Stochastic processes - Exam

Friday 22 december 2023
Duration : 3h
The use of any documents (lecture notes,...), mobile phones, calculators, ... , is FORBIDDEN.

Recommendations :

Read the text carefully and write your answers as succinctly and as clearly as possible.
Check the appendices at the end. At the end, do not forget to reread yourself.

1 Questions related to the lectures ($\sim 50 \mathrm{mn}$)

A. We consider the master equation

$$
\begin{equation*}
\frac{\partial P_{t}(x)}{\partial t}=\int \mathrm{d} y\left[W(x \mid y) P_{t}(y)-W(y \mid x) P_{t}(x)\right] \tag{1}
\end{equation*}
$$

1/ Interpret the two terms. Check that the probability is conserved. In the exercice we consider $W(x \mid y)=\lambda w(x-y)$ for $w(\delta x)=w(-\delta x)$. Give the meaning of $\lambda=\int \mathrm{d} y W(y \mid x)$ and $w(\delta x)$. What is the name of the process described by the master equation in this case?
2/ Introduce the Fourier transforms $\widehat{P}_{t}(k)=\int \mathrm{d} x \mathrm{e}^{-\mathrm{i} k x} P_{t}(x)$ and $\hat{w}(k)=\int \mathrm{d} \eta \mathrm{e}^{-\mathrm{i} k \eta} w(\eta)$. Deduce a differential equation for $\widehat{P}_{t}(k)$ and, choosing the initial condition $P_{0}(x)=\delta(x)$, express the solution $P_{t}(x)$ under the form of an integral.
$3 /$ We assume that we can replace $\hat{w}(k)$ by its $k \rightarrow 0$ behaviour $\hat{w}(k) \simeq 1-\frac{1}{2} c k^{2}$ in this integral. Deduce the distribution $P_{t}(x)$. What is the meaning of the parameter c ? Compare to $\left\langle x^{2}\right\rangle$. How would you qualify the process in this limit?
4/ Same questions with $\hat{w}(k) \simeq 1-c|k|$ for $k \rightarrow 0$.
B. First passage time.- We consider the SDE $\mathrm{d} x(t)=F(x) \mathrm{d} t+\sqrt{2 D} \mathrm{~d} W(t)$. The corresponding FPE is $\partial_{t} P_{t}(x)=\mathscr{G}^{\dagger} P_{t}(x)$ where the "forward generator" is $\mathscr{G}_{x}^{\dagger}=-\partial_{x} F(x)+D \partial_{x}^{2}$ $1 /$ give the "generator" \mathscr{G}_{x}.
2/ We consider the FPE for the conditional probability $P_{t}\left(x \mid x_{0}\right)$ on $[a, b]$ with some reflection boundary condition $\left.\partial_{x_{0}} P_{t}\left(x \mid x_{0}\right)\right|_{x_{0}=a}=0$ and some absorbing boundary condition $\left.P_{t}\left(x \mid x_{0}\right)\right|_{x_{0}=b}=0$. The survival probability is $S_{x_{0}}(t)=\int_{a}^{b} \mathrm{~d} x P_{t}\left(x \mid x_{0}\right)$. Explain why $S_{x_{0}}(t)<1$ for $t>0$. Show that it obeys an equation similar to the FPE. What is the initial condition $S_{x_{0}}(0)$?
$3 /$ Give the relation between the survival probability and the distribution of the first passage time $\mathscr{P}_{x_{0}}(T)$.
4/ We recall that the moments $T_{n}\left(x_{0}\right)=\int_{0}^{\infty} \mathrm{d} T T^{n} \mathscr{P}_{x_{0}}(T)$ of the first passage time obey the recurrence $\mathscr{G}_{x_{0}} T_{n}\left(x_{0}\right)=-n T_{n-1}\left(x_{0}\right)$ (with $T_{0}(x)=1$). What are the boundary conditions at $x=a$ and $x=b$ for $T_{n}(x)$? Show that $T_{1}^{\prime}(x)$ obeys a first order differential equation and solve it (introduce $V(x)=-\int_{0}^{x} \mathrm{~d} y F(y)$).
Impose the boundary condition for $T_{1}^{\prime}(x)$ at $x=a$. Deduce a formula for $T_{1}\left(x_{0}\right)$.
$5 /$ Consider the situation where $F(x)=-\mu$, when the reflection is at $a=0$. Compute $T_{1}\left(x_{0}\right)$. Discuss the result : consider limiting cases (i) $\mu b / D \ll 1$, (ii) $\mu b / D \gg 1$ for $\mu>0$, (iii) $|\mu| b / D \gg 1$ for $\mu<0$.

2 A multiplicative process ($\sim 30 \mathrm{mn}$)

A. Preliminary : the Wiener process.

We recall that the Wiener process can be represented as $W(t)=\int_{0}^{t} \mathrm{~d} \tau \eta(\tau)$ where $\eta(t)$ is a normalised Gaussian white noise such that $\langle\eta(t)\rangle=0$ and $\left\langle\eta(t) \eta\left(t^{\prime}\right)\right\rangle=\delta\left(t-t^{\prime}\right)$.

1/ Compute the correlator $\left\langle W(t) W\left(t^{\prime}\right)\right\rangle$ and deduce the distribution $P_{t}(W)$ of $W(t)$.
2/ Show that $\left\langle\mathrm{e}^{p W(t)}\right\rangle=\exp \left\{\frac{1}{2} p^{2} t\right\}$.
The result of this question will be useful in 2.B and also at the end of 3.

B. A multiplicative stochastic process.

We first consider a general process described by the stochastic differential equation (SDE)

$$
\begin{equation*}
\mathrm{d} x(t)=F(x(t)) \mathrm{d} t+\sqrt{2 D(x(t))} \mathrm{d} W(t) \tag{Itô}
\end{equation*}
$$

1/ Use Itô calculus (cf. appendix) to compute $\mathrm{d}\left(x(t)^{n}\right)$. Deduce $\frac{\mathrm{d}}{\mathrm{d} t}\left\langle x(t)^{n}\right\rangle$.
2/ We now consider $F(x)=k x$ and $D(x)=\omega x^{2}$ (with $\omega>0$). Show that, in this case, one obtains a differential equation for the n-th moment $\left\langle x(t)^{n}\right\rangle$. Solve it for $x(0)=x_{0}$ fixed. Discuss the dependence of the moments in the sign of k.
3/ To shed light on this result, we proceed in a different manner : starting from the Itô SDE $\mathrm{d} x(t)=k x(t) \mathrm{d} t+\sqrt{2 \omega} x(t) \mathrm{d} W(t)$ deduce the Itô SDE for $y(t)=\ln x(t)$. Give the corresponding Stratonovich SDE and integrate it assuming $x(0)=x_{0}$. Give $y(t)$, and eventually $x(t)$ as a function of t and $W(t)$. Recover the moments $\left\langle x(t)^{n}\right\rangle$ found in the previous question.
4/ Deduce the conditional probability $\mathscr{P}_{t}\left(x \mid x_{0}\right)$ for the process $x(t)$.

3 Fluctuations in a laser ($\sim 1 \mathrm{~h} 30 \mathrm{mn}$)

A laser is a cavity with an optical field mode ω_{0} and atoms with a resonant transition. The atoms are excited (pumping) so that some energy is injected in the field mode to compensate the losses (the laser can be viewed as a "self sustained" anharmonic oscillator). For a solid state laser, we can obtain an equation for the (complex) field amplitude $A(t)$ of the form

$$
\begin{equation*}
\frac{\mathrm{d} A(t)}{\mathrm{d} t}=2 b\left(I_{0}-|A(t)|^{2}\right) A(t) \tag{3}
\end{equation*}
$$

where the electromagnetic field is $E(t)=\operatorname{Re}\left(A(t) \mathrm{e}^{-\mathrm{i} \omega_{0} t}\right)$. The coefficients $b>0$ and $I_{0}>0$ depend on the coupling between the field and the atoms, the relaxation rates and the pumping.

1/ Find $A(t)$ assuming a real initial value $A(0)>0$. Plot $E(t)$ for $b I_{0} \ll \omega_{0}$.
Hint: Note that $\frac{1}{A\left(I_{0}-A^{2}\right)}=\frac{1}{I_{0}}\left(\frac{1}{A}+\frac{A}{I_{0}-A^{2}}\right)$.
The rest of the problem is independent of this first question : we now study the effect of additional noise originating from the fluctuations inside the cavity (thermal vibrations, motion of atoms, etc). Its evolution is described by the SDE

$$
\begin{equation*}
\mathrm{d} A=\psi\left(|A|^{2}\right) A \mathrm{~d} t+\sqrt{2 D} \mathrm{~d} \mathcal{W}(t) \quad \text { where } \psi\left(|A|^{2}\right)=2 b\left(I_{0}-|A|^{2}\right) \tag{4}
\end{equation*}
$$

where $\mathrm{d} \mathcal{W}(t)$ is some complex noise $\left(\mathrm{d} \mathcal{W}(t)=\mathrm{d} W_{x}(t)+\mathrm{id} W_{y}(t)\right.$ where $\mathrm{d} W_{x}$ and $\mathrm{d} W_{y}$ are two i.i.d. real noises). As we have shown in the tutorial, writing $A=\sqrt{I} \mathrm{e}^{\mathrm{i} \theta}$, the intensity and the phase obey the two SDE

$$
\begin{align*}
\mathrm{d} I & =[2 I \psi(I)+4 D] \mathrm{d} t+2 \sqrt{2 D I} \mathrm{~d} W_{A}(t) \tag{Itô}\\
\mathrm{d} \theta & =\sqrt{\frac{2 D}{I}} \mathrm{~d} W_{\theta}(t) \tag{Itô}
\end{align*}
$$

where $\mathrm{d} W_{A}(t)$ and $\mathrm{d} W_{\theta}(t)$ are two independent normalised real noises $\left(\mathrm{d} W_{A}(t)^{2}=\mathrm{d} t\right.$ and $\mathrm{d} W_{\theta}(t)^{2}=\mathrm{d} t$). We now want to identify the related Fokker-Planck equation.

2/ Preliminary : Consider the Itô SDE $\mathrm{d} x=a(x) \mathrm{d} t+b(x) \mathrm{d} W(t)$. What are $\langle\mathrm{d} x\rangle / \mathrm{d} t$ and $\left\langle\mathrm{d} x^{2}\right\rangle / \mathrm{d} t ?$

This should help to make the connection with the FPE $\partial_{t} P_{t}(x)=-\partial_{x}\left[a(x) P_{t}(x)\right]+\frac{1}{2} \partial_{x}^{2}\left[b(x)^{2} P_{t}(x)\right]$.
3/ Using this remark, show that the FPE for the joint distribution $P_{t}(I, \theta)$ of the intensity and the phase is

$$
\begin{equation*}
\frac{\partial P_{t}(I, \theta)}{\partial t}=\left[-\frac{\partial}{\partial I} 2 I \psi(I)+4 D \frac{\partial}{\partial I} I \frac{\partial}{\partial I}+\frac{D}{I} \frac{\partial^{2}}{\partial \theta^{2}}\right] P_{t}(I, \theta) \tag{7}
\end{equation*}
$$

4/ Give the FPE for the marginal distribution of the intensity $Q_{t}(I)=\int \mathrm{d} \theta P_{t}(I, \theta)$ and show that it reaches an equilibrium distribution at large time $Q_{t}(I) \rightarrow Q^{*}(I)$. Find the expression of $Q^{*}(I)$. Plot the possible profiles depending on the parameters.
5/ Assuming $\langle I\rangle \gg \sqrt{\operatorname{var}(I)}$ give the expressions of $\langle I\rangle$ and $\operatorname{var}(I)$. In this limit, simplify the SDE for $I(t)$ and deduce the correlation function for the intensity $\left\langle I(t) I\left(t^{\prime}\right)\right\rangle_{c}$. Identify a first time scale τ_{I}.
6/ Show that the marginal distribution of the phase $R_{t}(\theta)=\int_{0}^{\infty} \mathrm{d} I P_{t}(I, \theta)$ obeys the FPE

$$
\begin{equation*}
\frac{\partial R_{t}(\theta)}{\partial t}=D_{\theta} \frac{\partial^{2} R_{t}(\theta)}{\partial \theta^{2}} \tag{8}
\end{equation*}
$$

and give the expression of D_{θ} (simplify the expression by using $\langle I\rangle \gg \sqrt{\operatorname{var}(I)}$).
7 / The analysis is simplified by assuming that $\theta \in \mathbb{R}$ is the cumulative phase (and not the phase modulo 2π). Argue that the cumulative phase can be related to a Wiener process $\theta(t) \propto W(t)$ and give the coefficient.
8/ Now assuming that the intensity is almost constant $I(t) \simeq I_{0}$, i.e. the field is $E(t)=$ $\sqrt{I_{0}} \mathrm{e}^{-\mathrm{i} \omega_{0} t+\mathrm{i} \theta(t)}$, compute the correlator

$$
\begin{equation*}
\left\langle E(t) E\left(t^{\prime}\right)^{*}\right\rangle \tag{9}
\end{equation*}
$$

Deduce the power spectrum of the laser

$$
\begin{equation*}
S(\omega)=\int \mathrm{d} t\left\langle E\left(t_{0}\right) E\left(t_{0}+t\right)^{*}\right\rangle \mathrm{e}^{\mathrm{i} \omega t} \tag{10}
\end{equation*}
$$

Identify a new time scale τ_{θ} associated with the phase fluctuations.
9/ Discuss the two time scales τ_{I} and τ_{θ}.

Proofreading ($\sim 10 \mathrm{mn}$)

Appendix

Fourier transform

Consider a function f on \mathbb{R}. The Fourier transform and its inverse are

$$
\begin{equation*}
\hat{f}(k)=\int_{\mathbb{R}} \mathrm{d} x f(x) \mathrm{e}^{-\mathrm{i} k x} \quad \text { and } \quad f(x)=\int_{\mathbb{R}} \frac{\mathrm{d} k}{2 \pi} \hat{f}(k) \mathrm{e}^{\mathrm{i} k x} \tag{11}
\end{equation*}
$$

Integral

$$
\begin{equation*}
\int_{\mathbb{R}} \mathrm{d} x \mathrm{e}^{-x^{2}}=\sqrt{\pi} \tag{12}
\end{equation*}
$$

Itô-Doblin calculus

The main rules for calculation are

- If $W(t)$ is the Wiener process, $\mathrm{d} W(t)^{2}=\mathrm{d} t$ and $\mathrm{d} W(t)^{n}=0$ for $n>2$.
- If $x(t)$ is a continuous stochastic process and $\varphi(x)$ a smooth function, one has

$$
\mathrm{d} \varphi(x)=\varphi^{\prime}(x) \mathrm{d} x+\frac{1}{2} \varphi^{\prime \prime}(x) \mathrm{d} x^{2}
$$

(from which one can recover the Itô formula).

Itô/Stratonovich

- The Itô SDE $\mathrm{d} x(t)=a(x) \mathrm{d} t+b(x) \mathrm{d} W(t)$ can be put in correspondence with the Stratonovich SDE $\mathrm{d} x(t)=\left[a(x)-\frac{1}{2} b^{\prime}(x) b(x)\right] \mathrm{d} t+b(x) \mathrm{d} W(t)$. The process is described by the FPE $\partial_{t} P_{t}(x)=$ $-\partial_{x}\left[a(x) P_{t}(x)\right]+\frac{1}{2} \partial_{x}^{2}\left[b(x)^{2} P_{t}(x)\right]$.
- Conversely, the Stratonovich SDE $\mathrm{d} x(t)=\alpha(x) \mathrm{d} t+b(x) \mathrm{d} W(t)$ corresponds to the Itô SDE $\mathrm{d} x(t)=\left[\alpha(x)+\frac{1}{2} b^{\prime}(x) b(x)\right] \mathrm{d} t+b(x) \mathrm{d} W(t)$.

To learn more

On the theory of single mode laser, see the article :
Jon H. Shirley, Dynamics of a simple maser model, Am. J. Phys. 36(11), 949-963 (1968)

