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Master 2 Physics of Complex Systems

Correction of the Stochastic processes’ exam – 22 december 2023

1 Questions related to the lectures (∼50mn)

A. 1/ – 4/ cf. lectures

B. First passage time

1/ to 4/ → cf. lectures.

T1(x0) =
1

D

∫ b

x0

dx eV (x)/D

∫ x

a
dx′ e−V (x′)/D . (1)

5/ Integration is very easy if V (x) = µx :

T1(x0) =
D

µ2

[
eµb/D − µb

D
− eµx0/D +

µx0
D

]
(2)

It vanishes at the absorbing boundary as it should.

(i) µb/D ≪ 1 : this is equivalent to send µ → 0. We find T1(x0) ≃
b2−x20
2D . For x0 ∼ 0 we

get the typical time b2/D to diffuse over a region of size b.
(ii) µb/D ≫ 1 for µ > 0 : we recover the Arrhenius behaviour due to the potential barrier
T1(x0) ≃ D

µ2
eµb/D ∼ exp

{
1
D [V (b)− V (0)]

}
(iii) |µ|b/D ≫ 1 for µ < 0 : the time is dominated by the drift T1(x0) ≃ (b− x0)/|µ|.

2 A multiplicative process

A. Preliminary : the Wiener process.
We recall that the Wiener process can be represented as W (t) =

∫ t
0 dτ η(τ) where η(t) is a

normalised Gaussian white noise such that ⟨η(t)⟩ = 0 and ⟨η(t)η(t′)⟩ = δ(t− t′).

1/ Correlator of the Wiener process ⟨W (t)W (t′)⟩ =
∫ t
0 dτ

∫ t′
0 dτ ′ δ(τ − τ ′) =

∫ min(t,t′)
0 dτ =

min (t, t′). The noise is Gaussian, hence the sum W (t) =
∫ t
0 dτ η(τ) is a Gaussian variable

and it is sufficient to know ⟨W (t)⟩ = 0 and
〈
W (t)2

〉
= t. The distribution is thus

Pt(W ) =
1√
2πt

exp{− 1

2t
W 2} . (3)

2/
〈
epW (t)

〉
is the characteristic function. We can easily compute the integral

∫
dW Pt(W ) epW

with the Gaussian distribution ; more interestingly, we use that the characteristic function
of a Gaussian variable X is

〈
epX

〉
= epκ1+

1
2
p2κ2 where κ1 = ⟨X⟩ and κ2 =

〈
X2

〉
c
; here〈

epW (t)
〉
= exp{1

2
p2

〈
W (t)2

〉
} = exp{1

2
p2t} (4)
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B. A multiplicative stochastic process.
We first a process described by the stochastic differential equation (SDE)

dx(t) = F (x(t)) dt+
√

2D(x(t)) dW (t) (Itô) (5)

1/ We use Itô calculus (appendix)

d
(
x(t)n

)
= nxn−1 dx+

1

2
n(n− 1)xn−2 dx2 (Itô)

=
[
nxn−1 F (x) + n(n− 1)xn−2D(x)

]
dt+ nxn−1

√
2D(x) dW (t) (Itô)

Now we can average

d

dt
⟨x(t)n⟩ = n

〈
xn−1 F (x)

〉
+ n(n− 1)

〈
xn−2D(x)

〉
(6)

In general, the derivative involves other correlators and we cannot close the set of equations,
unless....

2/ ... we consider F (x) = k x and D(x) = ω x2 (with ω > 0), hence

d ⟨xn⟩
dt

= [nk + n(n− 1)ω] ⟨xn⟩ (7)

i.e. we have obtained a differential equation for the n-th moment ⟨x(t)n⟩. For x(0) = x0
fixed, ⟨x(0)n⟩ = xn0 , we get

⟨x(t)n⟩ = xn0 e
nkt+n(n−1)ωt (8)

The first moment is ⟨x(t)⟩ = x0 e
kt, which grows for k > 0 and goes to 0 for k < 0.

Case k < 0 : the moments for small n may decay, but for large enough n, the moments
necessarily grow, when n > 1 − k/ω = 1 + |k|/ω. The fact that the randomness is in
the exponential amplifies the fluctuations and is at the origin of the dominant exponential
growth ∼ exp{n2ωt}.

3/ Let us now recover this result by a different method : looking at the SDE, it is tempting to
integrate the equation. To be more confident with integration, we first transform the SDE
in order to deal with an additive noise : consider d(lnx) = 1

xdx− 1
2x2

dx2, thus

d(lnx) = k dt+
√
2ω dW (t)− 1

2x2
2ω x2 dW (t)2 (9)

i.e.
d lnx(t) = (k − ω) dt+

√
2ω dW (t) (10)

now the Itô and the Stratonovich interpretations are equivalent. We can simply integrate
the equation (usual rules of calculus), leading to the representation of the process

x(t) = x0 e
(k−ω) t+

√
2ωW (t) (11)

It is now easy to average x(t)n = xn0 e
n(k−ω) t+n

√
2ωW (t) as the argument of the exponential

is Gaussian : ⟨en
√
2ωW (t)⟩ = exp{n2ωt}. We recover the above moments, Eq. (8). This

derivation has allowed to identify more clearly the origin of the different exponential terms
and has emphasized the effect of fluctuations in the exponential.

4/ We can relate the distribution of W (t) to the one of x(t) through a simple change of variable
Pt(x|x0) = dW

dx Pt(W ), i.e.

Pt(x|x0) =
1

x
√
4πωt

exp

{
− 1

4ωt
[ln(x/x0) + (ω − k)t]2

}
(12)

which is the “log-normal distribution”, with a very slow decay.
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3 Fluctuations in a laser

The electromagnetic field in a monomode laser is E(t) = Re(A(t)e−iω0t) where the amplitude
obeys the equation

dA(t)

dt
= 2b (I0 − |A(t)|2)A(t) (13)

1/ If A(0) > 0, then A(t) is real also (the differential equation being real). We have

dA

A(I0 −A2)
= 2bdt ⇒

∫ A(t)

A(0)

dA

I0

(
1

A
+

A

I0 −A2

)
= 2b t (14)

Integration is easy[
ln

A√
|I0 −A2|

]A=A(t)
A=A(0)

= 2bI0 t ⇒

√∣∣∣∣ I0
A(t)2

− 1

∣∣∣∣ =
√∣∣∣∣ I0

A(0)2
− 1

∣∣∣∣ e−2bI0 t (15)

A bit of rearrangement gives

E(t) =

√
I0 cos(ω0t)√

1 +
∣∣∣ I0
A(0)2

− 1
∣∣∣ e−4bI0 t

(16)

so that there is a ”fast” convergence towards the amplitude |A(t)| ≃
√
I0, the fixed point of

Eq. (13), after a time τI = 1/(4bI0).

4 6 8 10 12 14
t

-1.0

-0.5

0.5

1.0

E(t)

We now study the effect of additional noise originating from the fluctuations inside the cavity
(thermal vibrations, motion of atoms, etc). Its evolution is described by the SDE

dA = ψ
(
|A|2

)
Adt+

√
2D dW(t) where ψ

(
|A|2

)
= 2b (I0 − |A|2) (17)

where dW(t) is some complex noise (dW(t) = dWx(t) + i dWy(t) where dWx and dWy are two
i.i.d. real noises). As we have shown in the tutorial, writing A =

√
I eiθ, the intensity and the

phase obey the two SDE

dI = [2I ψ(I) + 4D] dt+ 2
√
2DI dWA(t) (Itô) (18)

dθ =

√
2D

I
dWθ(t) (Itô) (19)

where dWA(t) and dWθ(t) are two independent normalised real noises (dWA(t)
2 = dt and

dWθ(t)
2 = dt). We now want to identify the related Fokker-Planck equation.
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2/ Preliminary : From the Itô SDE dx = a(x) dt + b(x) dW (t), we deduce ⟨dx⟩ /dt = ⟨a(x)⟩,
associated with the drift term − ∂

∂x [a(x)Pt(x)], and
〈
dx2

〉
/dt = ⟨b(x)2⟩, associated with the

diffusion term 1
2∂

2
x

[
b(x)2Pt(x)

]
.

3/ The aim is to construct the FPE for the joint distribution Pt(I, θ) of the intensity and the
phase. From the above Itô SDE we deduce

⟨dI⟩ /dt = ⟨2I ψ(I) + 4D⟩ −→ drift term − ∂

∂I
(2I ψ(I) + 4D) (20)

⟨dθ⟩ /dt = 0 (21)〈
dI2

〉
/dt = 8D ⟨I⟩ −→ diffusion term 4D

∂2

∂I2
I (22)〈

dθ2
〉
/dt = 2D ⟨1/I⟩ −→ diffusion term D

∂2

∂θ2
1

I
(23)

Thus
∂Pt(I, θ)

∂t
=

(
− ∂

∂I
[2I ψ(I) + 4D] + 4D

∂2

∂I2
I +

D

I

∂2

∂θ2

)
Pt(I, θ)

Remark : If you don’t feel confident with this rapid argument, do like in the lecture and consider
a test function φ(I(t), θ(t)) and study its evolution

dφ(I, θ) ≃ ∂φ

∂I
dI +

∂φ

∂θ
dθ +

1

2

∂2φ

∂I2
dI2 +

∂2φ

∂I∂θ
dIdθ +

1

2

∂2φ

∂θ2
dθ2

then average

⟨dφ(·)⟩
dt

≃
〈
∂φ

∂I
(2I ψ(I) + 4D)

〉
+ 0 +

〈
4DI

∂2φ

∂I2

〉
+ 0 +

〈
D

I

∂2φ

∂θ2

〉
(24)

Finally, use that ⟨φ(I(t), θ(t))⟩ =
∫
dIdθ Pt(I, θ), integrate by parts and get rid of φ.

A bit of rearrangement, −4D ∂
∂I + 4D ∂2

∂I2
I = 4D ∂

∂I I
∂
∂I , leads to

∂Pt(I, θ)

∂t
=

[
− ∂

∂I
2I ψ(I) + 4D

∂

∂I
I
∂

∂I
+
D

I

∂2

∂θ2

]
Pt(I, θ) (25)

4/ The FPE for the marginal distribution of the intensity Qt(I) =
∫
dθ Pt(I, θ) is obtained by

integration of the previous equation over the angle. The term
∫ +π
−π dθ ∂2

∂θ2
Pt(I, θ) = 0 because

the distribution must be a periodic function of the phase. 1 We get

∂Qt(I)

∂t
=

[
− ∂

∂I
2I ψ(I) + 4D

∂

∂I
I
∂

∂I

]
Qt(I) (26)

The distribution is defined for I ∈ [0,∞[. We can introduce a probability current

Jt(I) = 2I

(
ψ(I)− 2D

∂

∂I

)
Qt(I) (27)

The stationary solution obeys

J = 2I

(
ψ(I)− 2D

∂

∂I

)
Q∗(I) (28)

1Below we consider the cumulative phase θ ∈ R. This is a possible choice, then we use
∫ +∞
−∞ dθ ∂2

∂θ2
Pt(I, θ) = 0

(boundary terms at infinity).
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The current J = 0 has to vanish because there is no current at I = 0, hence the stationary
solution is necessarily an equilibrium solution. Indeed, we get

Q∗(I) = C e
1

2D

∫
dI ψ(I) = C e−

b
2D

(I−I0)2 for I > 0 (29)

which is normalisable.

We plot the possible profiles depending on the parameters (be careful, the support is R+) :

3 4 5 6 7
I

0.2

0.4

0.6

0.8

Q*(I)

I0≪δI

I0∼δI I0≫δI

Remark : the normalisation constant is 1/C =
√

πD
2b

[
1 + erf(I0

√
b/2D)

]
5/ If ⟨I⟩ ≫

√
var(I), the distribution is sharply peaked, i.e. ⟨I⟩ ≃ I0 and var(I) ≃ D/b.

For I0 ≫
√
D/b we can linearize the SDE which becomes

dI ≃ −4bI0(I − I0)dt+
√
8DI0 dW (t) (30)

we recognize the Ornstein-Uhlenbeck process studied several times. We identify the time
scale introduced above τI = 1/(4bI0). We have analyzed several time the correlation function
(very easy to recover) 〈

δI(t) δI(t′)
〉
≃ D

b
e−|t−t′|/τI (31)

6/ We now consider the marginal distribution of the phase Rt(θ) =
∫∞
0 dI Pt(I, θ). We integrate

the FPE (25). The boundary term
[(

− 2I ψ(I)+ 4DI ∂
∂I

)
Pt(I, θ)

]I=∞
I=0

= 0 vanishes because
it corresponds to current at the boundary, which has to vanish.

In order to get the suggested form, we should have D ∂2

∂θ2

∫∞
0

dI
I Pt(I, θ) ≃ D

〈
1
I

〉 ∂2Rt(θ)
∂θ2

which
corresponds to assume that Pt(I, θ) ≃ Qt(I)Rt(θ) (i.e. intensity and phase uncorrelated).
In this case we get the form

∂Rt(θ)

∂t
= Dθ

∂2Rt(θ)

∂θ2
(32)

with Dθ = D
〈
1
I

〉
≃ D/I0 for ⟨I⟩ ≫

√
var(I).

Remark : this is not completely rigorous, because for Q(0) finite, ⟨1/I⟩ = ∞ ! The correct
argument involves the decoupling of time scales : the intensity relaxes rapidly to I ∼ I0 while the
phase exhibits a slow diffusion on time scale such that the intensity can be considered constant.

7/ If we consider that the phase θ ∈ R is the cumulative phase (and not the phase modulo 2π)
this is the normal diffusion, thus θ(t) =

√
2DθWθ(t) where Wθ(t) is a Wiener process.
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8/ In this last question, we study the effect of the phase fluctuations. We assume here that the
intensity is almost constant I(t) ≃ I0, i.e. the field is E(t) =

√
I0 e

−iω0t+iθ(t). The correlator
is approximatively 〈

E(t)E(t′)∗
〉
≃ I0 e

−iω0(t−t′)
〈
eiθ(t)−iθ(t′)

〉
(33)

We have considered above such correlation function of the Wiener process. Using Gaussianity
we have ⟨eiθ(t)−iθ(t′)⟩ = exp

{
− 1

2⟨[θ(t)− θ(t′)]2⟩
}
= e−Dθ|t−t′|, thus〈

E(t)E(t′)∗
〉
≃ I0 e

−iω0(t−t′)−Dθ|t−t′| (34)

From which we deduce the power spectrum of the laser

S(ω) =

∫
dt ⟨E(t0)E(t0 + t)∗⟩ eiωt = 2π I0

Dθ/π

(ω − ω0)2 +D2
θ

(35)

[for Dθ → 0 we get S(ω) = I0 2π δ(ω − ω0)]. We identify another time scale

τθ = 1/Dθ ≃ I0/D (36)

Due to the phase fluctuations, the laser delivers a broadened line shape of width ∆ω =
1/τθ = Dθ.

9/ The relaxation time of the intensity τI is independent of the diffusion constant D. Interest-
ingly the two time scales τI = 1/(4bI0) and τθ ≃ I0/D have opposite behaviours with the
intensity I0. The above assumptions correspond to a fast relaxation of the amplitude and a
slow diffusion of the phase

τθ
τI

≃ 4bI20/D ∼ (I0/δI)
2 ≫ 1 (37)

To learn more

On the theory of single mode laser, see the article (no discussion of the effect of fluctuations) :
Jon H. Shirley, Dynamics of a simple maser model, Am. J. Phys. 36(11), 949–963 (1968)
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