 42). A specific case where the transition rates are translation
invariant W (x|x0) = �w(x � x

0) corresponds to the compound Poisson process studied above
(exercise 45).

We consider here a more general type of processes characterized by a general waiting time
distribution q(⌧). We do not discuss the general renewal theory, instead we concentrate on a
situation which is translation invariant in space, i.e. simply generalizes the compound Poisson
process. We consider a particle with position X(t) starting from the origin at initial time
X(0) = 0 and performing random jumps at random times

X(t+n ) = X(t�n ) + ⌘n . (201)

The jump amplitudes are distributed according to the distribution w(⌘). For Markov renewal
processes, the distribution q(⌧) of time intervals ⌧n = tn � tn�1 > 0 is arbitrary (⌧n’s are i.i.d.).

- Exercice 51 – Continuous time random walks (CTRW) : For simplicity, we assume
in the following that w is a symmetric function.
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a) Justify that the master equation is replaced by the integral equation (in time)

P (x, t) =

Z
t

0

d⌧ q(⌧)

Z

R
d⌘w(⌘)P (x� ⌘, t� ⌧) + �(x)

Z
1

t

d⌧ q(⌧) (202)

Check normalisation

b) If q(⌧) = �e��⌧ , check that one recovers (170) (compound Poisson process).

c) Solve the equation by introducing the Laplace-Fourier transform

eP (k, s)
def
=

Z
1

0

dt e�st
Z

R
dx e�ikx P (x, t) (203)

Deduce eP (k, s) in terms of q̃(s) =
R
1

0
d⌧ e�s⌧q(⌧) and ŵ(k) =

R
R d⌘ e�ik⌘ w(⌘). Express P (x, t)

under an integral form.

d) Consider distributions with power law tails w(⌘) ' c

|⌘|µ+1 for ⌘ ! ±1 and q(⌧) ' a

⌧↵+1 for
⌧ ! +1.
What is the s! 0 behaviour of q̃(s) for ↵ > 1 ?
For ↵ < 1, show that q̃(s) ' 1�As

↵, where A is a constant.
Same questions for ŵ(k) (distinguish µ > 2 and µ < 2).

e) Discuss the limiting behaviour of eP (k, s) for k ! 0 and s ! 0. Deduce the scaling relation
between space x and time t [hint : analyze the integral representation for P (x, t)].
Draw a ”phase diagram” in the plane (µ,↵) and identify the regions of normal di↵usion, subd-
i↵usion and superdi↵usion.
Discuss the case µ = 2↵ 2]0, 2[.

4.6 Spectral analysis of stochastic processes – Wiener-Khintchine theorem

Convention for Fourier transform in time : We define the Fourier transform in time as

eC(!) =

Z
+1

�1

dt C(t) ei!t et C(t) =

Z
+1

�1

d!

2⇡
eC(!) e�i!t . (204)

Consider a homogeneous (time translation invariant) and stationary random process x(t)
defined on the interval t 2 [0, T ], where T is the observation time. It is characterised by the

correlation function Cxx(⌧)
def

= hx(t)x(t+ ⌧)i, assumed rapidly decreasing (assume hx(t)i = 0
for simplicity). Because the process is stationary, we prefer to consider its discrete Fourier
transform 15

x̃n =

Z
T

0

dt

T
x(t) e+i!nt et x(t) =

X

n

x̃ne
�i!nt où !n =

2n⇡

T
avec n 2 Z . (205)

Noise spectrum.– Let �! be the bandwidth of the apparatus (with �! � 1/T ). We define
the noise spectrum as the average of the square modulus of the Fourier components in the
bandwidth, i.e. in the interval [!,! +�!] :

S(!)
def

=
1

�!

X

!n2[!,!+�!]

h|x̃n|
2
i (206)

This is precisely the outcome of the device represented in figure 18 : sample ! ampli/filter !
multiplicator ! measurement.

15Later, we will define the Fourier transform in space as fq =
R
V
dr f(r) e�iqr, where q is quantized if the volume

is finite, and f(r) = 1

V

P
q fq e

+iqr !
R

dq
(2⇡)d

fq e
+iqr.
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Figure 18: Measure of the noise : the signal is amplified, duplicated and multiplied by itself. The
result is averaged over a long time T .

Figure 19: Norbert Wiener (1894-1964) & Aleksandr Yakovlevich Khinchin (1894-1959).

Wiener-Khintchine theorem.– From the above hypothesis, one can verify that : 16

hx̃nx̃
⇤

mi =
1

T
�n,m

eCxx(!n) (207)

where eCxx(!) =
R
+1

�1
d⌧ Cxx(⌧) ei!⌧ . Only components corresponding to opposite frequencies

!n and !�n are correlated 17. Thus one has :
P

!n2[!,!+�!]
h|x̃n|

2
i = N�!

T
eCxx(!) where N�! =

�!T/2⇡ is the number of frequencies !n in the bandwidth. Finally one gets

S(!) =
eCxx(!)

2⇡
(208)

i.e. a relation between the noise spectrum (fluctuations at frequency !) and the correlations.
A random process characterized by short time correlations thus corresponds to a broad noise
spectrum. The limit of correlation with zero range is called a “white noise” (flat spectrum).

ω1/τc

S (ω)

Figure 20: Wiener-Khintchine theorem : width of noise spectrum is inversely proportional
to the correlation time of the process.

16Write hx̃nx̃
⇤
mi =

R T

0

dt
T

R T

0

dt0

T ei!nt�i!mt0
Cxx(t� t

0) = 1

T

R T

0

dt0

T ei(!n�i!m)t0 R T�t0

�t0 d(t� t
0)ei!n(t�t0)

Cxx(t� t
0).

Short range correlation allows to write
R T�t0

�t0 d(t� t
0) · · · !

R
+1
�1 d(t� t

0) · · · .
17One can as well consider a process defined on R by writing T ! 1. The Fourier transform is then defined as

x̃(!) =
R
dt x(t)ei!t and one can show that hx̃(!)x̃(!0)i = 2⇡�(! + !

0) eCxx(!). Correspondence between the two
formulations is ensured by the substitutions x̃(!) $ T x̃n and 2⇡�(! � !

0) $ T �n,n0 .
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- Exercice 52 – : As a simple application of the Wiener-Khintchine theorem, we analyze the
correlation of the velocity for the process defined by the phenomenological Langevin equation

dv(t)

dt
= �

Z
dt0 �(t� t

0) v(t0) + ⇠(t) (209)

where ⇠(t) is the Langevin force (assumed to be a stationary random process with short time
correlations). Here the friction is nonlocal in time, controlled by a causal function �(t), with
finite width ⌧m. Show that

Cvv(⌧) =

Z
+1

�1

d!
eC⇠⇠(!)
2⇡| {z }

SForce(!)

e�i!⌧

|�̃(!)� i!|2
(210)

Consider the limit C⇠⇠(⌧) = 2D�2�(⌧) et �(t) = � �(t) and compute explicitly the correlator.

- Exercice 53 – : Consider now the case of a Langevin force correlated over the finite time
⌧c (a microscopic time) : CFF (t) = 2D�2 1

2⌧c
e�|t|/⌧c . We expect the function �(t) to be of finite

width ⌧m ; Assume �(t) = � ✓(t) 1

⌧m
e�t/⌧m . The three time scales fulfill : ⌧c . ⌧m ⌧ 1/�. Analyze

the residus of |�̃(!)� i!|�2 justify that one can consider ⌧m ! 0 while keeping a finite ⌧c, what
simplifies the evaluation of the integral. Show then that Cvv(⌧) =

D�

1�(�⌧c)
2 [e��|t| � �⌧ce�|t|/⌧c ].

Analyze the behaviour at short time as well.

, Important points

• Markov process (definition).
• Be familiar with the various forms of the master equation (continuous/discrete ; Markov chain).
• A good exercise : recover the properties of the Poisson process (and the CPP).
• Definition of the stochastic matrix. Use of spectral information to solve the master equation.
• Detailed balance and the classification of Markov processes.
• Wiener-Khintchine theorem : relation between the correlation function of an homogeneous
process and its noise spectrum.
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5 Stochastic di↵erential equations

In § 3, we have discussed a specific case of stochastic di↵erential equation (SDE), the Langevin
equation m

d

dt
v(t) = �� v(t)+⇠(t) involving a �-correlated Langevin force. We took advantage of

the linearity to obtain an integral representation of the solution, which makes easy the analysis
of the statistical properties of the solution. The aim of this paragraph is to consider a more
general situation and consider SDE of the form d

dt
x = F (x) +

p
2D(x) ⌘(t), where ⌘(t) is a

normalised Gaussian white noise.
SDE are particularly well suited for numerical simulations (it is easy to generate many

realizations of such processes). Here, the aim is to introduce some tools allowing for a statistical
analysis of the solution. Finally, let us stress that by considering that ⌘(t) is a Gaussian white
noise, in this chapter we restrict ourselves to the study of continuous Markov processes
(with no jump). 18

5.1 SDE with drift and additive noise

Let us come back to the analysis of the stochastic process described by Eq. (125). We write

dx(t)

dt
= F (x(t)) +

p

2D ⌘(t) (211)

where ⌘(t) is a normalised Gaussian white noise with

h⌘(t)i = 0 and
⌦
⌘(t)⌘(t0)

↵
= �(t� t

0) . (212)

An analysis similar to the one of Section 3 is not possible (unless F (x) / x) due to the nonlinear
character of the equation. Being interested in statistical properties of the solution, it is natural
to consider its distribution, or at least to build an equation for it, the Fokker-Planck equation.
Below we show that the corresponding FPE is

@Pt(x)

@t
= �

@

@x
[F (x)Pt(x)] +D

@
2

@x2
Pt(x) (213)

where Pt(x) is the distribution of x(t). In the next section, we will furhter discuss how to solve
this equation.

Proof : We introduce the Wiener process

W (t) =

Z
t

0

dt0 ⌘(t0) . (214)

Introduce the increment �W (t) = W (t + �t) �W (t). The most important observation is the
independence of the increments and the property

⌦
�W (t)2

↵
= �t (215)

see above, Eq. (131). We now may write

�x(t)
def

= x(t+ �t)� x(t) ' F (x(t)) �t+
p

2D �W (t) (216)

18Remember the end of § 3 : We showed that the Wiener process W (t) =
R t

0
du ⌘(u) is continuous but not

di↵erentiable. The solution x(t) of the SDE dx = F (x) dt+
p

2D(x) dW (t) is also continuous but not di↵erentiable.
Note that we could also write a di↵erential equation for a Markov process with jumps by considering that ⌘(t)

is the derivative of a Poisson process or a Compound Poisson process, i.e. of the form ⌘(t) =
P

n ⌘n �(t� tn). The
analysis would be more complicated because the equation for Pt(x) then involves an integral operator instead of
a di↵erential operator like in the Fokker-Planck equation (see for example (170) describing the simple case of the
CPP).
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Consider a test function '(x). We study the evolution of h'(x(t))i.

h'(x(t+ �t))i � h'(x(t))i

=

⌧
'
0(x)

h
F (x) �t+

p

2D �W

i
+

1

2
'
00(x)

h
F (x) �t+

p

2D �W

i
2

+ · · ·

�
(217)

=
⌦
'
0(x(t))F (x(t))

↵
�t+

p

2D
⌦
'
0(x(t)) �W (t)

↵
+D

⌦
'
00(x(t))

↵
�t+ · · · (218)

where we have kept terms O(�t). Because x(t) is only correlated with the increment �W (t0) for
t > t

0, we see that x(t) and �W (t) are uncorrelated, thus h'0(x(t)) �W (t)i = h'0(x(t))i h�W (t)i =
0. Finally

d

dt
h'(x(t))i =

⌦
'
0(x(t))F (x(t))

↵
+D

⌦
'
00(x(t))

↵
(219)

the expansion was performed until second order as the second order term in �W gives some
first order contribution in �t, due to (215). We can now rewrite the equation in terms of the
distribution

@

@t

Z
dxPt(x)'(x) =

Z
dxPt(x)

⇥
'
0(x)F (x) +D'

00(x)
⇤

(220)

=

Z
dx'(x)

✓
�
@

@x
[F (x)Pt(x)] +D

@
2
Pt(x)

@x2

◆
(221)

Because the equation is valid 8 ', we can remove the integral, hence (213). Qed.

5.2 SDE with multiplicative noise : Itô or Stratonovich ?

The SDE (211) is not the most general form of stochastic di↵erential equation as it corresponds
to the case where the di↵usion constant is uniform in space. The aim of the paragraph is to
discuss the case of SDE of the form

dx(t)

dt
= a(x(t)) + b(x(t)) ⌘(t) (not well defined! ) (222)

where b(x) =
p
2D(x) can be related to a x-dependent di↵usion constant. As we explain now,

this form is however not well defined.
The noise is here multiplied by a function of the process : one says that the noise is mul-

tiplicative, whereas it is said additive in SDE (211). For a mutiplicative noise, the di↵erential
equation (222) is ambiguous and it is not fully defined. This is not surprising : if ⌘(t) is a
Gaussian white noise, x(t) has the same regularity as the Brownian motion, i.e. is continuous
but not di↵erentiable. The existence of a di�culty comes from the fact that we manipulate a
di↵erential equation involving objects which are not di↵erentiable in the sense of functions !

a) Discretization (numerics)

A first approach could be to discretize time (this is natural for numerical implementation of the
stochastic di↵erential equation). We could write

xt+1 = xt + a(xt) �t+ b(xt) �Wt (223)

where x(t) = xt is measured every time step �t and �Wt = W (t + �t) �W (t) is a Gaussian
random variable for

⌦
�W

2
t

↵
= �t (all �Wt are i.i.d.). This is perfectly fine, however it turns out

that in the limit �t ! 0, we do not recover the usual rules of di↵erential calculus for regular
functions, as we will see below. This is not necessarily a problem, however this definitely deserves
clarification.
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b) Origin of the ambiguity

To clarify this point, we come back to the continuous description and consider a slightly di↵erent
type of noise, made of �-peaks at random times

⌘(t) =
X

n

�(t� tn) (224)

If the times occur with a finite rate �, the noise ⌘(t) is a white noise since h⌘(t)⌘(t0)ic = � �(t�t0),
however it is of non Gaussian nature because its higher cumulants are non zero (cf. exercise 44,
page 38).

In the close neighbourhood of time tn, we can forget the drift and approximate the evolution
as

dx(t)

dt
= · · ·+ b(x(t)) �(t� tn) for t ⇠ tn (225)

This means that x(t) is discontinuous at tn. In principle, dealing with a continuous function
 (t) we can write  (t) �(t� tn) =  (tn) �(t� tn). What should we do for a function  (t) which
is discontinuous at tn ? Here, this makes the time evolution ambiguous : Eq. (225) shows that
x(t) makes a jump whose amplitude is b(x(t)), i.e. depends on the process at a time where the
process is discontinuous and still unkown ! How to choose this time ? We propose two possible
interpretations of the evolution (225) :

(i) Proposal 1 ($ ”Itô”) Interpret the equation as d

dt
x(t) = · · ·+ b(x(t�n )) �(t� tn), then

x(t+n ) = x(t�n ) + b(x(t�n )) (226)

This is a natural choice for numerics. This is analogous to (223).

(ii) Proposal 2 ($ ”Stratonovich”) As a physicist, one would rather consider that the �-
peak is a mathematical model for a regular narrow function of finite width �(t)! �

✏(t), for
example �✏(t) = 1

2✏
e�|t|/✏. Then starting from (225) one writes dx(t)/b(x(t)) ' �✏(t�tn) dt

and integrate around the �✏, eventually taking the limit ✏! 0+. One gets
Z

x(t
+
n )

x(t
�
n )

dx

b(x)
= 1 (227)

which obviously di↵ers from (226).

- Exercice 54 – : Consider a multiplicative noise with b(x) = ↵x where ↵ is a constant.
Compare the two evolutions (226) and (227) in this case.

The choice of the prescription, i.e. the precise meaning to give to the multiplicative noise
term, determines the evolution and contribute to define the stochastic process with the SDE. We
stress that given two di↵erent interpretations of the same equation (225) leads to two di↵erent
evolutions, (226) or (227), i.e. define two di↵erent processes. A similar problem occurs with the
SDE (222) where ⌘(t) is a Gaussian white noise. Several interpretations can be given to the
multiplicative noise term.

c) Itô convention

The simpler choice which first comes in mind is to consider that the process and the increment
at equal time are independent. This is a natural choice if one discretizes the evolution, as
explained above, see Eq. (223) where �Wt = W (t+ �t)�W (t) and xt are independent. This is
appropriate for numerical simulations. This is known as the Itô convention, corresponding to
the ”proposal 1” discussed above. In order to specify in which sense the SDE is understood, we
write the SDE as

dx(t) = a(x(t)) dt+ b(x(t)) dW (t) (Itô). (228)
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Figure 21: Kiyoshi Itô (1915-2008) and Ruslan Leont’evich Stratonovich (1930-1997).

Doblin-Itô calculus and the Itô formula.— The main manipulations can be performed
keeping in mind that

Itô : x(t) and dW (t) are statistically independent at coinciding times

and
dW (t)2 = dt (229)

(mathematicians omit the averaging, see below the ”appendix” on stochastic integrals in order
to understand why h· · ·i can be omitted). Roughly speeking we have dW (t) ⇠ O(

p
dt) and for

this reason dW (t)2+n = 0 for n > 0.
An important formula concerns the change of variable from x ! '(x), where '(x) is a

regular function, di↵erentiable a least twice. From (228) we deduce

d'(x(t)) =


'
0(x) a(x) +

1

2
'
00(x) b(x)2

�
dt+ '

0(x) b(x) dW (t) (Itô) (230)

This is known as the “Itô formula”.

Proof : in the expansion of d'(x) = '
0(x) dx + 1

2
'
00(x) dx2 + · · · , due to (229), a term

O(dt) is produced by the O(dx2) term : dx2 =
⇥
a(x) dt + b(x) dW (t)

⇤
2
= b(x)2 dW (t)2 +

2a(x)b(x)dW (t)dt+a(x)2dt2 = b(x)2 dt+O(dW (t)dt). The correction isO(dW (t)dt) = O(dt3/2).

- Exercice 55 – : Write the Itô formula for the multiplicative noise dx(t) = x dW (t). The
apply the formula to '(x) = x

2

Itô formula implies that “Itô calculus” does not correspond with the ”usual” dif-
ferential calculus when W (t) is a regular function. Indeed, we have

d'(x(t)) 6= '
0(x(t)) dx(t) (Itô). (231)

Remark : With Itô convention, x(t) and W (t) are independent (at equal time). It follows
that averaging (230) is straightforward and gives

d

dt
h'(x(t)i = h'0(x) a(x)i+

1

2
h'
00(x) b(x)2i . (232)

Related FPE.– One can immediatly deduce the FPE related to the Itô equation (228). Write
(232) as

@

@t

Z
dxPt(x)'(x) =

Z
dxPt(x)


'
0(x) a(x) +

1

2
'
00(x) b(x)2

�
(233)
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In the r.h.s, integrations by part allow to factorize '(x). Because the relation is true 8'(x), we
conclude that

@Pt(x)

@t
= �

@

@x
[a(x)Pt(x)] +

1

2

@
2

@x2

⇥
b(x)2 Pt(x)

⇤
(234)

Despite its drawbacks (for physicists), the Itô calculus is widely used by probabilists (and justified
for certain physical situations). Also in finance, which is not a surprise as the time is discrete
in this case, so it corresponds to the discretization scheme mentioned above, Eq. (223).

How to get the FPE from the SDE in a simple manner ? Above, the relation between
the Itô SDE and the FPE was demonstrated by introducing a test function. A simpler way is
to use hdW (t)2inoise = dt (physicist’s notation) and to remark that the drift and the ”di↵usion”
are given by

ha(x)i =
hdxinoise

dt
and

⌦
b(x)2

↵
=
hdx2inoise

dt
(235)

As an application we consider the multidimensional case

dxi(t) = ai(~x) dt+ bij(~x) dWj(t) (Itô). (236)

with hdWi(t)dWj(t)inoise = �ijdt. Only the di↵usion term is more complicated

hdxidxjinoise
dt

= hbikbjki (237)

(with Einstein’s convention for implicit summation over repeated indices). Then

@tPt(~x) = �@i [ai(~x)Pt(~x)] +
1

2
@i@j [bik(~x)bjk(~x)Pt(~x)] . (238)

Application : Kramers and Smoluchowski equations.— Consider the equations

(
dx = v dt

dv =
⇣
�

v

⌧
+ F (x)

m

⌘
dt+ 1

m

p
2kBT� dW (t)

(239)

The drift terms are ax = hdxinoise

dt
= v and av = hdvinoise

dt
= � v

⌧
+ F (x)

m
. The di↵usive terms

are bxx = hdx2inoise/dt = v
2dt ! 0, bvv = hdv2inoise/dt = 2kBT�/m

2 = 2kBT/(m⌧) and
bxv = hdxdvinoise/dt ⇠ hv dW (t)inoise ! 0. Finally, the FPE equation is

✓
@t + v @x +

F (x)

m
@v

◆
Pt(x, v) =

1

⌧
@v

✓
v +

kBT

m
@v

◆
Pt(x, v) (240)

This equation is called the Kramers equation.

- Exercice 56 – Smoluchowski equation : Using the overdamped limit introduced in § 3
get an equation for Pt(x) =

R
dv Pt(x, v) in the limit of strong friction.

d) Stratonovich convention

For physicists, it would be more natural to consider the Gaussian white noise in the SDE (222)
as the limit of a regular noise with a finite but small correlation time, for example h⌘✏(t)⌘✏(t0)i =
1

2✏
e�|t�t

0
|/✏ with ✏ ”small”. In this case we expect that the standard rules of di↵erential calculus

for regular functions hold. If we follow the same strategy as for the treatment of the multiplicative
�-peak, the construction is more complicated. We just describe how one could proceed. The
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proof of the results will come afterwards by using di↵erent arguments. Consider W
✏(t) =R

t

0
du ⌘✏(u), which is regular (continuous and di↵erentiable since h(@tW ✏(t))2i = 1/(2✏) is finite.

Now the di↵erential equation dx(t) = ↵(x) dt+�(x) dW ✏(t) is well defined mathematically. The
key point is that the limit ✏! 0+ DOES NOT lead to the Itô SDE dx(t) = ↵(x) dt+�(x) dW (t).
Instead, it leads to the Itô SDE for a modified drift

dx(t) =

✓
↵(x) +

1

2
�(x)�0(x)

◆
dt+ �(x) dW (t) (Itô) (241)

or, rather to the “Stratonovich SDE”

dx(t) = ↵(x) dt+ �(x) dW (t) (Stratonovich) (242)

However one must keep in mind that

Stratonovich : x(t) and dW (t) are in general correlated at coinciding times

This is a bit subtle : x(t) and W (t0) are uncorrelated for t
0
> t, as the process depends only

on the noise in the past. The Stratonovich convention tells something about the correlations at
equal time (these correlations are studied below in exercise 60).

Itô/Stratonovich connection : In other terms, the two SDE (228) and (242) describe the
same process if

↵(x) = a(x)�
1

2
b(x) b0(x) and �(x) = b(x) . (243)

Note that Mathematicians follow a di↵erent strategy to define the Stratonovich SDE : in
1961, Stratonovich introduced a ”symmetrized” form of stochastic integrals and di↵erential
forms (cf. appendix on stochastic integrals to have an idea of this strategy).

I emphasize :

• when b(x) is not constant (case of multiplicative noise), the two SDE dx = a(x)dt +
b(x)dW (t) (Itô) and dx = a(x)dt + b(x)dW (t) (Stratonovich) describe two di↵erent pro-
cesses (related to di↵erent FPEs).

• Conversely dx = a(x)dt + b(x)dW (t) (Itô) and dx = ↵(x)dt + �(x)dW (t) (Stratonovich)
describe the same process provided (243) hold (then, they are related to the same FPE).

The FPE corresponding to the Stratonovich SDE (242) is

@Pt(x)

@t
= �

@

@x
[↵(x)Pt(x)] +

1

2

@

@x


�(x)

@

@x
[�(x)Pt(x)]

�
(244)

(this connection is proven in exercise 59).

- Exercice 57 – : Using the connection Itô-SDE/FPE (234) and the relation Itô-SDE/Strato-
SDE (243), recover the Strato-SDE/FPE connection (244).

We stress that, as (243) was not proven, we have not demonstrated either the relation between
the Stratonovich SDE (242) and the Fokker-Planck equation (244), which is more tricky if we
follow the construction evoked above : consider a regular noise ⌘✏(t) and take the (singular)
limit of the Gaussian white noise at the end, which requires ”projection method” (see [18, 53]
for discussions). A more simpler approach is suggested in the appendix on stochastic integrals
(and can be adapted at the level of the FPE). In exercise 59 below, we propose a simple derivation
based on the assumption that usual di↵erential calculus holds.
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- Exercice 58 – Stratonovich corresponds to standard di↵erential calculus : Using
the relation (243), transform the Itô formula (230) in the Stratonovich convention and check
that

d'(x(t)) = '
0(x(t)) dx(t) (Stratonovich). (245)

I.e. within the Stratonovich’s prescription, standard rules of di↵erential calculus for regular
functions do apply.

- Exercice 59 – From the Stratonovich SDE to the FPE : We consider the SDE dx

dt
=

↵(x) + �(x) ⌘(t). For additive noise (�(x) = cste) the mapping onto the FPE is simple and
has been discussed above. Di�culties have arisen for multiplicative noise. To circumvent this,
we perform a transformation of the SDE which leads to additive noise. Using ordinary rules of
di↵erential calculus means that we interpret the SDE with the Stratonovich interpretation.

a) Consider z(t) =
R
x(t) dx̃/�(x̃). Write the SDE for z(t).

b) Give the FPE for Qt(z), the distribution of z(t).

c) Deduce the FPE for Pt(x).

- Exercice 60 – Correlation between the process and the noise (Stratonovich) :

Consider the Stratonovich equation (242). Denoting ⌘(t) = dW (t)/dt, show that h�(x(t)) ⌘(t)i
can be expressed as the average of a function of x(t).

Hint : use the relation between Itô and Stratonovich SDE.

e) Take home message

• If a SDE appears in a physical model, it should be most frequently interpreted in the
Stratonovich sense (if the white noise is the limit of a regular noise with symmetric corre-
lation function).

• Remember how to relate the Stratonovich SDE (242) to the FPE (244) is the most impor-
tant.

• If you like Itô calculus, keep in mind the relation between Stratonovich SDE and Itô SDE
(243) and the relation with FPE, Eq. (234).

Bibliography : More can be found in the book of Gardiner [18]. For a presentation for
mathematicians, see the book [43].

Historical note on Doblin-Itô calculus

Until 2000, Itô was considered as the foundator of what is usually denoted today the ”Itô
calculus”. However in 2000, a sealed envelope (”pli cacheté” number 11-668), received in 1940
from a young mathematician named Vincent Doblin (born Wolfgang Doblin), was opened at
Académie des Sciences de Paris, which showed that Döblin’s contribution anticipated the work
of Itô on stochastic calculus. Hence, we should rather name it ”Doblin-Itô calculus”.

Wolfgang Döblin was the son of a well-known german writer, Alfred Döblin. Because he was
jewish and opponent to the nazism, Alfred Döblin escaped Germany to Zürich at the begining
of 1933 with part of his family, followed by his son Wolgang. They arrived in Paris in the fall of
1933. Wolfgang obtained the french nationality in 1936, becoming ”Vincent Doblin”. In 1938 he
passed his PhD, under the supervision of the famous mathematician Maurice Fréchet, however,
at the end of 1938, he was incorporated in the French army. Refusing to serve as an o�cer, he
was a↵ected to the communications. During this period in the army, at the begining of the war,
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La vie des commissions
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mines, Wolfgang Doeblin ne peut plus
travailler. En mai, il est décoré de la croix
de guerre pour avoir rétabli les commu-
nications de son bataillon sous le feu de
l'ennemi et à partir du 14 juin il participe,
avec bravoure et un réel mépris de la
mort, aux combats très durs du front de
la Sarre jusque dans les Vosges où son
régiment, décimé, encerclé, est sur le
point de se rendre. Dans la nuit du 20 au
21 juin, il tente de traverser, seul, les
lignes allemandes, mais il n'y parvient
pas et se tire une balle dans la tête le
matin du 21, après avoir détruit tous ses
papiers. Ce n'est qu'en avril 1944 que son
corps sera identifié, à la suite des
recherches entreprises par son amie
d'université, Marie-Antoinette Tonnelat,
qui deviendra professeur de Physique
théorique à la Sorbonne.

Que contient 
le pli 11668?
On considère une particule soumise à
l'action continuelle du hasard et d'une
dérive déterminée. Mathématiquement,
la façon dont la particule poursuit son
mouvement à partir d'une certaine posi-
tion x atteinte en un temps donné s peut
être décrite par deux coefficients, le coef-
ficient de diffusion et celui de dérive. On
se propose de calculer, par exemple, la
probabilité que cette particule ne

dépasse pas une certaine valeur, disons
y, en un temps ultérieur t. Tel est le
problème de Kolmogorov. Les méthodes
employées par Kolmogorov et ses
émules sont ”analytiques“, elles consis-
tent à résoudre une certaine équation
vérifiée par la probabilité dont il s'agit.
L'approche de Wolfgang Doeblin est tout
à fait différente, elle est ”trajectorielle“
et annonce la théorie moderne des
processus développée à partir des
années cinquante. Doeblin montre que
le mouvement le plus général se décom-
pose en deux parties, dont l'une, la plus
stochastique des deux, est une martin-
gale et suit les trajectoires d'un mouve-
ment brownien muni d'une horloge
particulière. Le mouvement brownien
mathématique est le plus simple des
mouvements continus sans mémoire,

son étude fine est connue déjà à l'époque
de Doeblin, notamment grâce aux
travaux remarquables de Paul Lévy. De
sorte que le théorème de représentation
de Doeblin permet une étude précise des
mouvements les plus généraux: étude
locale en un point, branches infinies, proba-
bilité d'atteinte de grandes valeurs, etc.

Le théorème de Doeblin ne sera retrouvé
que vingt ans plus tard. Sa méthode de

démonstration, qui consiste à se
ramener à des propriétés de martingale,
une notion qui vient juste d'être intro-
duite par J. Ville en 1939, est très nova-
trice. Elle ne sera pleinement comprise
que vingt ans plus tard, lorsqu'il aura été
prouvé que toute martingale continue
est un mouvement brownien changé de
temps. En outre, apparaît dans le pli une
ébauche originale du calcul différentiel
stochastique, qui avec l'apport d'Itô et
de sa célèbre formule, deviendra la 
clé de voûte de l'édifice probabiliste
moderne.

Qu'a-t-on découvert à l'intérieur du pli
11668, une fois ouvert? Une vie, trop vite
interrompue, qui renaît, et l'esquisse,
clairement dessinée, de l'analyse
stochastique des années 1950-2000…

1 Chargé de mission à l’Académie des sciences

Le Comité
de l’environ-
nement
Par Jean-Yves Chapron 1

Créé en 1989, le Comité de l’environ-
nement est à l’origine d’une dizaine

de rapports de l’Académie des sciences.
Il se penche actuellement sur trois
dossiers principaux: la surexploitation
des ressources biologiques marines, la
question des déchets en liaison avec la
santé, et l’éducation à l’environnement
et à la santé.
Les deux premiers thèmes feront l’objet
d’une présentation ultérieure dans ces
colonnes.
Les travaux sur le troisième thème
doivent aboutir à l’automne.
En effet, le Comité a constaté que la
perception des problèmes environne-
mentaux et de santé par le public se
forme selon une approche simplifica-
trice et souvent teintée de sensationna-
lisme. Le propos n’est pas de faire le
procès de la presse mais d’insister sur
l’importance d’une bonne formation de
nos concitoyens pour leur permettre de
décoder et d’évaluer les messages
médiatiques, et de mettre ainsi en pers-
pective, dans leur complexité, les ques-
tions de santé et d’environnement.
Après avoir procédé à plusieurs audi-
tions, le Comité a conclu que le socle des
connaissances de base en la matière
devait être construit dès l’école élémen-
taire, et que, précisément, on constatait
une insuffisance de la part scientifique
de la formation, naturellement polyva-
lente, délivrée aux professeurs d’écoles.
C’est pourquoi, en accord avec les
responsables ministériels, et en liaison
avec l’Académie de médecine, il a été
décidé de rédiger deux ” livrets de l’en-
seignant “, l’un consacré à l’environne-
ment, l’autre à la santé. Ces textes, de
taille limitée (une trentaine de pages
chacun), seront conçus comme des
aides pratiques pour les enseignants, et
regrouperont des items transversaux.
Ils sont destinés à figurer parmi les
documents d’accompagnement des
nouveaux programmes.

n et le Pli cacheté 11 668

Figure 22: Vincent Doblin (1915-1940). A page of the pli cacheté (from [6]).

he was sent to the Ardennes and was able to produce important scientific results, which he chose
to send to the Académie des Sciences under the form of a “pli cacheté”, entitled “sur l’équation
de Kolmogoro↵, par Vincent Doblin”. Just after the collapse of the French army, as his company
was surrounded by germans in the Vosges region, Vincent Doblin tried unsuccessfully to cross
the german lines and eventually preferred to commit suicide rather being captured. It was only
possible to open the “pli cacheté” 60 years after his death. Although Vincent Doblin was already
known in the mathematics community despite his youth, the importance of his contribution was
not anticipated before 2000.

To learn more : look at the article [6] (available on the internet) written by the two prob-
abilists Bernard Bru and Marc Yor, who analyzed the pli cacheté and recognized its scientific
importance. Or the book by Marc Petit [45].

- Exercice 61 – Electromagnetic noise : We consider a model of electromagnetic noise :
the two components of the electric field Ex + iEy obey the SDE

(
dEx(t) = �� Ex(t) dt+

p
D dWx(t)

dEy(t) = �� Ey(t) dt+
p
D dWy(t)

(246)

where Wx and Wy are two independent Wiener processes (hence we can write dW 2
x = dW 2

y = dt
and dWxdWy = 0, remember that averages can be omitted for elementary di↵erential incre-
ments).

1/ We introduce the intensity and the phase : Ex =
p
I cos ✓ and Ey =

p
I sin ✓. Write a SDE

for the intensity I within the Stratonovich convention.

2/ We write Ex + iEy = e�+i✓, where A = e� is the amplitude of the field and ✓ its phase.
Within Itô calculus, express d� + i d✓ as a function of �, ✓ and the noises dWx(t) and dWy(t).
Show that

dWA(t) = cos ✓(t) dWx(t) + sin ✓(t) dWy(t) and dW✓(t) = � sin ✓(t) dWx(t) + cos ✓(t) dWy(t)

are two independent noises. Deduce two Itô SDE for �(t) and ✓(t).

3/ Using the Itô formula, deduce the Itô SDE for the amplitude A = |Ex+iEy| and then for the
intensity I = A

2. Relate the Itô SDE for I to a Stratonovich SDE and compare to the equation
obtained in the first question.

4/ Write the SDE for the amplitude under the form

dA(t) = �V 0(A(t)) dt+
p

D dWA(t) (247)

and give the ”potential” V (A). Find its minimum.
Using a harmonic approximation, deduce the equilibrium distribution for the amplitude and the
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correlator hA(t)A(t0)i
c
. Discuss the harmonic approximation.

5/ Write the FPE related to the SDE for A(t). Deduce the exact equilibrium distribution and
compare hAi and

⌦
�A

2
↵
with the one given by the harmonic approximation. Discuss also the

distribution of the intensity.

APPENDIX : Stochastic integrals

If you feel unsatisfactory with the above presentation of Itô/Stratonovich convention, you can
read this paragraph (borrowed from chapter 4 of [18]). Instead of considering the SDE, one
considers integrals of the form

R
t

0
dW (t0)G(t0) which requires the same discussion as for SDE.

Itô integral.— One defines the Itô integral as

Itô

Z
t

0

dW (t0)G(t0)
def

= ms-lim
N!1

NX

i=1

�WiG(ti�1) (248)

where �Wi = W (ti) � W (ti�1). Here “ms-lim” stands for “mean-square limit” of a random
variable, meaning that :

ms-lim
N!1

XN = X1 if lim
N!1

h[XN �X1]2i = 0 . (249)

Let us study an example. Consider the integral Itô
R
t

0
dW (t0)W (t0). One has to analyze the

sum
NX

i=1

�WiWi�1 =
1

2

NX

i=1

⇥
(�Wi +Wi�1)

2
�W

2

i�1 � �W
2

i

⇤
=

1

2

NX

i=1

W
2

i �
1

2

N�1X

i=0

W
2

i �
1

2

NX

i=1

�W
2

i

=
1

2

⇥
W

2

N �W
2

0

⇤
�

1

2

NX

i=1

�W
2

i (250)

It is easy to show that ms-lim
N!1

P
N

i=1
�W

2

i
= t (this is the reason why one writes dW (t)2 = dt

without the average). Thus

Itô

Z
t

0

dW (t0)W (t0) =
1

2

⇥
W (t)2 �W (0)2 � t

⇤
(251)

which di↵ers (by �t/2) from the usual Riemann integral of a regular function.

Stratonovich integral.— Now introduce the definition of the Stratonovich integral
Z

t

0

dW (t0)G(t0)
def

= ms-lim
N!1

NX

i=1

�Wi

G(ti) +G(ti�1)

2
(252)

(I use the standard notation for integration, anticipating that it will coincide with usual Riemann
integrals).

Consider now the same integral as before
R
t

0
dW (t0)W (t0) with the new convention. This

time, one deals with

NX

i=1

�Wi

Wi +Wi�1

2
=

1

2

NX

i=1

W
2

i �
1

2

NX

i=1

W
2

i�1 =
1

2
W

2

N �
1

2
W

2

0 (253)

so that we have recovered
Z

t

0

dW (t0)W (t0) =
1

2

⇥
W (t)2 �W (0)2

⇤
(254)

as for the integration of regular functions.
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From stochastic integral to SDE : in the books [43, 18], stochastic integrals are first
discussed along these lines, then SDE are introduced as derivatives of stochastic integrals.

APPENDIX : Microscopic foundations of the Langevin equation

The aim of this paragraph is to go beyond the phenomenological Langevin model and clarify
the physical origin of the Langevin equation from a microscopic description. We introduce a
model with deterministic dynamics from which will emerge the e↵ective dynamics described by
the Langevin equation. This will allow to identify the microscopic origin of the dissipation.

Model.— From Section 3, one would be tempted to model the collisions in the fluid, however
the microscopic dynamics would be di�cult to analyze. Instead, we consider a particle coupled
to a macroscopic number of uncoupled harmonic oscillators modelling the “environment” (also
called the “bath”). In this model, the oscillators represent the eigen-modes of the macroscopic
system (like the phonon modes in a fluid). We now study the deterministic dynamics governed
by the Hamiltonian

H =
p
2

2m
+ V (x) +

X

n

"
p
2
n

2
+

1

2
!
2

n

✓
qn �

cn x

!2
n

◆
2
#

(255)

i.e.

Hsys(x, p) =
p
2

2m
+ V (x) (256)

Henv({qn, pn}) =
X

n


p
2
n

2
+

1

2
!
2

nq
2

n

�
(257)

and the coupling is linear (this is very important for the following)

Hint = �x
X

n

cn qn +
1

2
x
2
X

n

c
2
n

!2
n

(258)

Here cn are coupling constants.
A physical realization is : an electron in an atom, coupled to the electromagnetic modes.

Or : an electric device coupled to a L-C line.

- Exercice 62 – Dissipation in a transmission line : A perfect transmission line (a
coaxial cable) is characterised by an inductance and a capacitance per length. A possible discrete
model is a series of discrete capacitive and inductive elements (without resistance), i.e. only non-
dissipative elements.

Qn

n ...
In−1In+1 In

n+1U

n+2Q Qn+1

UUn+2...

We consider harmonic solutions In(t) = Ĩne�i!t. We recall that the impendance of the capaci-
tance is ZC = 1/(�i!C) and that of the inductance ZL = �i!L, where ! is the frequency.

1/ We first study the eigenmodes of the infinite line. Using Kirchho↵ laws, write the equations
satisfied by the currents Ĩn.

2/ Propagative modes.– Show that the modes In(t) = eiqn�i!(q)t only exist in a finite band-

width ! 2 [0,!0] where !0

def
= 2/

p
LC. Give the dispersion relation.
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3/ Evanescent modes.– Study solutions of the form In(t) = (�1)neqn�i!(q)t. Over what dis-
tance can propagate such modes ?

4/ Impedance of semi-infinite line.– We denote by Zn the impedance of a finite line in-
volving n couples of L � C elements. Give the recurrence between Zn and Zn+1. Deduce the
impedance of the semi-indinite line Z1 ⌘ Z(!). Plot ReZ(!) and ImZ(!). Discuss the fact
that ReZ(!) 6= 0 for a certain interval of frequencies (comment this at the light of question 1).

Integration of the bath equations of motion.— We first derive the equations of motion
8
><

>:

mẍ = F (x)� x

X

n

c
2
n

!2
n

+
X

n

cnqn

q̈n = �!2

nqn + cn x

(259)

where F (x) = �V 0(x). Let us integrate the equations of motion for the bath, which is possible
thanks to the linearity. We can use that the retarded Green’s function for the harmonic oscillator,
i.e. the causal solution of G̈R(t) + !

2
nG

R(t) = �(t) is GR(t) = ✓H(t)
sin(!nt)

!n
. Thus we can solve

the equation of motion for the oscillators

qn(t) = qn(0) cos(!nt) + q̇n(0)
sin(!nt)

!n

+ cn

Z
t

0

dt0
sin(!n(t� t

0))

!n

x(t0) (260)

We split the source term in Eq. (259) in two parts

X

n

cn qn(t) =

⇠(t)

z }| {
X

n

cn

✓
qn(0) cos(!nt) + q̇n(0)

sin(!nt)

!n

◆
+

Z
t

0

dt0 �(t� t
0)x(t0) (261)

where

�(t)
def

=
X

n

c
2

n

sin(!nt)

!n

(262)

is a function depending of the details of the model. We denote ⇠(t) “the noise” as it is controlled
by a macroscopic number of degrees of freedom of the bath, which is expected to exhibit a
complex dynamics. Using

R
1

0
dt ei!t = 1

0+�i!
we remark that

Z
1

0

dt�(t) =
X

n

c
2
n

!2
n

(263)

which appears in the equation of motion above. With this definitions, we can rewrite the e↵ective
equation for the particle as

mẍ(t) = F (x(t))� x(t)

Z
1

0

d⌧ �(⌧) +

Z
t

0

d⌧ �(⌧)x(t� ⌧) + ⇠(t) (264)

Integration over the bath degrees of freedom is responsible for both the integral term and the
”noise” term.

Noise and spectral function.— Because the bath involves a macroscopic number of degrees
of freedom, it is natural to assume thermal equilibrium for the bath, say at t = 0, for the
bath variables

P ({qn, pn}) / e��Henv (265)
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so that

hqn(0)qm(0)i = �n,m
kBT

!2
n

(266)

hq̇n(0)q̇m(0)i = �n,m kBT (267)

Then the noise correlator is

C(t� t
0) =

⌦
⇠(t)⇠(t0)

↵
= kBT

X

n

c
2
n cos(!n(t� t

0))

!2
n

(268)

At this stage it is useful to define the spectral function

J(!)
def

= ⇡

X

n

c
2
n

2!n

�(! � !n) (269)

which depends on the distribution of frequencies and coupling constants. We can write the
function

�(t) =
2

⇡

Z
1

0

d! J(!) sin(!t) (270)

and the correlator

C(t) =
2kBT

⇡

Z
1

0

d!
J(!)

!
cos(!t) (271)

in terms of the spectral function. Two remarks :

• In practice, we expect a dense spectrum of oscillators for frequencies ! > 0 (it is natural to
assume that the spectrum of eigenmodes start at ! = 0 since there exist low frequency excita-
tions ususally). On the other hand, the eigen-frequencies should be cut o↵ at a characteristic
scale !D (like the Debye frequency in a solid).
What kind of behaviour can we expect for J(!) ? Imagine that coupling constant is a smooth
function of the frequency c

2
n = g(!n). Then J(!) = ⇡

2!

P
n
g(!n) �(!� !n) '

⇡

2!
g(!) ⇢(!) for

! ! 0, where ⇢(!) is the spectral density. For a linear spectrum (like photons, or phonons)
we have ⇢(!) ⇠ !

d�1 and thus we expect a power law J(!) ⇠ g(!)!d�2 at low frequency. A
simple assumption is g(0) =cste.

• The spectrum of frequencies is usually cut o↵ at a frequency !D related to the microscopic
scale (the lattice spacing for the phonons in a crystal).

The Ohmic case, J(!) / ! for small frequency : a concrete example.— assuming a
broad spectrum of frequencies, of width !D of the form

J(!) = �0 !
!
2

D

!2 + !
2

D

(272)

gives
C(t) = kBT �0 !D e�!D|t|

. (273)

Its integral is Z
+1

�1

dt C(t) = 2�0 kBT (274)

which recall us something...
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E↵ective equation of motion.— Let us come back to the analysis of the e↵ective equation
of motion (264). If the spectral function is broad (width ⇠ !D), we expect the function �(t) to
be narrow in time (width ⇠ 1/!D). For future convenience, we introduce

�(t) =

Z
1

t

dt0 �(t0) (275)

which also decays rapidly over the scale ⇠ 1/!D. We introduce a heaviside function in its
definition to make it causal

�(t) = ✓H(t)
X

n

c
2
n cos(!nt)

!2
n

=
2 ✓H(t)

⇡

Z
1

0

d!
J(!)

!
cos(!t) (276)

is a ”narrow function” of width 1/!D.
An integration by parts gives

Z
t

0

d⌧ �(⌧)x(t� ⌧) = �(0)x(t)� �(t)x(0)�

Z
t

0

d⌧ �(⌧) ẋ(t� ⌧) (277)

Considering times t� 1/!D, we drop the term �(t)x(0). We end with the e↵ective equation of
motion

mẍ(t) = F (x(t))�

Z
t

0

d⌧ �(⌧) ẋ(t� ⌧) + ⇠(t) (278)

This makes clear the physical interpretation of the integral term as a friction term, non local in
time, as damping needs some time to establish.

FDT.— Finally we have the relation between the correlator of the noise and the friction

C(⌧) = kBT �(⌧) for ⌧ > 0 (FDT) (279)

which relates the correlator of the noise to the damping (friction) function.
In the microscopic model, the damping term is an integral term. The relation between the

damping and the strength of the noise results from the integration of the microscopic equation
of motions, assuming equilibrium for the bath only (not for the particle, like in the phenomeno-
logical Langevin approach). We can compare the two approaches

• In the § 3 we have introduced two terms in the Langevin equation : the friction controlled
by �0 and the noise controlled by the strength C. We have then assumed that the particle
is at canonical equilibrium Psys(x, p) / exp[��

2
mv

2]. Comparing with the statistical prop-
erties of the solution of the Langevin equation, we have deduced that the two parameters
of the model cannot be independent but must be related by C = 2�0kBT . To some extent,
this relation was assumed for consistency.

• Here, we have only assumed that, being macroscopic, the bath is at thermal equilibrium
Pbath(x, p) / e��Hbath . As a result of the integration of the conservative dynamics, we have
deduced the relation C = 2�0kBT . A by-product is that if we study the statistic for the
particle, one can show that it is described by canonical equilibrium (the particle reaches
equilibrium because it interacts with the bath).

Quantum model : a very similar analysis can be performed within a quantum frame. Mainly,
the correlator of the noise (i.e. of the initial bath variables) involves a di↵erent function and
one is led to a “quantum Langevin equation” (cf. [19] or [50]).

61



Energetic considerations : We now study the energy of the system

d

dt
Hsys = ẋ [mẍ� F (x)] = �v(t)

Z
t

0

d⌧ �(⌧) v(t� ⌧) + v(t) ⇠(t) (280)

Clearly, the second term corresponds to the work of the Langevin force

d̄W

dt
= v(t) ⇠(t) (281)

hence the first term should be interpreted as the heat received by the system

d̄Q

dt
= �v(t)

Z
t

0

d⌧ �(⌧) v(t� ⌧) . (282)

One can consider the model with �(⌧) = �0 !D e�!D⌧ . Assuming 1/!D ⌧ ⌧ = m/�0, we
expect that v(t) is smooth on the scale 1/!D so that we can treat ⇠(t) as a white noise. Hence
v(t) ' 1

m

R
t

0
dt0 ⇠(t0) e�(t�t

0
)/⌧ . We can estimate the average work of the Langevin force

hd̄W i

dt
=

1

m

Z
t

0

dt0
⌦
⇠(t)⇠(t0)

↵
e�(t�t

0
)/⌧ =

C

m
✓H(0) =

C

2m
=

kBT

⌧
(283)

where we have used that ✓H(0) = 1/2 (this is consistent with a symmetric regularised � function).
The averaged heat is

hd̄Qi

dt
= �

Z
t

0

dt0 �(t� t
0)
⌦
v(t)v(t0)

↵
(284)

Because the correlator hv(t)v(t0)i decays much slower than the damping function (we have as-
sumed !D⌧ � 1) we can write �(t� t

0) hv(t)v(t0)i ' �(t� t
0)
⌦
v(t)2

↵
, hence

hd̄Qi

dt
' �

⌦
v(t)2

↵ Z 1

0

dt00 �(t00) = �
kBT

m
�0 = �

kBT

⌧
(285)

As it should the total energy is conserved on averaged

hd̄W i+ hd̄Qi = 0 (286)

The Langevin force furnishes some work to the particle and the bath receives the heat which is
dissipated. The bath receives the entropy dSbath = �d̄Q/T , thus the dissipation corresponds to
the production of entropy with rate

d hSbathi

dt
= +

kB

⌧
. (287)

Stochastic thermodynamics.— Here, I have applied some concepts of thermodynamics to
a single particle. This type of question has attracted a lot of attention for ⇠ 25 years and is the
subject of the field of “stochastic thermodynamics”. If you are interested you can have a look
to the reviews [31, 11, 38, 48, 47, 34] or to the lectures of Bernard Derrida at collège de France
(2015-2016), https://www.college-de-france.fr/site/bernard-derrida/

, Important points

• Understand the di↵erence between Itô and Stratonovich conventions (for multiplicative noise).
• For Itô calculus : remember dW (t)2 = dt and be careful with di↵erential calculus !
• Be familiar with the relations between SDE (Itô or Stratonovich) and the FPE.
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6 The Fokker-Planck equation

When considering a stochastic process, the main goal is usually to determine its statistical prop-
erties, i.e. its distribution. Fokker-Planck equation is an important equation for the distribution
of Markov processes with no jump. In this chapter, we discuss several applications of the Fokker
Planck equation. This will demonstrate the power of the approach, compared to the stochastic
di↵erential equation approach, and we will see that we can address more subtle properties of
random processes, like exit problem or first passage time.

Figure 23: Adriaan Fokker (1887-1972) and Max Planck (1858-1947)

6.1 The Fokker-Planck equation

The Fokker-Planck equation is a special form of the master equation (159) for which the kernel
can be reduced to a di↵erential operator :

@Pt(x)

@t
= �

@

@x
[F (x)Pt(x)] +

@
2

@x2
[D(x)Pt(x)] (288)

Below, we explain precisely in what limit and under what conditions we can go from (159)
to (288). The equation is also known as the “Kolmogorov equation”or, for D(x) ! D, the
“Smoluchowski equation”. Let us first give the interpretation of the two terms in the Fokker-
Planck equation (applications will be discussed below).

a) Drift

Imagine that only the first term is present and that F is uniform

@Pt(x)

@t
= �F

@Pt(x)

@x
. (289)

The solution is Pt(x) = '(x�F t) thus F is the velocity (for uniform F , there is no deformation of
the distribution). The first term in (288) is the drift term, where “the drift” F (x) is interpreted
as the force acting on the particle (remember that velocity=force).

b) Di↵usion

Consider now the e↵ect of the second term of (288) for a uniform D.

@Pt(x)

@t
= D

@
2
Pt(x)

@x2
. (290)

As t grows, the distribution increases where the function is convex and diminishes where the
function is concave (Fig.24). This leads to a spreading of the distribution. The second term in
(288) is the di↵usion term, D(x) playing the role of a x-dependent di↵usion constant.
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Figure 24: the spreading of the distribution due to the di↵usion term.

c) Current density

The Fokker-Planck equation can be rewritten under the form of a conservation equation

@Pt(x)

@t
= �

@Jt(x)

@x
(291)

where

Jt(x) = F (x)Pt(x)| {z }
drift current

di↵usion currentz }| {
�
@

@x
[D(x)Pt(x)] (292)

is the current density. The drift current is the usual velocity⇥density. The di↵usion term
accounts for the fact that when the density is non uniform, particles moves from high density
regions to low density regions (entropic e↵ect).

6.2 From the master equation to the Fokker-Planck equation

In the previous chapter, we have deduced the FPE from stochastic di↵erential equations (SDE).
This connection has relied on the fact that the noise in the SDE is a Gaussian white noise.

In the present paragraph, we would like to understand the emergence of the FPE from a
broader perspective. For this purpose we go back to the master equation and show in which
limit and under what conditions we can establish the connection to the FPE.

a) Kramers-Moyal expansion

We consider the case where the state of the system is described by a coordinate which varies
continuously in R. The master equation (159) can be appropriately written as 19

@Pt(x)

@t
=

Z
dx0

⇥
W (x|x0)Pt(x

0)�W (x0|x)Pt(x)
⇤

(293)

where the kernel W (x|x0) is ⇠ probability rate to jump from x
0 to x. Here, I have prefered this

form, slightly di↵erent from (159), in order to avoid any external constraint on the kernelW (x|x0)
and to make more explicit the conservation of probability @t

R
dxPt(x) = 0. Furthermore we

rewrite the kernel as a function of the initial poisition and the jump amplitude ⌘ = x� x
0 :

W ( x
#

final

| x
0

#
initial

) ⌘ w̃( x
0

#
initial

; ⌘
#

jump

= x� x
0) (294)

19one can recover the form (159) by introducing fW (x|x0) = W (x|x0) � �(x � x
0)
R
dyW (y|x), which satisfiesR

dxfW (x|x0) = 0. We get @tPt(x) =
R
dx0 fW (x|x0)Pt(x

0).
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We get
@Pt(x)

@t
=

Z
d⌘ w̃(x� ⌘; ⌘)Pt(x� ⌘)� Pt(x)

Z
d⌘ w̃(x;�⌘) (295)

where we have used that W (x0|x) = w̃(x;x0 � x = �⌘).

Comparison with the specific case of the CPP : Note that the master equation for the
CPP, Eq. (170), is an example of such an equation, corresponding to a translation invariant
situation, then

W (x0 + ⌘|x
0) ⌘ w̃(x0; ⌘)

CPP
= �w(⌘) (296)

is independent of x0 (the CPP is invariant under translation in space). Here w is the normalised
distribution of jumps and � the rate of jumps.

Come back to the general case : This remark makes clear that in general w̃(x0; ⌘) can be
interpreted as the distribution of the jump amplitude (up to a factor related to the rate of jumps
�), which depends in general on the starting point of the jump x

0.
In general, the master equation being an integral equation, it is not very simple to manipulate

(unless in simple cases where translation invariance holds, as it was shown in Exercise 45). We
now want to show how (under what conditions) it can be replaced by a partial di↵erential
equation much more easy to handle. The main assumptions are now

• w̃(x0; ⌘) is a sharp function of ⌘ (small jumps dominates)

• w̃(x0; ⌘) and P (x0; t) are smooth functions of x0.

These assumptions should allow an expansion of the function of x� ⌘ in powers of ⌘
Z

d⌘ w̃(x� ⌘; ⌘)Pt(x� ⌘) =

Z
d⌘

1X

n=0

(�⌘)n

n!

@
n

@xn
[w̃(x; ⌘)Pt(x)] (297)

After introduction of this series in (295), the n = 0 term is cancelled by the last term of Eq. (295).
We can introduce

an(x)
def

=

Z
d⌘ ⌘n w̃(x; ⌘) (298)

(⇠ n-th moment of the jumps from x
0). The condition that w̃(·; ⌘) is a ”narrow” function should

be rather reformulated as an(x) < 1 8n. Permuting integration over ⌘ and derivations with
respect to x, we end with

@Pt(x)

@t
=
1X

n=1

(�1)n

n!

@
n

@xn
[an(x)Pt(x)] (299)

which is known as the Kramers-Moyal expansion. Of course such an expansion only exists
if the distribution of jumps is such that all moments are finite. Under this form, the equation
if not much more easy to manipulate than the integral form from which we started. However,
with the above assumption that w̃(x; ⌘) is a narrow function of ⌘, corresponding to small jumps,
we expect the moments an(x) to decay fast with n, which allows a truncation of the expansion.
The truncated equation

@Pt(x)

@t
= �

@

@x
[a1(x)Pt(x)] +

1

2

@
2

@x2
[a2(x)Pt(x)] (300)

corresponds to the Fokker-Planck equation (288). 20 Following exercise 45, we expect that this
truncation describes correctly the large scale properties, as long as the distribution of the jumps

20A proper justification of the truncation requires a neat rescaling of the jumps and the rate, like it was done
in the above exercise 45. The argument follows the spirit of the central limit theorem.
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is su�ciently narrow. The FPE describes a continuous random process (i.e. the jumps disappear
in the continuum limit, which is only possible if the original distribution of jumps is su�ciently
narrow). 21

Remark : Having in mind the analysis of the CPP, we could write w̃(x; ⌘) = �wx(⌘) where
� =

R
d⌘ w̃(x; ⌘) so that wx(⌘) is normalized. This makes clear that, in the Master equation,

the time can be rescaled as t̃ = �t, so that large time corresponds to high rate. Hence, the
truncation leading to the Fokker-Planck equation describes the large time limit of the Master
equation (provided the Kramers Moyal expansion exists).

Bibliography : I have borrowed this discussion from the book of van Kampen (chapter
VIII) [53].

Pawula theorem : Can we truncate the Kramers-Moyal expansion (299) at any n ? The
Pawula theorem states that it can only be stopped at n = 1 or n = 2. The positivity of the
solution implies that if not stopped at n = 1 or n = 2, one should keep the infinite series (cf.
§ 4.3, [46]). This reminds us the Marcinkiewicz theorem about the generating function of
cumulants.

b) Conclusion : jump process versus di↵usion

In general, the master equation can be written under the form

@tPt(x) = LPt(x) (301)

where L is a linear operator.

• For a jump process, the linear operator is an integral operator, of the form (293) of (295).
For example, a simple jump process is the CPP studied above, for which

⇥
L'

⇤
(x) =

�
R
d⌘w(⌘)

�
'(x � ⌘) � '(x)

�
. In the general case, the distribution of the jump amplitude

depends on the initial position, Eq. (295).

• If the linear operator is a di↵erential operator, L = �@xa(x) +
1

2
@
2
xb(x), one says that “the

process is a di↵usion”. From the Pawula theorem, the di↵erential operator can be at most
second order. Physically, a di↵usion is obtained as the limit of small jumps occuring with
high rate. This is the type of stochastic processes discussed in the previous chapter on SDE
and the present one on FPE.

• In general, a Markov process can combine a di↵usion and jumps.

Go further : Let us discuss further the simple and important case of homogeneous and trans-
lation invariant processes. Consider such a process X(t), known as a Lévy process and char-
acterized by its Lévy exponent ⇤(k) :

D
e�ikX(t)

E
= e�t⇤(k) (302)

This behaviour is related to the Markov property and the property of i.i.d. increments (for
mathematicians it is related to the property of “infinite divisibility”). This shows that cumulants
of X(t) all grow linearly with t (like for the sum of N i.i.d. variables whose cumulants are / N).
The Lévy exponent ⇤(k) is the generating function of the cumulants of X(1).

21The condition ”distribution of jumps su�ciently narrow” should have been made clear in exercise 45. It is
furhter discussed in exercise 51.

66



• The case of a di↵usion corresponds to the drifted Brownian motion, hence ⇤BM(k) = ikµ +
1

2
�
2
k
2, where µ is the drit and �

2 the variance. The process can be written as X(t) =
µt+ �W (t), where W (t) is the Wiener process.

• The compound Poisson process (CPP) studied above corresponds to ⇤CPP(k) = � (1� ŵ(k))
where � is the rate of jumps and ŵ(k) =

R
d⌘w(⌘) e�ik⌘ the characteristic function of the

jumps (see exercises 45 or 46).

• Combinations of drifted Brownian motion and CPP belong to the class of “interlacing pro-
cesses” for which the Lévy exponent has the form ⇤(k) = ⇤BM(k)+⇤CPP(k) = ikµ+ 1

2
�
2
k
2+

� (1� ŵ(k)).

• Remarkably, the class of interlacing processes does not exhaust all possible Lévy processes.
The most general Lévy processes are characterized by the Lévy exponent given by the Lévy-
Khintchine formula 22

⇤(k) = ikµ̃+
1

2
�
2
k
2 +

Z
m(d⌘)

✓
1� e�ik⌘ �

ik⌘

1 + ⌘2

◆
(304)

where the measure m(d⌘) is not always associated with a normalisable density. When it is
not, the Lévy process is “singular”. Roughly speaking, a singular Lévy process corresponds
to a situation where the density of small jumps goes to infinity. Let us clarify this point : if
m(d⌘) = �w(⌘) d⌘ where w(⌘) is normalised, then we can split the integral and the process
is clearly an interlacing process for drift µ = µ̃ � �

R
d⌘w(⌘) ⌘/(1 + ⌘

2). However, there
are cases where it is not allowed to split the integral, while ⇤(k) is finite. For example, the
measure m(d⌘) = (d⌘/⌘) e�⌘ is not related to a normalisable distribution of jumps, however
it leads to a finite Lévy exponent ⇤(k) = ln(1 + ik) (this process is known as the ”Gamma
subordinator”). Another example of singular Lévy process is the ”alpha stable subordinator”
with m(d⌘) = d⌘ ↵/

�
�(1� ↵)⌘1+↵

�
, related to the Lévy exponent ⇤(k) = (ik)↵.

More can be found in the book [4] or the summary [3] (or the brief introduction in the
article [20]).

6.3 Spectral analysis of the Fokker Planck equation

In this section we discuss the the FPE from the spectral point of view. For simplicity, we study
processes with additive noise

dx(t) = F (x(t)) dt+
p

2D dW (t) , (305)

i.e. Eq. (288) for D(x) ! D. Because we only consider additive noise, Itô and Stratonovich
interpretations of the SDE correspond to the same process. We restrict ourselves to the one-
dimensional case where the drift allows for an equilibrium state, i.e. when the potential

V (x) = �

Z
x

dx0 F (x0) (306)

is confining so that there exists an equilibrium state.

22The idea of the Lévy-Khintchine formula is to regularize the ⌘ ! 0 behaviour. An alternative version of the
Lévy-Khintchine formula is [4, 3]

⇤(k) = ikµ̃+
1
2
�
2
k
2 +

Z
m(d⌘)

⇣
1� e�ik⌘ � ik⌘ ✓H(1� |y|)

⌘
. (303)
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a) Generator of the di↵usion

The related FPE was obtained above, Eq. (213). This form is not unfamiliar and recalls the
Schrödinger equation in imaginary time �@tP = HFPP , which naturally leads to perform a
spectral analysis as we know the importance of spectral analysis in quantum mechanics. Here
we have introduced HFP = �D d

2

dx2 + d

dx
F (x), where the notation means that the action of

the operator d

dx
F (x) = F

0(x) + F (x) d

dx
must be understood as acting on a function �(x) as

d

dx

⇥
F (x)�(x)

⇤
= F

0(x)�(x) + F (x)�0(x). The operator HFP = �D d
2

dx2 + d

dx
F (x) is however not

self-adjoint in the presence of the drift, 23 HFP 6= H
†

FP
. Instead of the notation HFP, I will prefer

a notation used by the mathematicians

@tPt(x) = G †
Pt(x) where G † = D

d2

dx2
�

d

dx
F (x) (307)

is the “forward generator”. By convention, probabilists call the adjoint of this operator

G = D
d2

dx2
+ F (x)

d

dx
(308)

the “generator of the di↵usion”. I will also call it the “backward generator” as we will see that

it governs the evolution backward in time. We have used that
�

d

dx

�†
= � d

dx
(like in quantum

mechanics).
We will make several interesting remarks on the operator G † by noticing that it can be

written as

G † = D
d

dx
e�V (x)/D

d

dx
eV (x)/D (309)

where F (x) = �V 0(x).

Remark 1 : equilibrium.— It makes clear that a stationary solution of the FPE, i.e. a
solution of G †

P = 0, is

Peq(x) = C0 e
�V (x)/D

) G †
Peq(x) = 0 (310)

where C0 is a normalisation constant (we assumed above that V (x) is such that this solution is
normalizable).

- Exercice 63 – : Argue that the solution (310) is an equilibrium solution (hint : analyze

the related current).

- Exercice 64 – FPE on R for a non confining potential : Consider the FPE @tPt(x) =
D@

2
xPt(x) + @x

⇥
V
0(x)Pt(x)

⇤
on R such that the drift F (x) = �V 0(x) drives the particle from

�1 to +1. This requires that V (x! ±1)! ⌥1.

1/ Give an example of V (x) and discuss the typical trajectories.

2/ Argue that G †
P = 0 has two independent solutions.

3/ Show that the equilibrium solution is not normalisable and find the expression of the second
solution (under the form of an integral).

4/ Condition for the NESS
a) If the stationary solution exists, using the expression found above, show that it presents the
asymptotic behaviour Pst(x) ' J/F (x) for x! +1.

23Self-adjointness is not only broken by the drift term ; it can also be broken by the boundary conditions, if
they induce a drift at the boundaries.
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b) Deduce the condition for existence of the stationary state for the non confining potential.
c) Give a example of non confining drift with a stationary state, and an example without
stationary state.

5/ Compare with exercise 50, page 43.

- Exercice 65 – The pendulum in the overdamped regime : We consider a pendulum
in a fluid, in the overdamped regime, described by the Fokker-Planck equation

@tPt(✓) = D @
2

✓
Pt(✓)� @✓

⇥
(v � k sin ✓)Pt(✓)

⇤
for ✓ 2 [�⇡,+⇡] (311)

a) Relate the drift to a potential U(✓) and show that, for v = 0, the FPE admits an equilibrium
state Peq(✓).

b) Argue that this solution is not satisfactory and that there is no equilibrium when v 6= 0.

c) To simplify the calculation, we set D = 1. Show that the stationary state has the form

Pst(✓) = J  (✓)


c+

Z
⇡

✓

d↵

 (↵)

�
where  (✓) = e�U(✓)

. (312)

Find c. What is the physical meaning of J ? Is it a free parameter ? Express J .

d) Analyze the limiting behaviour of J when v ! 0 ; use the modified Bessel function I0(z) =R
2⇡

0

dt

2⇡
ez cos t (see Appendix for its asymptotic behaviour).

Remark 2 : supersymmetry.— Eigenvalues of G † are all negative. We can prove this as
follows. We first perform the non unitary transformation

H+ = �eV (x)/2DG †e�V (x)/2D = �D eV (x)/2D
d

dx
e�V (x)/D

d

dx
eV (x)/2D (313)

which thus relates �G † to the self-adjoint operator H+ (the two operators have the same spec-
trum of eigenvalues). This Hamiltonian has a specific structure

H+ = Q†Q with Q
def

= �
p

De�V (x)/2D
d

dx
eV (x)/2D =

p

D

✓
�

d

dx
+

F (x)

2D

◆
(314)

known as “supersymmetric” (it is possible to introduce the supersymmetric partner H� = QQ†,
the two operators having the same spectrum but the zero mode 24). The structure H+ = Q†Q
implies that the spectrum of the operator is strictly positive 25

Spec(H+) = Spec(�G †) ⇢ R+ . (315)

We have also

H+ = �D
d2

dx2
+

F (x)2

4D
+

F
0(x)

2
(316)

The drift is such that there exists an equilibrium state, hence the e↵ective potential U(x) =
F (x)

2

4D
+ F

0
(x)

2
is a confining potential and the Hamiltonian has a discrete spectrum :

H+ n(x) = �n  n(x) with �n > 0 . (317)

In particular, the equilibrium solution Peq(x) is related to the zero mode of H+ :

H+ 0(x) = 0 with  0(x) = c0 e
�V (x)/2D =

q
Peq(x). (318)

where c0 is a normalisation.
24Only one of the two hamiltonians H+ and H� may have a zero mode. If none of them possesses a normalizable

zero mode, the supersymmetry is said to be broken, cf. book [26].
25since H+| i = �| i implies � = h |Q†Q| i = ||Q| i||2 > 0.
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- Exercice 66 – Ornstein-Uhlenbeck process and the quantum harmonic oscillator

: Consider the case F (x) = �x. Check that H+ is the quantum Hamiltonian for the harmonic
oscillator. What are the two operators Q and Q† ?
Deduce the spectrum of eigenvalues {�n}n2N of H+ and �G †.

Remark : case of NESS.— We discuss here the case of di↵usions with an equilibrium state.
If instead the di↵usion is characterised by a NESS, the spectral analysis is much more tricky and
the spectrum of eigenvalues is not necessary real (hence the mapping on the supersymmetric
Hamiltonian is not so helpful as the boundary conditions are not natural from the point of view
of the quantum mechanical problem). We can go back to Exercise 49 (or Exercise 70 below).
Nonetheless, it is possible to find the expression of the stationary distribution.

- Exercice 67 – Generalized SUSY : Consider the case of the di↵usion for x-dependent
di↵usion constant

dx(t) = F (x) dt+
p
2D(x) dW (t) (Stratonovich) (319)

a) Give the generator G of this di↵usion and show that it can be written under a form analogous
to (309).

b) How the operators H+, Q and Q† are generalized ?

c) Deduce the expression of the equilibrium distribution Peq(x).

d) Assuming the existence of a steady current, give the related stationary distribution Pst(x).

b) Conditional probability (propagator)

An important object characterizing the di↵usion is the propagator of the di↵usion (the condi-
tional probability), solution of

@tPt(x|x0) = G †
Pt(x|x0) for initial condition P0(x|x0) = �(x� x0) . (320)

We now consider the case of the drift F (x) such that there exists an equilibrium. Then the
spectrum of G † (and of H+) is discrete. Given the spectral information {�n, n(x)} we can
obtain a representation of the propagator.

Method n°1 : we can use the relation to supersymmetric quantum mechanics. The non
unitary transformation Pt(x) =  0(x) (x; t), where  0(x) / e�V (x)/2D, maps the PDE for the
conditional probability onto

�@t t(x|x0) = H+ t(x|x0) for initial condition  0(x|x0) = �(x� x0) . (321)

The solution can be decomposed over the eigenstates of H+ (this is the main motivation for
spectral analysis!). Starting from the initial condition  0(x|x0) =

P
1

n=0
 n(x) n(x0) we get at

time t,

 t(x|x0) =
1X

n=0

 n(x) n(x0) e
��nt . (322)

We go back to the conditional probability. In order to satisfy the initial condition, we must
write Pt(x|x0) =  0(x) t(x|x0)/ 0(x0), thus

Pt(x|x0) =
 0(x)

 0(x0)

1X

n=0

 n(x) n(x0) e
��nt (323)
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Method n°2 : It is more straightforward to manipulate operators : 26

Pt(x|x0) = hx |e
tG †

|x0 i = hx |e
�t 0(x̂)H+ 0(x̂)

�1

|x0 i = hx | 0(x̂)e
�tH+ 0(x̂)

�1
|x0 i

=  0(x)hx |e
�tH+ |x0 i

1

 0(x0)
(324)

where x̂ is the ”position operator” with x̂|x i = x|x i. The propagator of H+ can be decomposed
over its eigenstates and we recover (323).

- Exercice 68 – : Check the normalisation
R
dxPt(x|x0) = 1.

Argue that limt!1 Pt(x|x0) = Peq(x).

This structure makes clear the relation Pt(x|x0) 0(x0)2 = Pt(x0|x) 0(x)2 i.e.

Pt(x|x0)Peq(x0) = Pt(x0|x)Peq(x) (325)

which is similar to the detailed balance condition, which was expected as we are dealing with a
situation where an equilibrium exists (V (x) is confining).

Remark : This equation is the consequence of the identity with operators

Peq(x̂)
�1 G †

Peq(x̂) = G . (326)

- Exercice 69 – The Ornstein-Uhlenbeck process and the quantum oscillator : Using
the expression of the propagator for the quantum mechanical harmonic oscillator

hx |e�tH! |x0 i =

r
m

2⇡! sinh!t
exp�

m

2! sinh!t

⇥
cosh!t (x2 + x

2

0)� 2xx0
⇤

(327)

for H! = � 1

2m

d
2

dx2 + 1

2
m!

2, recover the propagator (153) of the Ornstein-Uhlenbeck process

described by the SDE dx = �x dt+
p
2D dW (t).

Check the condition (325).

c) Solving the FPE without supersymmetry

Above, we have related the FPE @tP = G †
P to the imaginary time Schrödinger equation �@t =

H+ through the non unitary transformation Pt(x) =  0(x) (x; t). We have introduced the
self-adjoint operator H+ for convenience : 27 the spectral analysis could have been performed
directly on the non self-adjoint operator G †, whose spectrum of eigenvalues is obviously the
same as H+.

Let us apply the spectral method to solve directly the FPE @tPt(x) = G †
Pt(x). We look for

a solution of the ”separable” form

Pt(x) = �(x) e
��t hence G †�(x) = ���(x) . (328)

Because the generator is not self adjoint, this last equation is the one for the ”right eigenvector”
of G †, whose spectrum involves a bi-orthognoal set of right and left eigenvectors

G †�R

n (x) = ��n�
R

n (x) and G�L

n(x) = ��n�
L

n(x) (329)

26The two operators are related by a non-uniatry transformation of the form G † = �UH+U�1. Exponentiating
the equality we find exp

⇥
tG †⇤ = exp

⇥
� tUH+U�1

⇤
= U exp

⇥
� tH+

⇤
U�1.

27Although this does not occur for confining potential V (x), self adjointness of H+ may be broken by certain
boundary conditions, which makes the spectral analysis of H+ tricky.
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with Z
dx�L

n(x)�
R

m(x) = �nm (330)

(see the discrete version in Subsection d) page 42). When there exists a stationary state, the
spectrum is discrete and the lowest eigenvalue is �0 = 0. The next eigenvalue �1 corresponds to
the relaxation rate toward stationary state (or Re(�1) if �1 is complex). When there exists an
equilibrium, for a confining potential V (x), the spectrum is real.

Let us use this spectral information to solve the FPE for a given initial condition P0(x). We
first decompose this latter on the right eigenvectors

P0(x) =
X

n

cn�
R

n (x) where cn =

Z
dx�L

n(x)P0(x) (331)

Then, the solution at time t reads

Pt(x) =
X

n

cn�
R

n (x) e
��nt . (332)

When the initial condition is P0(x) = �(x � x0), hence cn = �L
n(x0), the solution coin-

cides with the conditional probability. Therefore the spectral decomposition of the conditional
probability is

Pt(x|x0) =
1X

n=0

�R

n (x)�
L

n(x0) e
��nt (333)

Relation to supersymmetry.— It is now instructive to make the connection with super-
symmetry. Eq. (333) coincides with (323). This shows that the right and left eigenvectors can
be simply related to the eigenfunctions of H+ as follows

�R

n (x) =  0(x) n(x) and �L

n(x) =
 n(x)

 0(x)
(334)

In particular, for �0 = 0,

�R

0 (x) =  0(x)
2 = Peq(x) and �L

0 (x) = 1 . (335)

Example : We have discussed the relation between the Ornstein-Uhlenbeck process and the
QM oscillator, Exercise 69. As a result, in this case

�R

n (x) = cnHn

 r
k

2D
x

!
e�

k
2Dx

2

and �L

n(x) = Hn

 r
k

2D
x

!
(336)

where Hn(x) is a Hermite polynomial and cn a normalisation. Note that the left eigenvectors
grow at infinity.

- Exercice 70 – Di↵usion for a uniform drift on a ring : The aim is to obtain the
propagator Pt(x|x0) of the di↵usion (213) for a uniform drift F (x) = F0 on a ring, i.e. on the
finite interval [0, L] with periodic boundary conditions.

a) Discuss the spectrum of the forward generator G † = D@
2
x �F0@x : eigenvalues, right and left

eigenvectors.

b) Write Pt(x|x0) by using the spectral information. Analyze the t ! 1 limit (identify a
characteristic time ⌧D).

c) In order to analyze the limit t⌧ ⌧D, get another representation of the conditional probability
from the Poisson formula (521). Discuss the L!1 limit.
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d) Forward and backward FPE

We have solved above the forward FPE 28

@tPt(x|x0) = G †

xPt(x|x0) (337)

where the forward generator is a di↵erential operator acting on the final coordinate x. The
above discussion makes clear that the generator of the di↵usion is involved in the backward FPE
29

@tPt(x|x0) = Gx0
Pt(x|x0) (338)

where the operator acts on the initial coordinate x0. We will see some applications of this
equation below.

- Exercice 71 – BFPE from FFPE : Deduce (338) from (337) by using (325).

6.4 Boundary conditions for the FPE

So far we have not discussed the situation where the FPE is solved on a bounded domain.
Let us discuss here the question of boundary conditions. For simplicity we consider the FPE
@tPt(x) =

⇥
D@

2
x�@xF (x)

⇤
Pt(x) = �@xJt(x) on R+ so that we just have one boundary at x = 0.

a) Reflecting boundary condition

The first natural boundary condition is the reflecting boundary condition, where the particle
coming to x > 0 is simply reflected at x = 0. This is expressed by the condition of a vanishing
current at the origin

Jt(0) = F (0)Pt(0)�DP
0

t(0) = 0 (339)

where 0 means here derivation with respect to x. In the usual terminology, this corresponds to
a ”mixed boundary condition”. 30

Remark : reflecting boundary conditions for the conditional probability.— For the
following we will have to impose the boundary conditions for the conditional probability Pt(x|x0).
The reflecting boundary condition is

⇥
D@x � F (x)

⇤
Pt(x|x0)

��
x=0

= 0 (340)

We could aslo ask about the condition with respect to the initial coordinate : Using the relation
(325), we have

✓
@x �

1

D
F (x)

◆
Pt(x|x0) =

✓
@x +

1

D
V
0(x)

◆
Peq(x)

Peq(x0)
Pt(x0|x)

�
=

Peq(x)

Peq(x0)
@xPt(x0|x) (341)

where I used that Peq(x) / exp[�V (x)/D]. As a consequence, the presence of the reflecting
boundary at x = 0 implies

@x0
Pt(x|x0)

��
x0=0

= 0 . (342)

The reflecting boundary condition is not symmetric for the two coordinates.

28This equation, formally @tPt = G †
Pt = PtG , is called the “Kolmogorov equation” by mathematicians.

29I have used h |A� i = hA†
 |� i ; explicitly @tPt(x|x0) = hx |G †etG

†
|x0 i = G †

x hx |etG
†
|x0 i =

Gx0hx |etG
†
|x0 i.

30For wave equation for the wave  (x), the standard terminology is : (i) Dirichlet boundary condition :  (0) =
0 ; (ii) Neumann boundary condition :  0(0) = 0 ; (iii) mixed boundary condition :  (0) cos ✓+ 0(0) sin ✓ = 0 (one
recovers Dirichlet and Neumann b.c. for ✓ = 0 and ✓ = ⇡/2, respectively).
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b) General boundary condition

Let us now consider a general (mixed) boundary condition

�̃Pt(0) = P
0

t(0) (343)

For �̃ = F (0)/D, this corresponds to the reflecting boundary condition. What is the meaning
of this condition for arbitrary real �̃ 6= F (0)/D ?

Consider

@t

Z
1

0

dxPt(x) = �

Z
1

0

dx @xJt(x) = Jt(0) (344)

The current of probability through x = 0 makes the total probability decreases (for Jt(0) < 0).
Making use of the boundary condition, we get

Jt(0) =
h
F (0)�D�̃

i
Pt(0) ⌘ ��Pt(0) (345)

where we have found convenient to introduce � = D�̃ � F (0). For � > 0, the total probability
decreases

@t

Z
1

0

dxPt(x) = ��Pt(0) . (346)

Hence for � has roughly the meaning of the rate of escape, when the particle reaches the boundary
at x = 0.

c) Absorbing boundary condition

Writing Pt(0) = �̃
�1

P
0
t(0) shows that the limit �̃ ! 1, or � ! 1, corresponds to a Dirichlet

boundary condition
Pt(0) = 0 (347)

corresponding physically to the situation where the particle reaching the boundary is absorbed
with probability one.

6.5 Random walk on the lattice : persistence and recurrence

In this section we discuss several important properties of the Brownian motion in d-dimensions.
It will be convenient to discretize the problem and consider a random walk on a lattice (for
simplicity we consider the square lattice), which will regularize some problems.

a) Propagator for the Markov chain

Denote by {~ei}i=1,··· ,d the basis of orthonormal vectors of the lattice : for the square lattice which
we consider below, ~ei · ~ej = �ij . At time t = 0, the walker is at site ~0 and at each time interval
(�t = 1), the walker jumps on one of the 2d nearest neighbour sites with equal probability
1/(2d). The jumps are independent, hence the walk is an example of Markov chain. Denote by
Pt(~x) the probabilty for the walker to be on site ~x 2 Zd at time t 2 N. The probability to be at
~x at time t+ 1 is related to the probability to be on one of the neighbouring sites at time t :

Pt+1(~x) =
dX

i=1

1

2d

h
Pt(~x+ ~ei) + Pt(~x� ~ei)

i
, with initial condition P0(~x) = �

~x,~0
. (348)

Thus this solution is in fact the condional probability Pt(~x|~0), or the “propagator” of the random
walk, however we keep the lighter notation Pt(~x).
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The most simple manner to solve the equation is to consider the Fourier transform. Because
the position is on the lattice, ~x 2 Zd, we have to deal with the discrete Fourier transform

ePt(~k) =
X

~x

Pt(~x) e
�i~k·~x (349)

with the wave vector in the Brillouin zone ~k 2 [�⇡,+⇡]d ⌘ ZdB. Taking the Fourier transform
of the master equation we obviously get ePt+1(~k) =

�
1

d

P
i
cos ki

� ePt(~k) leading to the solution

Pt(~x) =

Z

ZdB

dd~k

(2⇡)d

⇣1
d

dX

i=1

cos ki
⌘
t

ei
~k·~x

. (350)

It will be useful to note that, formally, we can rewrite the Master equation (348)

Pt+1(~x) =
X

~x 0

e�~x,~x 0Pt(~x
0) (351)

where e� ressembles the discrete ”Laplacian” 31. This matrix plays the role of the stochastic
matrix of the Markov chain. We can then rewrite the solution as

Pt(~x) =
�e�t

�
~x,~0

(352)

which makes clear that Eq. (350) is just the spectral representation of this latter equation.

b) Green’s function

Above we have introduced the Fourier transform (over space variable) of the distribution, now
we introduce its Laplace transform (over time), which we denote the Green’s function :

G(~x; z)
def

=
1X

t=0

z
t
Pt(~x) (353)

which will be convenient for the following. The reason of this terminology is due to the fact that
it obeys

G(~x; z)� z

X

~x 0

e�~x,~x 0G(~x 0; z) = �
~x,~0

(354)

which we can deduce from (351). The solution is formally

G(~x; z) =

✓
1

1� z e�

◆

~x,~0

(355)

which we can also directly obtain from (352), writing : G(~x; z) =
P
1

t=0
z
t
�e�t

�
~x,~0

. We now want
to analyze the Green’s function with the help of its spectral representation

G(~x; z) =

Z

ZdB

dd~k

(2⇡)d
ei
~k·~x

1� z

d

P
d

i=1
cos ki

. (356)

Let us discuss few cases, when the integral can be computed explicitly.

31The discrete Laplace operator is defined as (�f)(~x) =
Pd

i=1

⇥
f(~x+~ei)�2 f(~x)+f(~x�~ei)

⇤
. Thus � = e��2d1.
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Case d = 1 : We should compute

G(x; z) =

Z
+⇡

�⇡

dk

2⇡

eikx

1� z cos k
(357)

for x 2 Z. Using the integral
R
+⇡

�⇡

dk

2⇡

cos(nk)

cosh a+cos k
= e

�a|n|

sinh a
, with cosh a = 1/z, we find

G(x; z) =
1

p
1� z2

 
1

z
�

r
1

z2
� 1

!|x|

(358)

We can use the formula (1 � x)�1/2 =
P
1

n=0

(2n�1)!!

2nn!
x
n to expand G(0; z) in powers of z and

deduce

Pt(0) =
(t� 1)!!

2t/2(t/2)!
for t even (359)

and Pt(0) = 0 for t odd. Note that Pt(x) is related to the binomial distribution and can be
found explicitly by simpler means. 32

Case d = 2 : We can at least get the Green’s function at the origin

G(~0; z) =
2

z

Z
+⇡

�⇡

dkxdky
(2⇡)2

1

2/z � cos kx � cos ky
=

2

⇡
K(z) (360)

where K(z) is the elliptic integral (see the appendix). In particular, it will be useful for the
following to notice that

G(~0; z) '
z!1�

1

⇡
ln[8/(1� z)] (361)

General case : We can get a simpler integral representation for the Green’s function at ~x = ~0 :
the di�culty with the above integral representation is to deal with the multiple integral. They
can be decoupled with the following trick

G(~0; z) =

Z

ZdB

dd~k

(2⇡)d
1

1� z

d

P
d

i=1
cos ki

=

Z

ZdB

dd~k

(2⇡)d

Z
1

0

dt e�t(1�
z
d

Pd
i=1

cos ki) (362)

=

Z
1

0

dt e�t
Z

+⇡

�⇡

dk

2⇡
e

zt
d cos k

�d
(363)

We recognize the modified Bessel function (see the appendix)

G(~0; z) =

Z
1

0

dt e�t [I0 (zt/d)]
d
. (364)

This integral form will be useful in the following.

32Consider a symmetric random walk on Z with only nearest neighbour jumps. The solution is given by the
binomial distribution Pt(x) = 1

2t
t!

n+!n�!
= 1

2t
t!�

t+x
2

�
!

�
t�x
2

�
!

.
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c) Continuum limit

Propagator.— At this step it is interesting to discuss the continuum limit. For this purpose,
we introduce the lattice spacing a ! 0 and the time interval �t ! 0 in the probability and
consider the probability density in Rd

Pt(~x) =
1

ad
Pt/�t(~x/a) =

Z
⇡/a

�⇡/a

dd~k

(2⇡)d
exp

(
t

�t
ln

 
1

d

dX

i=1

cos(kia)

!
+ i~k · ~x

)
(365)

'
a!0

Z
dd~k

(2⇡)d
exp

⇢
�

ta
2

2d�t
~k

2 +O(a4) + i~k · ~x

�
'

1

(4⇡Dt)d/2
e�

~x 2

4Dt (366)

where

D =
a
2

2d�t
(367)

is the di↵usion constant. The continuum limit of the random walk on the lattice is the Brownian
motion in space, which is obtained by sending both a ! 0 and �t ! 0, keeping the ratio a

2
/�t

finite.

Properties of the paths : on the lattice and in the continuum.— We can more
conveniently study the properties of the paths within the continuum description. For example
we have

h~x
2
i = 2dDt . (368)

Hence the typical distance covered by the path after time t is `t ⇠
p
dDt. This should not be

confused with the length of the path L = a (t/�t) ⇠ dDt/a ⇠ `
2
t /a which becomes infinite in the

continuum limit a! 0. This reminds us that the continuum limit of the random walk is a non
di↵erentiable continuous path. Indeed, in 1D, the property h[x(t+ �t)� x(t)]2i = 2D�t implies

h
⇥
(x(t+ �t)� x(t))/�t]2i / 1/�t �!

�t!0

1 . (369)

Finally, let us emphasize that studying the random walk over long time t ! 1 and large
scale |~x| ! 1 is formally equivalent to the continuum limit defined above. In this case, the
continuum limit is obtained by a coarse graining procedure.

Green’s function.– We can also analyze the Green’s function in the continuum limit. In this
case I prefer to define

bP(~x; s) =

Z
1

0

dt e�st Pt(~x) (370)

which thus obeys to the equation

(s�D�) bP(~x; s) = �(~x) (371)

which is reminiscent of Eq. (354). It is useful to rewrite it as

bP(~x; s) = h~x |
1

s�D�
|~0 i (372)

where � is the usual Laplace operator. The relation with the Green’s function defined above is
G(~x; e�s) ' bP(~x; s) for s! 0. While for the discrete RW it was only possible to get an integral
representation for the Green’s funtion at the origin, for the continuous BM one can obtain a
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simple analytic form in any dimension and arbitrary position. Introducing the expression of the
propagator in (370) we deduce

bP(~x; s) =
1

(2⇡)d/2D

✓r
s

D

1

|~x|

◆ d�2

2

K d�2

2

✓r
s

D
|~x|

◆
(373)

where K⌫(z) is the MacDonald function (modified Bessel function of third kind, see the ap-
pendix). Using the limiting behaviour given below we deduce

bP(~x; 0) =
�
�
d�2

2

�

2(2⇡)d/2D
|~x|
�d+2 (374)

for d 6= 2. In two dimensions we have bP(~x; 0) = 1

2⇡D
ln |~x|, which can be obtained by letting

d! 2 continuously in the previous expression (this is called “dimensional regularisation”).
The Green’s function at the initial point will be useful below. We see that, in the continuum

limit, it is divergent at ~x = 0, whereas it is finite on the lattice.

d) Probability of first return

We now turn to a more subtle property of the random trajectories. We have analysed above
in great detail the probability Pt(~0) to return at the starting point after time t. We now study
the probability of first return after time t, which we denote Qt. The probility Pt(~0) encodes
trajectories returning for the first time, second time, etc. Hence it can be written as

Pt(~0) = �t,0 +Qt +
tX

t1=0

Qt1
Qt�t1 +

X

t1,t2,t3
with t1+t2+t3=t

Qt1
Qt2

Qt3
+ · · · = �t,0 +

tX

t1=0

Qt1
Pt�t1(~0) (375)

where the first term account for the initial condition P0(~0) = 1. Here we have chosen by
convention Q0 = 0 because the particle can only return to its starting point for time t > 2.

We can easily solve the equation by introducing the generating function

eQ(z)
def

=
1X

t=0

z
t
Qt (376)

which is a kind of discrete Laplace transformation (setting z = e�s, s is the Laplce parameter).
This convert the convolution in (375) into multiplication. The ”Laplace” transform of (375) is

G(~0; z) = 1 + eQ(z)G(~0; z) (377)

thus
eQ(z) = 1�

1

G(~0; z)
. (378)

Case d = 1 : From the expression of the Green’s function found above, we get

eQ(z) = 1�
p
1� z2 . (379)

Note that eQ(1) = 1 corresponding to the normalisation condition
P

t
Qt = 1. Using (1�x)1/2 =

1� 1

2
x�

P
1

n=2

(2n�3)!!

2nn!
x
n we deduce the form

eQ(z) =
1

2
z
2 +

1X

n=2

(2n� 3)!!

2nn!
z
2n (380)
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time

x

Figure 25: After time t = 4, among the 24 = 16 trajectories, 6 come back to the origin, P4(0) =
3/8. Among those six, the four yellow trajectories visit twice the origin and the two green
trajectories return for the first time to the starting point, thus Q4 = 1/8.

thus Q2 = P2(0) = 1/2 and

Qt =
(t� 3)!!

2t/2(t/2)!
for t even (381)

and Qt = 0 for t odd. For example, one can check that Q4 = 1/8 as it should (whereas
P4(0) = 1/4) : cf. Fig. 25. Using the Stirling formula, we get the asymptotic

Pt(0) '

r
2

⇡t
(382)

and, since Qt = Pt(0)/(t� 1) we find

Qt '
t!1

r
2

⇡

1

t3/2
(383)

Remark : It is also interesting to get this expression by another method and make the
connection with the z ! 1 behaviour of eQ(z). For this purpose it is convenient to consider

eQ(e�s) '
s!0

1�
p
2s . (384)

One can show that this behaviour is indeed related to the t
�3/2 tail at large time (we have

emphasize this point in § c) page 8). Let us recall the argument : the generating function takes
the form of a Laplace transform for s! 0

eQ(e�s) =
X

t

e�stQt = 1�
X

t

Qt (1� e�st) ' 1�
1

2

Z
1

0

dtQt (1� e�st) (385)

where the 1/2 stands from the fact that Qt = 0 for t odd.
Assume the power law tail Qt ' A/t

↵+1 for t!1. In the s ! 0 limit, the integral selects
the tail and one has Z

1

0

dtQt (1� e�st) '
As

↵

Z
1

0

dt

t↵
e�st

thus eQ(e�s) ' 1 � A

2↵
�(1 � ↵) s↵ for s ! 0. Comparing with Eq. (384) shows that ↵ = 1/2

and A�(1 � ↵)/(2↵) =
p
2, leading to A =

p
2/⇡. Hence we recover precisely the behaviour

Qt '
p
2/⇡ t

�3/2 obtained above, Eq. (383).

79



Case d = 2 : In two dimensions, we have obtained above G(~0; e�s) ' 1

⇡
ln(8/s) for s! 0, thus

eQ(e�s) ' 1�
⇡

ln(8/s)
(386)

Using similar argument at for the 1D case, i.e. starting from (385), one finds that the first return
probability presents the tail 33

Qt '
t!1

2⇡

t [ln(8t)]2
(387)

e) Recurrence

In the last §, I have discussed the persitence of the random walk : the probability to return at
the origin for the first time at time t is Qt. The probability to return at the starting point at
any time is Pr = Q2 +Q4 +Q6 + · · · , thus

Pr

def

=
1X

t=0

Qt = eQ(1) = 1�
1

G(~0; 1)
. (388)

In dimension d = 1 and d = 2, we have obtained above that G(~0; 1) =1, thus

Pr = 1 in d = 1, 2 (389)

The random walk is said to be recurrent, as the random walk eventually comes back to the initial
point with probability one after a certain time.

In higher dimension, we have G(~0; 1) <1 and thus

Pr < 1 in d > 2 , (390)

i.e. the random walk has a finite probability to never comes back to its starting point after
infinite time. The RW is said to be transient.

Using the integral form (364) given above, we obtain

d Pr

1 1
2 1
3 0.3405
4 0.1932
5 0.1352
...

...

As the dimension increases, the probability to ever return to the starting point diminishes.

Bibliography : this discussion was borrowed from the book of Itzykson and Drou↵e [25]
(volume 1).

6.6 First passage and exit problem (in 1D)

We now study the recurrence for general di↵usions in one-dimension (the restriction to dimension
one makes the calculations simple ; the method extends easily to dimensions d > 1).

33We write the Laplace transform as eQ(e�s) ' 1� 1

2

R1
0

dtQt (1� e�st) ⇡ 1� 1

2

R1
1/s

dtQt.
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a) Persistence of the free Brownian motion

Here, I come back to the problem studied in § 6.5 : One studies (in the exercise) the question
of the first return of the free Brownian motion. This was studied above for the discrete random
walk, this is studied here for a continuous Brownian motion.

- Exercice 72 – Persistence, first passage time and maximum of the BM:

1/ Propagator on the half line.– We consider the free di↵usion on R+ with a Dirichlet
boundary condition at the origin. Construct the solution of the di↵usion equation

@tPt(x) = D@
2

xPt(x) for x > 0 with Pt(0) = 0 (391)

(use the image method). Apply the method to get the propagator of the di↵usion on R+, de-
noted P

+

t
(x|x0).

2/ Survival probability.– Dirichlet boundary condition describes absorption at x = 0. Com-
pute the survival probability for a particle starting from x0 :

Sx0
(t) =

Z
1

0

dxP+

t
(x|x0) (392)

What would have been the result if P+

t
(x|x0) would have satisfied a Neunmann boundary con-

dition ?

3/ First passage time.– We denote by Tx0
the first time at which the process starting from

x0 > 0 reaches x = 0 (it is a random quantity depending on the process), and Px0
(T ) is

distribution. Argue that

Sx0
(t) =

Z
1

t

dT Px0
(T ) (393)

Deduce Px0
(T ) and plot it.

4/ Maximum of a BM.– We now consider another property of the Brownian motion x(⌧)
with ⌧ 2 [0, t] starting from x0 = 0 : we denote by M = Max

⌧2[0,t]

(x(⌧)) > 0 its maximum and

Wt(m) the corresponding distribution. Justify the following identity

Z
m

0

dm0Wt(m
0) = Sm(t) (394)

Deduce the expression of Wt(m). What does Wt(0) represent ? The exponent of the power law
t
�✓ is called the persistence exponent. Give ✓ for the Brownian motion.

Hint : use appendix with properties of error function.

Remark : we have recovered the results obtained within the discrete model of random walk
(§ 6.5) : the probability to return to the starting point is Pt(0|0) ⇠ t

�1/2 and the probability for
the first return is Px0

(t) ⇠ t
�3/2 at large time.

Conclusion : Two important points :

• in order to study the first passage time at the origin, one should impose an absorbing boundary
condition at x = 0.

• The definition of the survival probability suggests that one should first find the conditional
probability, then integrate it to get the survival probability. In fact, the backward FPE
provides a shortcut and allows to find an equation directly for the survival probability, as we
will see.
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b) First passage time for arbitrary drift

We consider the case of a di↵usion with drift and uniform di↵usion constant for simplicity

dx(t) = F (x) dt+
p

2D dW (t) (395)

The drift derives from a potential F (x) = �V 0(x) and W (t) is the Wiener process. Consider
that the di↵usion starts from the initial condition x(0) = x0.

The determination of the propagator Pt(b|x0) allows to answer the question : what is the
probability that the process reaches the point x = b in a (fixed) time t (i.e. the final position is
the random variable). We now ask a dual question : what is the time Tx0

needed to reach
the point x = b for the first time ? x(0) = x0 and x(Tx0

) = b with x(t) < b for 0 < t < Tx0
.

Hence we now fix the final position (x = b) and study the statistical properties of the random
time Tx0

. We denote by Px0
(T ) its distribution.

The main idea is to introduce an absorbing boundary at x = b :

Pt(b|x0) = Pt(x|b) = 0 (396)

implying that the particle is absorbed when it reaches x = b. For simplicity for future calculations
and analysis, we impose a reflecting boundary condition at another point x = a, i.e. we impose
that the current vanishes

(F (x)�D@x)Pt(x|x0)
��
x=a

= @x0
Pt(x|x0)

��
x0=a

= 0 (397)

The boundary condition takes a di↵erent form with respect to the two arguments (this is expecetd
as Pt(x|x0) is not a symmetric function of its two arguments in general, cf. § 6.4 page 73).

We introduce the survival probability

Sx0
(t) =

Z
b

a

dxPt(x|x0) , (398)

the probabilty that the particle has survived up to time t, i.e. has not reached the absorbing
boundary at x = b. This is also the probability for the particle to be absorbed after time t

Sx0
(t) = Proba{Tx0

> t} =

Z
1

t

dT Px0
(T ) . (399)

Then Px0
(T ) = �@TSx0

(T ). Because we integrate over the final position x involved in the
propagator, we see that it is interesting to make use of the backward FPE (338) :

@tSx0
(t) =

Z
b

a

dxGx0
Pt(x|x0) = Gx0

Sx0
(t) (400)

for the initial condition

Sx0
(0) =

(
1 for x0 2 [a, b[

0 for x0 > b
. (401)

Similarly the first passage time distribution obeys

@tPx0
(t) = Gx0

Px0
(t) (402)

At this point it is useful to introduce the n-th moment of the time :

Tn(x0)
def

=
⌦�
Tx0

�
n
↵
=

Z
1

0

dT T
n Px0

(T ) (403)
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- Exercice 73 – Moments of the first passage time :

a) Show that the moments obey the recurrence

Gx0
Tn(x0) = �nTn�1(x0) and Gx0

T1(x0) = �1 . (404)

b) Justify that the boundary conditions are @x0
Tn(x0)

��
x0=a

= 0 and Tn(b) = 0.

c) Deduce (calculation requires to solve a first order linear di↵erential equation: easy!)

Tn(x0) =
n

D

Z
b

x0

dx eV (x)/D

Z
x

a

dx0 e�V (x
0
)/D

Tn�1(x
0) (405)

- Exercice 74 – : Generalize (405) for a x-dependent di↵usion constant D ! D(x).

c) Arrhenius law

An important application of the above formalism is the analysis of the escape time for a particle
trapped in a potential well. This problem is relevant in chemistry where chemical reactions
are activated by overcoming some potential (activation) barriers in the configuration space of
the molecules. For simplicity we consider a one-dimensional problem of a particle initially in a
potential well (Fig. 26) : x0 is close to the local minimum at x1. We study the time needed to
escape the well, i.e. jump in the region x > x2.

x

V(x)

x

x

absorption

b1 2a

Figure 26: A particle escapes from a metastable state.

In a rather arbitrary manner, we introduce a reflecting boundary at x = a at the left of the
local minimum, and the absorbing boundary at x = b at the right of the potential barrier (not
too close from the top). As we have seen above the average time is given by

T1(x0) =
1

D

Z
b

x0

dx eV (x)/D

Z
x

a

dx0 e�V (x
0
)/D

. (406)

The integral can be analysed by using the steepest descent method. For D ! 0, the integral over
x is dominated by the neighbourhood of x = x2, hence we can replace the upper bound of the
second integral

R
x

a
!

R
x2

a
, expand the potential in the exponential eV (x)/D

' exp
�

1

D
[V (x2) �

1

�
2

2

(x�x2)2]
 
, where �2 = 1/

p
�V 00(x2), and perform the remaining Gaussian integral. Similarly,

the integral over x
0 is dominated by the neighbourhood of x0 = x1 ; expanding similarly the

integrand as e�V (x
0
)/D
' exp

�
1

D
[�V (x1)�

1

�
2

1

(x0� x1)2]
 
, where �1 = 1/

p
V 00(x1), we end with

hTx0
i ⌘ T1(x0) ' 2⇡ �1 �2 exp

V (x2)� V (x1)

D
(407)

The main result is that the average time is exponentially large in the height of the potential
barrier �V = V (x2) � V (x1). It is pretty independent of x0 (provided that it remains in the
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well) : for x0 in the well, the particle is rapidly driven at the bottom of the well, where it is
submitted to the fluctuations (the time scale is controlled by the curvature at x1, like for the
Ornstein-Uhlenbeck process) ; then it takes a long time to escape the well, thanks to large (and
thus rare) thermal fluctuation.

Figure 27: The swedish chemist Svante August Arrhenius (1859-1927), Nobel prize in chemistry
in 1903.

- Exercice 75 – : How far from the top of the barrier (at x2) must be the absorbing boundary
b so that the previous analysis is justified ? And how far the reflecting boundary at a should be
from the bottom of the well (at x1) ?

We can also analyze higher moments : applying the same arguments to (405) we get

Tn(x0) ' nTn�1(x1)T1(x0) (408)

for D ! 0. Using the independence in the initial position, we conclude that the moments are

Tn(x0) ' n! [T1(x0)]
n (409)

i.e. those of a Poisson distribution.

Px0
(T ) '

1

hTx0
i
exp�

T

hTx0
i

(410)

The exponential distribution was expected as in the D ! 0 limit, the particle is trapped a long
time in the well, hence has time to decorrelate : the picture is that, starting from the initial
position x0, the particle falls after a short time in the vicinity of the minimum of the potential
well x(t) ⇠ x1. There, fluctuations are �x ⇠

p
D/�1. As long as the process remains in the

well, it is approximatively described by the Langevin equation d

dt
x(t) ⇡ � 1

�
2

1

(x�x1)+
p
2D ⌘(t),

where we have linearized F (x) = �V 0(x) near x1. The correlation function is hx(t)x(t0)ic '
(D/�

2

1
) exp

⇥
� |t� t

0
|/�

2

1

⇤
(cf. chapter 3 on Langevin equation). Indeed, the decorrelation time

is ⇠ �
2

1
, which is exponentially smaller than the typical time to escape the well. This shows

that the escape process can be approximatively considered Markovian, hence the exponential
distribution (410).

Remark: this discussion is inspired by the book of Gardiner [18] and by the appendix of my
paper [49], where an application for the statistics of energy levels in a quantum (Anderson)
localisation 34 problem is discussed.

34Anderson localisation is the problem of localisation of a wave in a (static) random medium.
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- Exercice 76 – Time needed to fall at the bottom of a harmonic well : We discuss
the situation where the initial point x0 is far from the minimum of the well at x = x1 and
clarify a point of the previous discussion. We consider the Ornstein-Uhlenbeck process d

dt
x(t) =

�� (x � x1) +
p
2D ⌘(t). What is the typical time needed by a particle initially far from the

minimum, x(0)�x1 = � ”large”, to fall in the potential well ? Compare to the Arrhenius time.

- Exercice 77 – Lifetimes of metastable states : We have obtained above the following
formula for the average lifetime of a metastabel state corresponding to the well of Fig. 26 :
hTx0
i '

2⇡p
�V 00(x1)V

00(x2)
exp

�
V (x2)�V (x1)

D

 
, valid in the D ! 0 limit.

Derive some analogous formulae for the two potentials of Fig. 28.

(a)
x

x x

V(x)

absorption

b1 2a (b) x x

V(x)

x

absorption

b1 2a

Figure 28: Two other types of trapping potentials.

- Exercice 78 – Escape from the two boundaries : We now consider the problem where
a particle starts at x(0) = x0 2]a, b[ and can escape the interval at one of the two boundaries.
In this case one must solve the di↵erential equation (404), i.e.

Gx0
Tn(x0) = �nTn�1(x0) i.e.

✓
D

d

dx0
� V

0(x0)

◆
dTn(x0)

dx0
= �nTn�1(x0) (411)

for two Dirichlet boundary conditions Tn(a) = Tn(b) = 0. For simplicity, we consider only the
first moment.

1/ Denoting by  (x) = exp[�V (x)/D] (this is the equilibrium distribution, if normalisable),
study the action of the generator Gx on

�(x) =

Z
x

a

dy

 (y)

Z
b

x

dx0

 (x0)

Z
x
0

a

dz  (z)�

Z
b

x

dy

 (y)

Z
x

a

dx0

 (x0)

Z
x
0

a

dz  (z) (412)

2/ Deduce T1(x0).

3/ Study the limit D ! 0 for the potential of Fig. 29, when the initial condition is in the well.
Introduce 1/�2

0
= V

00(x0) and 1/�2
1,2

= �V 00(x1,2). Distinguish the general case V (x1) 6= V (x2)
and the case V (x1) = V (x2).

xx x

V(x)

x

0

absorption

absorption

b1 2a

Figure 29: Two absorbing boundaries.
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- Exercice 79 – First passage time in dimension d : We consider the problem of first
passage time in dimension d > 1 : a di↵usive particle submitted to a centro-symmetric drift
~F (~r) = �V (r) ~ur where ~ur is the radial unit vector. The forward generator of the di↵usion in
Rd is G † = D� � ~r · ~F . The particle starts from ~r0 and we ask the question : when does it
reachs a sphere of radius b < r0 = ||~r0|| for the first time ?

a) Show that the moments of the first passage time obey the di↵erential equation


D

✓
d2

dr2
+

d� 1

r

d

dr

◆
� V

0(r)
d

dr

�
Tn(r) = �nTn�1(r) (413)

Find an integral representation for T1(r0).

b) When the dimension is increased, does the first passage time increases or decreases ?

, Important points

• Have in mind the meaning of the two terms in the FPE (drift and di↵usion).
• Conservation equation @tP = �@xJ and expression of the current.
• Existence of the BFPE
• Be familiar with the di↵erent types of boundary conditions (relecting, absorbing)
• The problem of first passage time (relation between survival probability and the distribution
of the first passage time) ; the use of the BFPE.
• Study of the first passage through point x = b requires to consider an absorbing boundary at
this place.
• The Arrhenius law.
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7 Functionals of stochastic processes

7.1 Introduction/motivations

In the previous chapter, we have explained how to study various properties of stochastic pro-
cesses : the distribution Pt(x) or the conditional probability Pt(x|x0), and the first passage time
Tx0

. This last chapter is devoted to the study of the statistical properties of ”functionals” of
the form

S[x(⌧)] =

Z
t

0

d⌧ U(x(⌧)) (414)

where U(x) is a regular function and x(⌧), for ⌧ 2 [0, t], is a Brownian motion (the case where
it is a more general stochastic process will be also discussed).

A discrete version would be to consider a random sequence of numbers (a Markov chain)
(x0, x1, · · · , xt) and study the distribution of the sum

S(x0, x1, · · · , xt) =
tX

⌧=0

U(x⌧ ) (415)

where x⌧+1 = x⌧ + ⌘⌧ is a random walk defined controlled by the ”noise” ⌘⌧ , i.e. ⌘⌧ ’s are
i.i.d. random numbers, with for instance h⌘⌧ i = 0 and h⌘⌧⌘⌧ 0i = �⌧,⌧ 0 . The sum S(x0, x1, · · · )
for such process is the sum of strongly correlated variables, for a special type of correlations,
hx⌧x⌧ 0i = min (⌧, ⌧ 0). Hence, in this last chapter, we are extending the central limit theorem
in another direction unexplored so far, when the sum of random variables are not i.i.d. but
correlated.

Let us now give few examples of possible functionals which will be of interest.

Time spent in an interval.— An interesting example is the time spent on some interval [a, b]

T[a,b][x(⌧)]
def

=

Z
t

0

d⌧ 1[a,b](x(⌧)) (416)

where 1I(x) is the indicator function of the interval I,

1I(x) =

(
1 for x 2 I

0 for x /2 I
(417)

The case of TR+
[x(⌧)] is a famous example considered by Paul Lévy in 1939 and will be studied

in detail below.

Local time.— Another example is the ”local time”

⌧a[x(⌧)]
def

=

Z
t

0

d⌧ �(x(⌧)� a) (418)

which measures the time spent at x = a. Exercise 81 is devoted to the derivation of its distri-
bution.

Current in a disordered environment.— A last interesting example arises in the context
of disordered systems. Consider the 1D classical di↵usion in a force field F (x) = �V 0(x) in
an interval [0, L]. We consider the stationary state Pst(x) corresponding to a steady current
injected from the left boundary, in the presence of some absorbing boundary condition at the
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right boundary, Pst(L) = 0. As we have already discussed, the stationary state is solution of
J = �

⇥
V
0(x) +D@x

⇤
Pst(x), hence

Pst(x) =
J

D
e�V (x)/D

Z
L

x

dy e+V (y)/D (419)

If the distribution is normalised on [0, L], the normalisation condition provides the expression
of the current J and of the distribution at the boundary, Pst(0). If instead we consider a non
normalised solution and fix the value Pst(0) = P0, then the current is given by

1/J =
1

DP0

Z
L

0

dx eV (x)/D (420)

with V (x) =
R
x

0
dy F (y). Now choose a quenched random force field, such that F (x) = F and

F (x)F (x0)
c

= � �(x � x
0), the potential is a stochastic process in space (if F (x) is Gaussian,

V (x) is the usual Brownian motion). The inverse of the current has the form (414) for a
function U(x) = ex. Such functional was studied in detailed in [41]. Exponential functional of
the Brownian motion have also been extensively considered by mathematicians and have many
applications (reviews in mathematics [54, 39, 40] or in physics [9, 8]).

An application in finance and risk theory.— Let me close the list of examples with
one which has arisen in finance concerning the determination of the present value of annuity
or perpetuity : this has been discussed by mathematicians, see [12]. An annuity is a financial
product which provides some fixed cash flow C, for example every year until time t. The question
for insurance companies is to know the present value of the annuity : after one year, the value
of the money will diminish (for example due to inflation), hence the value will not be C but
C/(1 + r), where r is some discount rate. The value of the money received in two years will be
C/(1 + r)2, etc. The amount of money C is fixed (determined by the contract), however the
discount rate depends on the market fluctuations : let us denote rt the rate at time t. Hence
the present value of the annuity is

PV =
C

1 + r1
+

C

(1 + r1)(1 + r2)
+ · · ·+

C

(1 + r1) · · · (1 + rt)
(421)

Introducing the notation ⌘⌧ = � ln(1 + r⌧ ) we have

PV =
tX

⌧=1

⌧Y

i=1

e⌘i =
tX

⌧=1

ex⌧ (422)

where x⌧ =
P

⌧

i=1
⌘i is a random walk. Hence we are considering the discrete version of (420).

7.2 Path integrals

The use of path integrals makes rather straighforward the derivation of the Feynman-Kac for-
mula, a central formula for the study of functionals.

a) The Wiener measure

The starting point is the exercise 19. Let us consider the free Brownian motion on R, described
by the Gaussian conditional probability

Pt(x|x0) =
1
p
2⇡t

e�
1

2t (x�x0)
2

(423)
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(in this section I set the di↵usion constant D = 1/2 for simplicity). Using the stability of the
Gaussian distribution, we can split the Brownian motion in many steps for small time increments
�t = t/N , leading to

Pt(x|x0) =

Z
dxN�1 · · · dx1

NY

i=1

1
p
2⇡ �t

e�
1

2�t (xi�xi�1)
2

where xN ⌘ x (424)

This corresponds to the Gaussian random walk studied in Exercise 81. This allows to identify
the probabilistic weight of a trajectory passing through all intermediate positions

weight(x0 ! x1 ! x2 ! · · ·! xN ) =
1

(2⇡ �t)N/2
exp

(
�

NX

i=1

(xi � xi�1)2

2�t

)
(425)

Taking the limit N ! 1, we identify the weight of the continuous Brownian trajectory as the
sum is replaced by the integral

R
t

0
d⌧ 1

2

�
dx(⌧)

d⌧

�
2
. Denoting the product of the di↵erentials with

the notation

Dx(⌧) = lim
N!1

1p
2⇡ t/N

N�1Y

i=1

dxip
2⇡ t/N

(426)

we conclude that the conditional probability can be formally written as a sum over the ”paths”
starting at x0 and ending at x as

Pt(x|x0) =

Z
x(t)=x

x(0)=x0

Dx(⌧) exp

(
�

Z
t

0

d⌧
1

2

✓
dx(⌧)

d⌧

◆
2
)

(427)

Dx(⌧) exp
n
�
R
t

0
d⌧ 1

2

�
dx(⌧)

d⌧

�
2
o

is the “Wiener measure”. This is the weight to associate to

a Brownian trajectory for summation. This calls for a comment : summing over the paths
with

R
Dx(⌧) a priori leads to sum over functions which are not necessarily continuous. This

is the Gaussian part which imposes that trajectories are both continuous and non di↵erentiable
(meaning that discontinuous paths have weight zero).

b) A useful identity for path integrals

Path integration has very little in common with the usual calculus of integrals. Path integrals
rather provide very useful and transparent representations of certain Green’s function. The
conditional probability is the solution of the equation

@tPt(x|x0) =
1

2
@
2

xPt(x|x0) (428)

hence we have sometimes used the representation (similar to the QM one)

Pt(x|x0) = hx |e
�tH0 |x0 i for H0 = �

1

2

d2

dx2
(429)

(the minus sign is introduced in order to deal with an operator with positive spectrum).
For the following, we will also encounter the kernel

Kt(x|x0) = hx |e
�tH

|x0 i for H = �
1

2

d2

dx2
+ V (x) . (430)

As we did above for the conditional probability, we can split the time t into N small time
intervals

Kt(x|x0) =

Z
dxN�1 · · · dx1

NY

i=1

hxi |e
�

t
N H

|xi�1 i (431)
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(which corresponds to insert N � 1 closure relations). In the (t/N) ! 0 limit, we can simplify

the kernel as hxi |e
�

t
N H

|xi�1 i ' hxi |e
�

t
N H0 |xi�1 ie

�
t
N V (xi) (use the Zassenhaus formula 35). As

a result the kernel can be represented under the form of the following path integral

Kt(x|x0) =

Z
x(t)=x

x(0)=x0

Dx(⌧) exp

(
�

Z
t

0

d⌧

"
1

2

✓
dx(⌧)

d⌧

◆
2

+ V (x(⌧))

#)
(433)

This corresponds to the kernel Kt(x|x0) = hx |e�tH |x0 i and obeys the di↵erential equation

@tKt(x|x0) = �HKt(x|x0) for H = �
1

2

d2

dx2
+ V (x) (434)

with initial condition K0(x|x0) = �(x � x0). This is all what one has to remember about path
integrals : the rule of calculation of (433) is (434)

c) The Green’s function

The kernel Kt(x|y) = hx |e�tH |y i is solution of a PDE which might be di�cult to solve in
general. It is often more convenient to consider its Laplace transform

G(x, y;↵) =

Z
1

0

dt e�↵tKt(x|y) = hx | (↵+H)�1 |y i . (435)

Let us forget the spectral parameter ↵, which can be incorporated into the potential and
simply consider the Green’s function G(x, y) = hx |H�1|y i (assuming that � = 0 does not
belong to the spectrum of H), which solves the equation

✓
�
1

2

d2

dx2
+ V (x)

◆
G(x, y) = �(x� y) (436)

In 1D, the method to get G is simple. Introduce  �(x) and  +(x), the two solutions of the
homogeneous equation,

�
1

2
 
00

±(x) + V (x) ±(x) = 0 (437)

which vanish at �1 and +1, respectively. Clearly we have G(x, y) = Ay  �(x) for x < y and
G(x, y) = By  +(x) for x > y. Ensuring continuity we have

G(x, y) = C

(
 �(x) +(y) for x < y

 �(y) +(x) for x > y
(438)

We deduce a matching condition from the equation for the Green’s function (do
R
y+✏

y�✏
dx and

take the limit ✏! 0+) : @G

@x

��x=y+

x=y�
= �2, thus we deduce that the coe�cient C is related to the

Wronskian
W [ �, +]

def

=  �(x) 
0

+(x)�  
0

�(x) +(x) (439)

which is constant for such a di↵erential equation : one easliy checks that d

dx
W [ �, +] = 0.

Finally

G(x, y) = �
2 �(x<) +(x>)

W [ �, +]
(440)

where x< = min (x, y) and x> = max (x, y).

35Consider two operators A and B :

eA+B = eA eB e�
1
2 [A,B] e

1
6

�
2[B,[B,A]]+[A,[A,B]]

�
· · · (432)
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7.3 Functionals of the Brownian motion and the Feynman-Kac formula

Let us first consider a concrete and simple example, then we will develope the theory in the
general case.

a) A simple case : the first Lévy’s arcsine law (1939)

We consider the Wiener process, a 1D free Brownian motion starting from the origin x(0) = 0
and ask the question : what is the time spent on the positive real axis ? The answer to this
question was given by Paul Lévy in 1939 [32].

We introduce the functional

T [x(⌧)] =

Z
t

0

d⌧ ✓H(x(⌧)) . (441)

The aim is to derive its distribution Pt(T ) (here t is a parameter).

Characteristic function.— We introduce the characteristic function

ePt(p) =

Z
1

0

dT Pt(T ) e
�pT =

D
e�p T [x(⌧)]

���x(0) = 0
E

(442)

which can we conveniently written with a path integral as

ePt(p) =

sum over pathsz }| {Z
dx

Z
x(t)=x

x(0)=0

Dx(⌧) e�
1

2

R t
0
d⌧ ẋ(⌧)

2

| {z }
weight of a path

e�p T [x(⌧)]
. (443)

The path integral is the representation of the propagator

Kt(x|x0) =

Z
x(t)=x

x(0)=x0

Dx(⌧) e�
R t
0
d⌧

⇥
1

2
ẋ(⌧)

2
+p ✓H(x(⌧))

⇤
= hx |e�tHp |x0 i (444)

where

Hp = �
1

2

d2

dx2
+ p ✓H(x) . (445)

Thus the kernel solves

(@t �Hp)Kt(x|x0) = 0 for initial condition K0(x|x0) = �(x� x0) . (446)

As a result, the characteristic function of the time is

ePt(p) =

Z
dx hx |e�tHp |0 i (447)

For technical reasons it is more easy to take another Laplace transform, with respect to the
time parameter

Q(↵, p)
def

=

Z
1

0

dt e�↵t ePt(p) =

Z
dx hx | (↵+Hp)

�1
|0 i (448)

which involves the Green’s function

G(x, x0;↵, p)
def

= hx |
1

↵+Hp

|x0 i (449)
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obeying ✓
↵�

1

2

d2

dx2
+ p ✓H(x)

◆
G(x, x0;↵, p) = �(x� x0) . (450)

The solution is easy to find (see paragraph above on the calculation of the Green function).
We apply the formula (440). For this, we just need to find  �(x) and  +(x), i.e. solve

an elementary linear second order di↵erential equation, � 00±(x) + 2
�
↵ + p ✓H(x)

�
 ±(x). For

x < 0, the solution vanishing at �1 is  �(x) = e
p
2↵x and for x > 0 we have  �(x) =

Ae+
p

2(↵+p)x + Be�
p

2(↵+p)x, where the two coe�cients are found by imposing the matching
conditions (continuity of  � and  

0
� at x = 0). We easily find A = 1

2

⇥
1 +

p
↵/(↵+ p)

⇤
and

B = 1

2

⇥
1�

p
↵/(↵+ p)

⇤
, hence

 �(x) =

8
<

:
e
p
2↵x for x < 0

cosh
hp

2(↵+ p)x
i
+
q

↵

↵+p
sinh

hp
2(↵+ p)x

i
for x > 0

(451)

 +(x) is simply obtained by performing the substitutions x ! �x and ↵ $ ↵ + p in  �(x).
Therefore  0�(0) =

p
2↵ and  0+(0) = �

p
2(↵+ p) and the Wronskian is

W [ �, +] = �
p
2↵�

p
2(↵+ p) . (452)

As a result

G(x, 0;↵, p) =
2

p
2↵+

p
2(↵+ p)

(
e
p
2↵x for x < 0

e�
p

2(↵+p)x for x > 0
(453)

whose integration gives

Q(↵, p) =

Z
dxG(x, 0;↵, p) =

2
p
2↵+

p
2(↵+ p)

 
1
p
2↵

+
1p

2(↵+ p)

!
=

1p
↵(↵+ p)

(454)

Finally the double Laplace transform of the distribution has a simple expression
Z
1

0

dt e�↵t
Z
1

0

dT e�pT Pt(T ) =
1p

↵(p+ ↵)
. (455)

Arcsine law .— Performing first the inverse Laplace transform with respect to the variable
↵, we get the integral form

Z
1

0

dT e�pT Pt(T ) =

Z

B

d↵

2i⇡

e↵tp
↵(↵+ p)

=

Z
p

0

dx

⇡

e�xtp
x(p� x)

(456)

Hence, simply relabelling the integration variable, we get

Pt(T ) =
1

⇡

p
T (t� T )

for T 2 [0, t] , (457)

which is known as the Lévy’s “first arcsine law” (probabilists always prefer to give the cumulative
rather than the density) Z

T

0

dT 0 Pt(T
0) =

2

⇡
arcsin

⇣p
T/t

⌘
. (458)

This result is interesting from the Brownian motion perspective. The distribution of the
time has two peaks close to T ⇠ 0 and T ⇠ t, meaning that most probably, the Wiener process
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spends all time either in R� or in R+. This seems contradictory with our intuition from the
recurrent properties, as we have seen that the 1D free Brownian motion returns to its starting
point with probability one after long enough time. Hence one could incorrectly think that a
typical trajectory frequently comes back to the origin and spends equal time on R� and R+ ;
this latter picture is incorrect. Altough the typical Brownian trajectory can visit many times
its starting point, it spends most time either in R� or in R+.

The second and third arcsine laws.— Lévy also proved two other nice properties of the
Wiener process :

• The second arcsine law is about the distribution of the last time t+ when the process changes
in sign, which is also distributed according to Pt(t+).

• The time tm where the maximum occurs also obeys the same law Pt(tm) (third arcsine law).

- Exercice 80 – Time spent on R+ for a Brownian bridge : To illustrate the flexibility
of the method, we study the distribution of T [x(⌧)] =

R
t

0
d⌧ ✓H(x(⌧)) over the set of ”Brownian

bridges” for [0, t]. A Brownian bridge is a Brownian trajectory which is conditioned to come
back to its starting point, i.e. here x(0) = x(t) = 0.

a) Write the characteristic function ePt(p) with a path integral and show that it is now given by

ePt(p) =
h0 |e�tHp |0 i

h0 |e�tH0 |0 i
(459)

b) Check that G(0, 0;↵, p) = h0 |
�
↵+Hp

��1
|0 i =

p
2

p
(
p
↵+ p�

p
↵). Using the formula

Z
1

0

dt
e�at � e�bt

2
p
⇡ t3/2

=
p

b�
p
a (460)

deduce the inverse Laplace transform h0 |e�tHp |0 i = L �1

t

⇥
G(0, 0;↵, p)

⇤
. Check your result by

considering the p = 0 limit.

c) Deduce ePt(p) and give its inverse Laplace transform Pt(T ) (which should be easy!). Compare
to Lévy’s arcsine law (for free Brownian motion).

b) General case for functionals of the Brownian motion

It is now easy to extend this analysis to a functional of the form (414) involving a BM starting
from x0. We introduce the characteristic function

ePt(p;x0) =
D
e�p S[x(⌧)]

���x(0) = x0

E
=

Z
dx

Z
x(t)=x

x(0)=x0

Dx(⌧) e�
R t
0
d⌧

⇥
1

2
ẋ(⌧)

2
+pU(x(⌧))

⇤
(461)

which is the integral of

Kt(x|x0; p) =

Z
x(t)=x

x(0)=x0

Dx(⌧) e�
R t
0
d⌧

⇥
1

2
ẋ(⌧)

2
+pU(x(⌧))

⇤
(462)

solving ✓
@

@t
+Hp

◆
Kt(x|x0; p) = 0 for K0(x|x0; p) = �(x� x0) (463)

for

Hp = �
1

2

d2

dx2
+ pU(x) . (464)
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A Mathematical tools

A.1 Fourier transform

a) Fourier transform on R

Consider a function f on R. Its Fourier transform is defined as

f̂(k) =

Z

R
dx f(x) e�ikx and f(x) =

Z

R

dk

2⇡
f̂(k) eikx (479)

the inverse Fourier transform is recovered by using
Z

R

dk

2⇡
eikx = �(x) (480)

You should now the basic properties of Fourier transform

Fk[f
0(x)] = ik f̂(k) , (481)

Fk[f ⇤ g] = f̂(k) ĝ(k) , (482)

etc.

b) Discrete Fourier transform (over a finite interval)

Consider a function f(x) defined on a finite interval x 2 [0, L] (the function can be a periodic
function with period L). For a bounded domain, the wave vectors are quantized, hence the
function can be decomposed over a countable basis of plane waves

u
(n)(x) = eiknx for kn =

2n⇡

L
with n 2 Z . (483)

We easily check the orthonormalisation condition
Z

L

0

dx

L
u
(n)(x)⇤u(m)(x) =

Z
L

0

dx

L
ei(km�kn)x = �n,m (484)

Thus Fourier transform takes the form

f(x) =
1

L

X

n2Z
f̂n e

iknx where f̂n =

Z
L

0

dx f(x) e�iknx = hu(n) |f i (485)

If we take the limit L ! 1, the spectrum of wave vectors becomes dense and we recover the
continuous Fourier transform, using 1

L

P
kn
!

R
R

dk

2⇡
.

c) Fourier transform of a discrete function

If we consider a function fx defined over Z (on a lattice), the basis of harmonic functions are

plane waves u(k)x = eikx where the wave vector varies continuously over a bounded domain, the

”Brillouin zone” k 2]� ⇡,+⇡] (because u
(k+2⇡)

x = u
(k)

x for x 2 Z). As a result

fx =

Z
+⇡

�⇡

dk

2⇡
f̂(k) eikx where f̂(k) =

X

x2Z
fx e

�ikx (486)

The passage between the two is now ensured by the Poisson formula

X

n2Z
�(k � 2⇡n) =

1

2⇡

X

x2Z
eikx (487)
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(because k is in the Brillouin zone, we only need the n = 0 term).
It is also possible to recover the Fourier transform for continuous functions by introducing

a lattice spacing a (writing now that x/a 2 Z). The Brillouin zone is then k 2]� ⇡/a,⇡/a]. In
the limit a! 0 we recover the Fourier transform.

d) Fourier transform of a discrete function defined over a finite set

If we now define a discrete function fx over a finite set x 2 {1, 2, · · · , L}, the wave vector is
both quantized (finite volume) and bounded (lattice problem) :

kn = 2⇡n/L with n = �L/2 + 1, · · · ,�1, 0, 1, · · · , L/2 2]� ⇡,+⇡]

(for L even).

Preliminary.— consider the N roots of the identity, solutions of zN = 1,

zk = e2i⇡k/N for k = 0, 1 · · · , N � 1 (488)

Using that the characteristic polynomial is

P (z) = z
N
� 1 =

N�1Y

k=0

(z � zk) (489)

Q
k
(z � zk) is a polynomial of degree N with only two terms. The z

1 coe�cient being zero, we
have

P
k
zk = 0. Similarly we can prove

P
k
z
n

k
= N �n,0 , i.e. more explicitely

1

N

N�1X

k=0

e2i⇡nk/N = �n,0 . (490)

This relation can be used for the Fourier transform.

Fourier transform.— We have now

fx =
1

L

LX

n=1

f̂n e
2i⇡nx/L where f̂n =

LX

x=1

fx e
�2i⇡nx/L (491)

A.2 Linear di↵erential equations with source terms

First order.– First consider the simple di↵erential equation

y
0(x)� � y(x) = s(x) (492)

where � and s(x) are given. The solution of the homogeneous equation is y(x) = A e�x. Use
the ”variation of the constant’s method” : search a particular solution under the form y(x) =
A(x) e�x, which leads to A

0(x) = s(x) e��x, i.e. A(x) =
R
x dt s(t) e��t. Hence the general

solution is

y(x) = y(0) e�x +

Z
x

0

dt s(t) e�(x�t) (493)

You can check that the method can be extended to the case where �! �(x) in the di↵erential
equation (492). Then

y(x) = y(0) e
R x
0
du�(u) +

Z
x

0

dt s(t) e
R x
t du�(u) (494)
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Second order.– The same idea can be applied to the second order linear di↵erential equation

y
00(x) + a(x) y0(x) + b(x) y(x) = s(x) (495)

The homogeneous equation has two independent solutions denoted y1(x) and y2(x). The Wron-

skian is W ⌘W[y1, y2]
def

= y1y
0
2
� y
0
1
y2. We easily obtain the di↵erential equation W

0 = �aW i.e.
W (x) = W (0) exp

⇥
�
R
x

0
du a(u)

⇤
. For a = 0 the Wronskian is constant. Applying the ”variation

of the constant’s method”, we get the general solution

y(x) = Ay1(x) +B y2(x)� y1(x)

Z
x

0

du
y2(u)s(u)

W (u)
+ y2(x)

Z
x

0

du
y1(u)s(u)

W (u)
. (496)

For example, for a(x) = 0 and b(x) = k
2 we can choose y1(x) = cos kx and y2(x) = sin kx, with

Wronskian W (x) = k.

A.3 Asymptotics of integrals

One frequently deals with integrals involving large parameters (furthermore, many useful special
functions are defined through nice integral representations). Here I recall two methods allowing
to extract some asymptotic behaviour.

a) The Laplace method

Consider a monotonously increasing function '(x) and the integral
R
1

0
dx e��'(x). When � !

+1, one expects the exponential to decay fast, on scale ⇠ 1/(�'0(0)) ! 0, and the integral
is dominated by the boundary. Note that in the expansion e��'(x) = e��'(0) exp

�
� �'

0(0)t �

�'
00(0)t2/2 + · · ·

 
, the exponential e��'

00
(0)t

2
/2 decays over a larger scale, ⇠ 1/(�'00(0))1/2. In

conclusion, adding a smooth function g(x) in the integral, we can write

I(�) =

Z
1

0

dx g(x) e��'(x) '
�!+1

g(0)

�'0(0)
e��'(0) (497)

Note that if g(x) vanishes, we can extend the method. For example, a similar explansion gives

I(�) =

Z
1

0

dx g(x) e��'(x) '
�!+1

g
0(0)

⇥
�'0(0)

⇤
2
e��'(0) for g(x) ' g

0(0)x for x! 0. (498)

Remark : a systematic expansion under these lines usually produce an asymptotic series. For
example, one can apply the method to get the asymptotic of the exponential integral :

E1(z)
def

=

Z
1

z

dt

t
e�t (499)

One obtains E1(z) ' (1/z)e�z for z ! +1. This is the first term of the asymptotic series
(series with zero convergence radius)

E1(z) =
z!1

e�z

z

 
nX

k=0

(�1)k
k!

zk
+O(|z|�n�1)

!
(500)

(valid for | arg(z)| 6 ⇡ � � with � > 0). 36

36You can get the series easily by introducing Ek(z)
def

=
R

+1
z

dt
tk

e�t and use the recurrence En(z) = e
�z

zn �
n
z En+1(z)
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b) The steepest descent method (saddle point approximation)

Another frequently encountered case is an integral of the form
R
b

a
dx e��'(x) where � 2 R is a

large parameter and '(x) a real function with one absolute minimum at x⇤ 2]a, b[ su�ciently far
from the boundaries, with '00(x⇤) > 0. In the �! +1 limit, the exponential is sharply peaked
around x⇤ and we can expand the function around it, which leads to a Gaussian integral. As a
result

I(�) =

Z
b

a

dx e��'(x) '
�!+1

s
2⇡

�'00(x⇤)
e��'(x⇤) . (501)

Remarks :

• When '(x) is analytic, contour deformations are allowed, which might permit to pass through
a saddle point not on the original contour (the real axis) but somewhere else in the complex
plane.

• The method also applies to integral of the type I(�) =
R
b

a
dx e�i�'(x) where � and '(x) are

real. In this case one should take into account the contributions of all stationary points along
the contour, i.e. both maxima and minima of '(x). Then, the method is called the “stationary
phase method”.

- Exercice 83 – : Extend the method when '00(x⇤) = 0 and '0000(x⇤) > 0.

- Exercice 84 – Asymptotic of the MacDonald function : Using the integral represen-
tation (517) of the MacDonald function, use the steepest descent method to get the asymptotic
K⌫(z) '

z!+1

p
⇡

2z
e�z.

- Exercice 85 – : Requirement of a contour deformation in the application of the steepest
descent method appears when studying the Airy function

Ai(z) =

Z
+1

�1

dt

2⇡
ei(

t3

3
+zt) (502)

solution of the Airy equation y
00(z) = z y(z). We study the asymptotic for z ! ±1. Find the

saddle point(s) and deduce the asymptotics

Ai(z) '

8
<

:

1

2
p
⇡ z1/4

e�
2

3
z
3/2

for z ! +1
1

p
⇡(�z)1/4

cos
�
2

3
(�z)3/2 � ⇡

4

�
for z ! �1

(503)

argue that only one saddle point controls the asymptotic for z > 0.
Hint : plot '(t) along the imaginary axis of the complex variable t.

A.4 Special functions

Special functions are very useful. You can find information in standard books [21, 2] or on the
internet [1].

Euler Gamma function

any integral of the form
R
1

0
dxx↵ e�c x

�
can be related to the Euler Gamma function

�(z) =

Z
1

0

dt tz�1 e�t for Re(z) > 0 . (504)
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It can also be defined for Re(z) 6 0, however it presents simple poles for �n 2 N.
Important property : �(z + 1) = z �(z) .

Special values : �(1) = 1 and �(1/2) =
p
⇡.

From these, we immediatly deduce �(n+ 1) = n! and �(n+ 1

2
) = 2�n

p
⇡ (2n� 1)!!.

Asymptotic is given by the Stirling formula for z � 1

�(z + 1) '
p
2⇡z zz ez . (505)

- Exercice 86 – : Demonstrate this result starting from the integral representation and using
the steepest descent method (cf. Appendix b) page 99).

- Exercice 87 – : Express the integral
Z
1

0

dxxµ e�
1

2
a x

2

(506)

in terms of the Gamma function.

Pochhammer symbol : sometimes it is useful to introduce the Pochhammer symbol

(a)n
def

= a(a+ 1) · · · (a+ n� 1) =
�(a+ n)

�(a)
. (507)

It can be used in the following Taylor expansion :

(1� x)�↵ = 1 + ↵x+
↵(↵+ 1)

2!
x
2 + · · · =

1X

n=0

(↵)n
n!

x
n (508)

(1 + x)↵ = 1 + ↵x+
↵(↵� 1)

2!
x
2 + · · · =

1X

n=0

�(↵+ 1)

�(↵� n+ 1)n!
x
n (509)

Note that this last expansion is stopped when ↵ 2 N due to the divergence of the Gamma
function in the denominator when n > ↵ 2 N (the formula then coincides with the binomial
formula).

Euler Beta function

The Beta function is defined as

B(µ, ⌫) =
�(µ)�(⌫)

�(µ+ ⌫)
. (510)

Useful integrals :

B(µ, ⌫) =

Z
1

0

dt tµ�1(1� t)⌫�1 = 2

Z
⇡/2

0

d✓ sin2µ�1 ✓ cos2⌫�1 ✓ . (511)

Error function

The error function is the integral of the Gaussian function :

erf(z)
def

=
2
p
⇡

Z
z

0

dt e�t
2

(512)

We also introduce the complementary error functions erfc(z) = 1� erf(z). Asymptotics :

erfc(z) '
z!1

e�z
2

p
⇡

NX

n=0

(�1)n
(1/2)n
z2n+1

+RN (z) (513)

where (a)n is the Pochhammer symbol.
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Modified Bessel functions

The modified Bessel equation is z2 y00(z) + z y
0(z)� (⌫2 + z

2) y(z) = 0.

• A solution is the modified Bessel function

I⌫(z) =
1X

n=0

(z/2)2n+⌫

n!�(⌫ + n+ 1)
(514)

It grows exponentially at infinity I⌫(z) ⇠ e+z for z ! +1.
The one for index ⌫ = 0 has been used :

I0(z) =

Z
⇡

0

dt

⇡
ez cos t =

Z
+1

�1

dt

⇡

e�zt
p
1� t2

(515)

Asymptotics : I0(z) ' 1 + z
2

4
+ · · · for z ! 0 and I0(z) '

e
z

p
2⇡z

for z !1.

• Another independent solution of the modified Bessel equation is given by the MacDonald
function (Bessel function of third kind)

K⌫(z) =
⇡

2 sin⇡⌫
[I�⌫(z)� I⌫(z)] (516)

(the expression is valid for µ /2 Z). Obviously K⌫(z) = K�⌫(z). For integer index, see [21], of
formula 10.31.1 of [1].

The MacDonald function is divergent for z ! 0, as K⌫(z) '
�(⌫)

2

�
z

2

��⌫
, and decays expo-

nentially at infinity, K⌫(z) '
p

⇡

2z
e�z for z ! +1. A useful integral representation is

K⌫(z) =
1

2

⇣
z

2

⌘
⌫
Z
1

0

dt

t⌫+1
e�t�z

2
/4t for Re z > 0 (517)

Elliptic integrals

Elliptic integral of first kind :

K(k) =

Z
⇡/2

0

d↵p
1� k2 sin2 ↵

(518)

Limit k ! 0 : K(k) = ⇡

2

⇣
1 + k

2

4
+ · · ·

⌘

Limit k ! 1� : K(k) = ln 4/k0 + k
02

4
(ln 4/k0 � 1) + · · · where k

0 =
p
1� k2.

A useful integral is

Z
+⇡

�⇡

d2~k

(2⇡)2
1

2a+ cos kx + cos ky
=

1

⇡a
K(1/a) (519)

A.5 Poisson formulae

Let f̂(k) =
R
R dx f(x) e�ikx : X

n2Z
f(n) =

X

n2Z
f̂(2⇡n) (520)

In particular X

n2Z
�(x� n) =

X

n2Z
e2i⇡nx (521)
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- Exercice 88 – : Check that

⇥(y|↵, ⌘)
def
=
X

n2Z
e2i⇡n⌘ e�⇡

2
(n+↵)

2
y =

1
p
⇡y

X

n2Z
e2i⇡(n�⌘)↵ e�

(n�⌘)2

y , (522)

This sum is related to the Jacobi theta function (DLMF, § 20) ✓3(z, q) =
P

n
q
n
2

e2inz, i.e.

⇥(y|0, ⌘) = ✓3(⇡⌘, e�⇡
2
y).
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[4] D. Applebaum, Lévy processes and stochastic calculus , Cambridge University Press, Cam-
bridge (2004).

[5] J.-P. Bouchaud and A. Georges, Anomalous di↵usion in disordered media: Statistical mech-
anisms, models and physical applications, Phys. Rep. 195, 127–293 (1990).

[6] B. Bru and M. Yor, La vie de W. Doeblin, Lettre de l’Académie des Sciences 2, 16–17
(2001).

[7] S. Chaturvedi, Gaussian stochastic processes, in Stochastic Processes Formalism and Appli-
cations , edited by G. S. Agarwal and S. Dattagupta, pp. 19–29, Berlin, Heidelberg (1983),
Springer Berlin Heidelberg, ISBN 978-3-540-40923-6.

[8] A. Comtet, J. Desbois and C. Texier, Functionals of the Brownian motion, localization and
metric graphs, J. Phys. A: Math. Gen. 38, R341–R383 (2005).

[9] A. Comtet, C. Monthus and M. Yor, Exponential functionals of Brownian motion and
disordered systems, J. Appl. Probab. 35, 255 (1998).

[10] H. A. David, Order Statistics, John Wiley & Sons, New York, second edition (1981).

[11] A. Dhar, Heat transport in low-dimensional systems, Adv. Phys. 57, 457–537 (2008).

[12] D. Dufresne, The distribution of a perpetuity, with application to risk theory and pension
funding, Scand. Actuarial. J. pp. 39–79 (1990).

[13] B. Duplantier, Le mouvement brownien, ”divers et ondoyant”, Séminaire Poincaré 1, 155–
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9, 1–114 (1909).

[45] M. Petit, L’équation de Kolmogoro↵. Vie et mort de Wolfgang Doeblin, un génie dans la
tourmente nazie, Ramsay (2003).

[46] H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications, Springer,
Berlin (1989).

[47] U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines, Rep.
Progr. Phys. 75(12), 126001 (2012).

[48] K. Sekimoto, Stochastic energetics, volume Series in modern condensed matter physics
vol.10, Springer (2010).

[49] C. Texier, Individual energy level distributions for one-dimensional diagonal and o↵-
diagonal disorder, J. Phys. A: Math. Gen. 33, 6095–6128 (2000).

[50] C. Texier, Physique statistique (faiblement) hors équilibre : formalisme de la réponse
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Itô, Kiyoshi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
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Lévy distribution . . . . . . . . . . . . . . . . . . . . . . . . 9, 20
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Lévy, Paul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
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Perron-Fröbenius theorem . . . . . . . . . . . . . . . . . 41
persistence

of the BM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
of the random walk . . . . . . . . . . . . . . . . . . . . 78

Planck, Max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Poisson formula. . . . . . . . . . . . . . . . . . . . . . . . . . .105
Poisson process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
probability space . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34, 36

R
random process

first passage . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
rate function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
recurrence of the BM . . . . . . . . . . . . . . . . . . . . . . 80
renewal process . . . . . . . . . . . . . . . . . . . . . . . 45, 118

S
SDE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
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