Tutorials 10 - Functionals

1 Time spent on \mathbb{R}_{+}for a Brownian bridge

To illustrate the flexibility of the method, we study the distribution of $T[x(\tau)]=\int_{0}^{t} \mathrm{~d} \tau \theta_{\mathrm{H}}(x(\tau))$ over the set of "Brownian bridges" for $[0, t]$. A Brownian bridge is a Brownian trajectory which is conditioned to come back to its starting point, i.e. here $x(0)=x(t)=0$.

1/ Write the characteristic function $\widetilde{\mathcal{P}}_{t}(p)$ with a path integral and show that it is now given by

$$
\begin{equation*}
\widetilde{\mathcal{P}}_{t}(p)=\frac{\langle 0| \mathrm{e}^{-t H_{p}}|0\rangle}{\langle 0| \mathrm{e}^{-t H_{0}}|0\rangle} \tag{1}
\end{equation*}
$$

2/ Check that $G(0,0 ; \alpha, p)=\langle 0|\left(\alpha+H_{p}\right)^{-1}|0\rangle=\frac{\sqrt{2}}{p}(\sqrt{\alpha+p}-\sqrt{\alpha})$. Using the formula

$$
\begin{equation*}
\int_{0}^{\infty} \mathrm{d} t \frac{\mathrm{e}^{-a t}-\mathrm{e}^{-b t}}{2 \sqrt{\pi} t^{3 / 2}}=\sqrt{b}-\sqrt{a} \tag{2}
\end{equation*}
$$

deduce the inverse Laplace transform $\langle 0| \mathrm{e}^{-t H_{p}}|0\rangle=\mathscr{L}_{t}^{-1}[G(0,0 ; \alpha, p)]$. Check your result by considering the $p=0$ limit.
3/ Deduce $\widetilde{\mathcal{P}}_{t}(p)$ and give its inverse Laplace transform $\mathcal{P}_{t}(T)$ (which should be easy!). Compare to Lévy's arcsine law (for free Brownian motion).

2 Local time for a free Brownian motion

We consider a 1D BM starting from x_{0} and introduce the local time

$$
\begin{equation*}
\tau[x(\tau)] \stackrel{\text { def }}{=} \int_{0}^{t} \mathrm{~d} \tau \delta(x(\tau)) \tag{3}
\end{equation*}
$$

spent by the process at the origin. The aim of the exercice is to compute its distribution $\mathscr{P}_{t, x_{0}}(\tau)$.
1/ What is the operator H_{p} in this case ?
2/ Construct the Green's function $\langle x|\left(\alpha+H_{p}\right)^{-1}\left|x_{0}\right\rangle$, i.e. the two solutions $\psi_{ \pm}(x)$. Deduce the double Laplace transform $Q\left(x_{0} ; \alpha, p\right)=\mathscr{L}_{\alpha}\left[\mathscr{L}_{p}\left[\mathscr{P}_{t, x_{0}}(\tau)\right]\right]=\int_{0}^{\infty} \mathrm{d} t \mathrm{e}^{-\alpha t} \int_{0}^{\infty} \mathrm{d} \tau \mathrm{e}^{-p \tau} \mathscr{P}_{t, x_{0}}(\tau)$. Check your result by considering the $p=0$ limit.
3/ We first perform the inverse Laplace transform $\mathscr{L}_{\tau}^{-1}\left[Q\left(x_{0} ; \alpha, p\right)\right]$. What is the Laplace transform $\tilde{\psi}(p)$ of the exponential function $\psi(\tau)=\mathrm{e}^{-\omega \tau}$? Deduce $\mathscr{L}_{\tau}^{-1}\left[Q\left(x_{0} ; \alpha, p\right)\right]=$ $\int_{0}^{\infty} \mathrm{d} t \mathrm{e}^{-\alpha t} \mathscr{P}_{t, x_{0}}(\tau)$.
4/ Using the definition of the MacDonald function (see appendix), compute the Laplace transform $\mathscr{L}_{\alpha}\left[t^{-1 / 2} \mathrm{e}^{-x_{0}^{2} /(2 t)}\right]=\int_{0}^{\infty} \mathrm{d} t \mathrm{e}^{-\alpha t} t^{-1 / 2} \mathrm{e}^{-x_{0}^{2} /(2 t)}$. Deduce also the inverse Laplace transform of $\frac{1}{\alpha}\left(1-\mathrm{e}^{-\sqrt{2 \alpha} x_{0}}\right)$. Give $\mathscr{P}_{t, x_{0}}(\tau)$. What is the probability that the local time remains zero ? Interpret.

Appendix

MacDonald function

$$
\begin{equation*}
K_{\nu}(z)=\frac{1}{2}\left(\frac{z}{2}\right)^{\nu} \int_{0}^{\infty} \frac{\mathrm{d} t}{t^{\nu+1}} \mathrm{e}^{-t-z^{2} / 4 t} \quad \text { for } \operatorname{Re} z>0 \tag{4}
\end{equation*}
$$

Asymptotic $K_{\nu}(z) \underset{z \rightarrow+\infty}{\simeq} \sqrt{\frac{\pi}{2 z}} \mathrm{e}^{-z}$.
In particular

$$
\begin{equation*}
K_{1 / 2}(z)=\sqrt{\frac{\pi}{2 z}} \mathrm{e}^{-z} \tag{5}
\end{equation*}
$$

