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1 Bridge processes : conditioning in the Langevin equation

Introduction.— We consider the SDE

dz(t)
dt

= F(x(t)) + V2D n(t) (1)

where 7(t) is a normalised Gaussian white noise, (n(t)) = 0 and (n(t)n(t')) = é(t—t'). A computer
simulation of such process is rather easy and, performed from an initial value z(0) = 2o up to a
final time ¢, leads to a random final position z(ty). On the other hand, in certain situations one
is interested only in trajectories which end at a fized, pre-determined (non random) end point x .
In a computer simulation, it would be extremely inefficient to keep the few trajectories ending
at the desired point among the many trajectories ending at random positions. We explain here
how to write a modified Langevin equation which generates only the constrained trajectories,
allowing to study efficiently their properties.

A famous example is the case of the Brownian bridge. Given an unconstrained Wiener
process W (t) = fot drn(r),

——=t forte[0,tf] (2)

ends at x(ty) = 0.

1/ Recover the correlator of the Wiener process (W (t)W (t')) and deduce the correlator of the
Brownian bridge Cp(t,t") = (z(t)z(t')). Plot Cp(t,t’) as a function of ¢ and plot Cp(t,t).

We could try to generalize this construction for a more general process with non zero drift F(z).
However, the representation is not so convenient for a computer simulation as it requires the
knowledge of some ”global” information on the noise over the full interval [0,¢¢] (the final value
W (ty)). In order to avoid this, we now follow a different strategy.

2/ We denote by P;(z|zo) the conditional probability for the process (). Give the probability
for the process to arrive at z; at time t¢, conditioned to start from x (at time 0) and pass
at = at time t €]0,¢y[.

3/ We introduce

QP [Pl = Al
Zu Ptf(xf’«%’o) h {Q(m,t) = Ptf—t(xflﬂf)

What is [dz 2 (z) ? Give the meaning of Z(x).



4/ Give the two partial differential equations for P(z,t) and Q(x,t) (cf. appendix). Deduce
that &2 (z) obeys a FPE for a modified drift

O Py(x) = —0, [F(x,t)Py(x)] + DO2Py(x) (4)
and give the expression of F(z,t).

5/ Argue that the conditioned process ending at ¢ at time ¢y obeys the SDE

CC%” — F(2) +2D0,[nQ(x.t)] +vV2Dn(t)  forte (0,4 (5)

6/ We consider the Ornstein-Uhlenbeck process, F(x) = —yx. Compute (x(t)) and Var(z(t))
for a fixed z(0) = g [solve the SDE ({1))]. Deduce P;(x|zg). Give the expression of the mod-
ified drift F(z,t) and write down the SDE for the constrained process.
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Figure 1: Left : Unconstrained RW (D =1/2). Right : RW constrained to reach x; = 2.

7/ a) What is Q(x,t) for the free Brownian motion (F(z) = 0) ? Deduce the SDE for the
Brownian bridge (check that it matches with the v — 0 limit of the previous question).
b) Discuss this new SDE.
c¢) Deduce a differential equation for (z(t)) and solve it.
d) Express ((t)?) in terms of Z(x) and, setting zy = z; = 0, deduce a differential equation
for (z(t)?). Check that the solution of 1/ solves this differential equation.

Appendix
We recall that the conditional probability for the process obeys

) o [F(z) Pu(z|mo)] + DO? Py (z|xo) (forward FPE)

atPt($ xTo) = —8
20) = +F(0) Oz Py(x|20) + D2, Pi(z|x0)  (backward FPE).

|
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2 Wetting transition

Introduction.— We study a fluid in either liquid or vapor phase, on the top of a substrate.
Complete wetting is characterized by a macroscopic liquid film in between the solid substrate
and the vapor. Partial wetting is characterized by the solid substrate covered by a wedge or
finite drop of the fluid. In the macroscopic picture, the remainder of the solid contacts the
vapor. However, interactions with the solid can result in a local density of molecules near the
substrate that is quite different from the density of either the liquid or the vapor. We consider
the following cases: (i) The interaction with the solid substrate is repulsive, favoring a low
density of molecules on the substrate - i.e., a gas. In this case, there is solid-vapor equilibrium
and one would not expect small contact angle wetting of the substrate by the liquid. (ii) The



interaction with the substrate is attractive, favoring a high density of the fluid. In this case,
there is the possibility for solid-fluid-vapor equilibrium, with a layer of fluid on the substrate
whose density is larger than that of the vapor, but may not equal that of the bulk fluid phase.
When this intervening fluid layer is macroscopically thick, one has complete wetting. When
this intervening fluid layer is not macroscopically thick, it can coexist with a macroscopic liquid
phase.

Equilibrium equations.— We consider a vapor-liquid system in contact with a solid substrate,
where the total grand potential per unit area, gior = gf[n(z)] + gs(ns), consists of the sum of
gf, the liquid/vapor grand potential, with the fluid/substrate interfacial contribution gs. For
simplicity, we consider a situation translation invariant in two directions : the plane substrate
is normal to the z direction, and assume that the layer density only depends on z. For the fluid
above the substrate (z > 0), we consider the free energy

grln(z)] = /000 dz [;B [azn(z)]Q +Wn(z))| , (6)

where n(z) is the density of the fluid-vapor above the solid (z > 0). The contribution W (n)
includes the chemical potential and also subtracts off the grand potential of the uniform bulk
phase. The interfacial grand potential is assumed to be given with a Virial expansion

Ng 1 n?2

nl_nv+§a2m+... (7)

gs(”s) =ap —ai

where ng, = n(z = 0) is the density of the fluid at the solid surface, while n; and n, are the
bulk, equilibrium liquid and vapor densities respectively. The first term in this expression is a
constant term, the second represents an attraction (when a; > 0) of the molecules to the surface
(recall that if the molecules are repelled from the surface it is highly unlikely for a fluid-like
layer to exist near the surface of the substrate), and the third term represents an ”excluded-
volume” type of interaction (which can be repulsive or attractive) of the molecules adsorbed on
the surface. For simplicity, we consider the case where this interaction is repulsive (az > 0) so
the added complication of a liquid-gas phase separation by the adsorbed molecules is absent.
We consider the case where the substrate is uniformly covered by a layer of ”fluid”, but that
this layer is not necessarily at the equilibrium fluid density.

1/ Comment on the form of the grand potentials @ and .

Strategy.— We consider the total grand potential is thus a function of spatially varying density,
n(z), and by the value of the density on the surface, ns = n(z = 0). We first minimize g;o+ with
respect to the n(z) with a fixed value of the surface density, ns to find the profile for arbitrary
surface densities. Afterward, one uses this solution for n(z) to minimize g:,; again to find the
local surface density, including the contributions from both g, and gy, both of which depend
on ng.

2/ Derive the equation on n(z) resulting from the minimization of g¢[n] with respect to the
density profile n(z), in terms of §°n/dz% and OW/dn.

3/ Assuming the boundary condition W = 0 in the liquid or vapor phase far away from the
substrate, show that the solution for n.(z) satisfies

' (%”) W (). 5)

4/ Using the latter equation and assuming n(z — co) = n,, show that the fluid grand potential

is merely
gr[ns] —/ dn+/2BW(n). 9)

3



A. Thin-film profile.— In the following, we consider the simplified form
W(n) =c(n—mny)*(n —m)?, (10)
and clearly we have n, < ng < n;.

5/ Write the corresponding equilibrium equation for On/0z.

6/ Show that its solution such that n.(z — 00) = n, is

(ny —ny) +ng (1 + Ae_z/f)
14+ Ae?/¢ ’

(11)

n.(z) =

s = I B
where A = 2" >0and £ =/ —(n; —ny)~ L.
n; — Ng 2c

If ng > n,, then n.(z) ~ ny [1 + e(z—zo)/ﬁ]*l where zg = £log < s >
ny — Ng

7/ Plot the density profile n,(z), and comment on the meaning of z.

One can observe an increase in the thickness of the film 2y by changing temperature. We
consider the case where ng is relatively insensitive to the temperature, but, as is usual for the
liquid-gas transition, the liquid density, n;(T"), decreases as one approaches the bulk transition
temperature for the phase separation. One then expects a finite thickness film of size zy at
low temperatures where n; > ng, and a transition to an infinitely thick layer at some higher
temperature, Ty,, when n;(T,) = ns. As the temperature approaches the wetting transition
temperature Ty, n;(T") — ns, and the thickness of the film diverges; there is a macroscopically
thick fluid layer in between the solid and liquid, i.e. a transition to complete wetting.

ny
B. Wetting transitions.— We define the vapor-liquid interfacial energy v = / dn /2 BW(n).

)

8/ Show that
v=2V2Bc(n —ny)®. (12)

9/ In the general case where ng # n;, show that

g ()] = VI B e — )’ [; (emre) g (e ‘””)3] (13)

ng—"ny ny — Ny

n; — Ng

10/ We set ¢ = . What is the range for ¢» 7 Show that

ny— Ny
gflna] = (1 = 3¢% + 2¢°) . (14)
11/ Show that the fluid/substrate interaction can be expressed as

ny

gs(ns) = gs(ny) + <a1 — as > v+ %ag V2. (15)

ny — Ny
Eventually, we consider the case of thick wetting films where n; >~ ng, so that we can assume

1 < 1. We also define € = (nl;ns)

. To simplify our calculations, we assume n, < ny.

12/ Relate € to zp.



13/ Find the expansion
Giot =7+ gs(m) +ae+ B +06 + ... (16)

With this result in hand, together with the relationship between € and zy, one can then plot
giot as a function of zy (instead of € or ¢). Depending on the type of interaction between the
substrate and the fluid, but also on the temperature, we can typically find the following figures
for giot, each for a given set of parameters, but for different temperatures, see Fig. [2}(a) and (b).
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Figure 2: Plot of the system grand potential g,; as a function of the parameter zg for two
different temperatures for a given set of microscopic coefficients. (a) 8 > 0. (b) with another
set of parameters with 8 < 0

14/ Comment on the behavior of the system, and on a possible transition.

15/ Comment on the order of the transition for the thickness of the film.

SOLUTIONS WILL BE AVALAIBLE AT http://www.lptms.universite-paris-saclay.fr/christophe_texier/
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