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Advanced Statistical Physics – CORRECTION of the january 2024 Exam

1 Bridge processes : conditioning in the Langevin equation

We consider the process described by the SDE

dx(t)

dt
= F (x(t)) +

√
2Dη(t) (1)

where η(t) is a normalised Gaussian white noise, ⟨η(t)⟩ = 0 and ⟨η(t)η(t′)⟩ = δ(t− t′).

1/ Correlator of the Wiener process :

〈
W (t)W (t′)

〉
=

∫ t

0
dτ

∫ t′

0
dτ ′ δ(τ − τ ′) =

∫ min(t,t′)

0
dτ = min

(
t, t′

)
We now consider the Brownian bridge starting and ending at x0 = xf = 0

x(t) =W (t)−
W (tf )

tf
t for t ∈ [0, tf ] (2)

The correlator is

CB(t, t
′) =

〈
W (t)W (t′)

〉
− t

tf

〈
W (tf )W (t′)

〉
− t′

tf
⟨W (t)W (tf )⟩+

t t′

t2f

〈
W (tf )

2
〉
= min

(
t, t′

)
− t t

′

tf

which vanishes for t = 0 = tf and t′ = 0 = tf , as it should.

2/ The question “Give the probability for the process to arrive at xf at time tf , conditioned to
start from x0 (at time 0) and pass at x at time t ∈]0, tf [” was not fantastic ! In principle,
the answer is

P1|2(xf , tf |x, t;x0, 0)
Markov
= P1|1(xf , tf |x, t) ≡ Ptf−t(xf |x) (3)

(we used that the process is homogeneous).
It would have been more useful for the following to ask the probability to be at xf at time
tf and at x at time t, conditioned on the initial value x0 :

P2|1(xf , tf ;x, t |x0, 0) = P1|2(xf , tf |x, t;x0, 0)P1|1(x, t |x0, 0)
Markov
= Ptf−t(xf |x)Pt(x|x0)

(4)
Hence this is the joint distribution of x(tf ) and x(t), conditioned to start from x0.
** Both answers are accepted **

3/ We introduce

Pt(x) =
Ptf−t(xf |x)Pt(x|x0)

Ptf (xf |x0)
=

joint distribution of x(tf ) & x(t)

distribution of x(tf )
(5)

Using the Chapman-Kolmogorov equation we get
∫
dxPt(x) = 1. The function Pt(x) is

the distribution of x(t), conditioned on both the intial value x(0) = x0 and the final value
x(tf ) = xf .
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4/ For convenience, we write

Pt(x) =
Q(x, t)P (x, t)

Ptf (xf |x0)
where

{
P (x, t) ≡ Pt(x|x0)
Q(x, t) ≡ Ptf−t(xf |x)

(6)

Using the appendix, we have

∂tP (x, t) = −∂x
[
F (x)P (x, t)

]
+D∂2xP (x, t) (forward FPE) (7)

−∂tQ(x, t) = +F (x) ∂xQ(x, t) +D∂2xQ(x, t) (backward FPE). (8)

We deduce

∂t(PQ) = −Q∂x
[
FP

]
− PF∂x

[
Q
]
+D

=∂2
x(QP )−2P∂2

xQ−2(∂xQ)(∂xP )︷ ︸︸ ︷{
Q∂2xP − P∂2xQ

}
= −∂x

[
FQP

]
− 2D ∂x

[(
∂xQ

)
P
]︸ ︷︷ ︸

=∂x
[(

∂x lnQ
)
QP

]+D∂2x
[
QP

]

We can interpret the two first terms as a drift term for the time dependent drift

F̃ (x, t) = F (x) + 2D∂x lnQ(x, t) (9)

i.e. the distribution obeys

∂tPt(x) = −∂x
[
F̃ (x, t)Pt(x)

]
+D∂2xPt(x) (10)

whose solution describes the stochastic process constrained to reach xf at time tf .

5/ According to the appendix, this FPE corresponds to the SDE

dx

dt
= F (x) + 2D∂x

[
lnQ(x, t)

]
+
√
2Dη(t) for t ∈ [0, tf ] . (11)

(simulations of the figures correspond to this SDE for F (x) = 0).

6/ Reminder of the Ornstein-Uhlenbeck process (linear force F (x) = −γ x). We integrate
the SDE (1), leading to x(t) = x0 e

−γt +
√
2D

∫ t
0 dt1 η(t1) e

−γ(t−t1). Averaging is easy (cf.
lectures + tutorials) :

⟨x(t)⟩ = x0 e
−γt (12)

Var(x(t)) =
D

γ

(
1− e−2γt

)
(13)

Using that the process is Gaussian, we deduce the distribution

Pt(x|x0) =
√

γ

2πD(1− e−2γt)
exp

{
−γ(x− x0 e

−γt)2

2D(1− e−2γt)

}
(14)

We use that Q(x, t) = Ptf−t(xf |x), thus

2D∂x lnQ(x, t) = γ
xf − x e−2γ(tf−t)

sinh γ(tf − t)
(15)

i.e. the SDE for the constrained Ornstein-Uhlenbeck process is

dx(t)

dt
= −γ x(t) + γ

xf − x(t) e−2γ(tf−t)

sinh γ(tf − t)
+
√
2Dη(t) (16)

Some solutions of this SDE are represented on the figure.
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Figure 1: Left : Unconstrained Ornstein-Uhlenbeck process (D = 1, γ = 3). Right : Ornstein-
Uhlenbeck process constrained to reach xf = 2 obtained by solving (16).

7/ Consider now the free BM :
a) Q(x, t) = 1√

4πD(tf−t)
exp

{
− (xf − x)2/4D(tf − t)

}
. We get

2D∂x lnQ(x, t) = (xf − x)/(tf − t)

We deduce the SDE for the constrained process

dx(t)

dt
=
xf − x(t)

tf − t
+
√
2Dη(t) (17)

which is indeed the γ → 0 limit of the previous SDE.
b) As t→ t−f the drift diverges, unless x→ xf , being the reason why the constrained process
eventually reachs xf .
c) If we average the equation we find

d ⟨x(t)⟩
dt

=
xf − ⟨x(t)⟩
tf − t

⇒ d ⟨x(t)⟩
xf − ⟨x(t)⟩

=
dt

tf − t
(18)

leading to
xf − ⟨x(t)⟩
xf − x0

= 1− t

tf
⇒ ⟨x(t)⟩ = x0

(
1− t

tf

)
+ xf

t

tf
(19)

as expected.
d) We now study the variance from the constrained SDE. This time we use the modified
FPE :

∂

∂t

〈
x(t)2

〉
=

∫
dxx2∂tPt(x) =

∫
dxx2

(
−∂x

[
F̃Pt(x)

]
+D∂2xPt(x)

)
(20)

Integrations by parts give

∂

∂t

〈
x(t)2

〉
= 2

〈
x(t)F̃ (x(t), t)

〉
+ 2D (21)

We apply the formula to the free BM and set D = 1/2 and x0 = xf = 0 for simplicity. We
get

∂

∂t

〈
x(t)2

〉
= −2

〈
x(t)2

〉
tf − t

+ 1 (22)

We check easily that
〈
x(t)2

〉
= t(1− t/tf ) is solution. This shows that the constrained SDE

(and the constrained FPE) describes the Brownian bridge (2).
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Figure 2: Left : Unconstrained RW (D = 1/2). Right : RW constrained to reach xf = 2.

To learn more : S. N. Majumdar & H. Orland, “Effective Langevin equations for constrained
stochastic processes”, J. Stat. Mech. P06039 (2015).
This is also related to “conditioning and Doob h’s transform”.

2 Wetting transition

The substrate is at z = 0 and the fluid with density n(z) above. The grand potential is

gf [n(z)] =

∫ ∞

0
dz

[
1

2
B
[
∂zn(z)

]2
+W (n(z))

]
, (23)

Additionally there is a surface term (interaction between the substrate and the fluid) :

gs(ns) = a0 − a1
ns

nl − nv
+

1

2
a2

n2s
(nl − nv)2

+ . . . (24)

where ns = n(z = 0) is the density of the fluid at the solid surface.

1/ The form (23) is a Ginzburg-Landau functional and (24) is a Landau expansion.

2/ Field equation is
δgf
δn(z)

= −B n′′(z) +W ′(n(z)) = 0 (25)

We denote n∗(z) its solution.

3/ We identify a conserved quantity :

E =
B

2

[
n′∗(z)

]2 −W (n∗(z)) (26)

(independent of z). At infinity the density is that of the vapor, n∗(z → ∞) = nv, hence
E = −W (nv) = 0. As a result, the solution satisfies n′∗(z) = ±

√
2W (n∗(z))/B. Note that

the vapor density is the lowest, hence n∗(z) decreases with z.

4/ We deduce

gf [n∗] = B

∫ ∞

0
dz

[
n′∗(z)

]2
= −B

∫ ∞

0
dz

dn∗(z)

dz

√
2

B
W (n∗(z)) =

√
2B

∫ ns

nv

dn
√
W (n)

(27)

A. Thin-film profile.— We choose the simple form W (n) = c (n−nv)2(n−nl)2 for nv < ns <
nl.
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5/ The field equation leads to the

n′(z) = −
√

2c

B
(nl − n)(n− nv) (28)

6/ Integration is easy. We write

dn

(nl − n)(n− nv)
= −

√
2c

B
dz i.e.

∫ n∗(z)

ns

dz

(
1

nl − n
+

1

n− nv

)
= −z/ξ (29)

where ξ =

√
B

2c
(nl − nv)

−1. We get

n∗(z)− nv
nl − n∗(z)

=
ns − nv
nl − ns︸ ︷︷ ︸

=∆

e−z/ξ (30)

i.e

n∗(z) =
nv + nl ∆e−z/ξ

1 + ∆e−z/ξ
(31)

We check that it decreases from n∗(0) = ns to n∗(z → ∞) = nv.

7/ If ns ≫ nv, then n∗(z) ≃ nl
[
1 + e(z−z0)/ξ

]−1
where z0 = ξ log

(
ns

nl − ns

)
. It is a step

function where the drop of the density occurs around z0, on a scale ξ. Hence z0 can be
interpreted as the height of the liquid/gas interface (this makes sense for z0 ≫ ξ).

B. Wetting transitions.—We define the vapor-liquid interfacial energy γ =

∫ nl

nv

dn
√
2BW (n).

8/ Consider a liquid/gas interface :

γ = gf [n∗] =
√
2B

∫ nl

nv

dn
√
W (n) =

√
2Bc

∫ nl

nv

dn (nl − n)(n− nv)

=
√
2Bc

∫ nl−nv

0
dx (nl − nv − x)x =

√
2B c (nl − nv)

3

(
1

2
− 1

3

)
=

√
2B c

6
(nl − nv)

3

9/ In the general case where ns ̸= nl,

gf [n∗(z)] =
√
2B

∫ ns

nv

dn
√
W (n) =

√
2B c (nl − nv)

3

[
1

2

(
ns − nv
nl − nv

)2

− 1

3

(
ns − nv
nl − nv

)3
]
(32)

10/ We set ψ =
nl − ns
nl − nv

. For ns ∈ [nv, nl] we have ψ ∈ [0, 1] (ψ = 1 for the vapor and ψ = 0

for the liquid). We write
ns − nv
nl − nv

= 1− ψ (33)

hence
gf [n∗] = γ

(
1− 3ψ2 + 2ψ3

)
. (34)

11/ We write the surface contribution in terms of the new parameter

gs(ns) = gs(nl) +

(
a1 − a2

nl
nl − nv

)
ψ + 1

2 a2 ψ
2 . (35)
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As a result, the total grand potential is

gtot(ns) = γ + gs(nl) +

(
a1 − a2

nl
nl − nv

)
ψ +

(
1

2
a2 − 3γ

)
ψ2 + 2γ ψ3 (36)

which has the form of a Landau expansion, in terms of the order parameter ψ ∈ [0, 1].

12/ We introduce ϵ = (nl − ns)/ns. We find

1

ψ
=

(
1− nv

nl

)(
1 +

1

ϵ

)
(37)

Above, we have introduced ez0/ξ = ∆ = −1 + 1/ψ. Hence there is a mapping between the
order parameter ψ and the position of the interface z0. In the liquid phase ψ → 0 and the
position of the interface diverges (wetting). In the vapor phase (no wetting) ψ ≲ 1 and the
position of the interface is z0 ≲ 0, density is low at the interface.

For ψ ≪ 1 we have ϵ ≃ ψ ≃ e−z0/ξ.

13/ Because ϵ ≃ ψ we find a similar expansion

gtot = γ + gs(nl) + α ϵ+ β ϵ2 + θ ϵ3 + . . . (38)

(no need to compute the coefficients).

(a) (b)

Figure 3: Plot of the system grand potential gtot as a function of the parameter z0 for two
different temperatures for a given set of microscopic coefficients. (a) β > 0. (b) with another
set of parameters with β < 0

14/ The figure shows the grand potential as a function of z0 (instead of ϵ or ψ). In the figure
(a), the top curve has a minimum for z0 = ∞ (liquid, ns = nl) and the other curve has a
minimumu for z0 finite (ns < nl). This describes the transition between a wet substrate and
non-wet substrate.

15/ Figure (a) : the transition looks second order as we go continuously from one situation to
the other.

Figure (b) : clearly the minimum jumps discontinuously when one goes from one curve to
the other. The transition is first order.

Apparently, wetting transition is more likely first order (coefficients corresponding to second
scenario).
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