Sorbonne Université, Université Paris Cité, Université Paris Saclay Master 2 Physics of Complex Systems

Stochastic processes - Exam

Friday 22 december 2023

Duration : 3h

The use of any documents (lecture notes,...), mobile phones, calculators, ..., is FORBIDDEN.

Recommendations :

Read the text carefully and write your answers as *succinctly* and as *clearly* as possible. Check the **appendices at the end**. At the end, do not forget to **reread yourself**.

1 Questions related to the lectures (~50mn)

A. We consider the master equation

$$\frac{\partial P_t(x)}{\partial t} = \int dy \left[W(x|y) P_t(y) - W(y|x) P_t(x) \right]$$
(1)

1/ Interpret the two terms. Check that the probability is conserved. In the exercice we consider $W(x|y) = \lambda w(x-y)$ for $w(\delta x) = w(-\delta x)$. Give the meaning of $\lambda = \int dy W(y|x)$ and $w(\delta x)$. What is the name of the process described by the master equation in this case ? 2/ Introduce the Fourier transforms $\hat{P}_t(k) = \int dx e^{-ikx} P_t(x)$ and $\hat{w}(k) = \int d\eta e^{-ik\eta} w(\eta)$. Deduce a differential equation for $\hat{P}_t(k)$ and, choosing the initial condition $P_0(x) = \delta(x)$, express the solution $P_t(x)$ under the form of an integral.

3/ We assume that we can replace $\hat{w}(k)$ by its $k \to 0$ behaviour $\hat{w}(k) \simeq 1 - \frac{1}{2}ck^2$ in this integral. Deduce the distribution $P_t(x)$. What is the meaning of the parameter c? Compare to $\langle x^2 \rangle$. How would you qualify the process in this limit ?

4/ Same questions with $\hat{w}(k) \simeq 1 - c|k|$ for $k \to 0$.

B. First passage time.— We consider the SDE $dx(t) = F(x)dt + \sqrt{2D} dW(t)$. The corresponding FPE is $\partial_t P_t(x) = \mathscr{G}^{\dagger} P_t(x)$ where the "forward generator" is $\mathscr{G}_x^{\dagger} = -\partial_x F(x) + D\partial_x^2$ 1/ give the "generator" \mathscr{G}_x .

2/ We consider the FPE for the conditional probability $P_t(x|x_0)$ on [a, b] with some reflection boundary condition $\partial_{x_0}P_t(x|x_0)|_{x_0=a} = 0$ and some absorbing boundary condition $P_t(x|x_0)|_{x_0=b} = 0$. The survival probability is $S_{x_0}(t) = \int_a^b dx P_t(x|x_0)$. Explain why $S_{x_0}(t) < 1$ for t > 0. Show that it obeys an equation similar to the FPE. What is the initial condition $S_{x_0}(0)$?

3/ Give the relation between the survival probability and the distribution of the first passage time $\mathscr{P}_{x_0}(T)$.

4/ We recall that the moments $T_n(x_0) = \int_0^\infty dT \, T^n \, \mathscr{P}_{x_0}(T)$ of the first passage time obey the recurrence $\mathscr{G}_{x_0} T_n(x_0) = -n \, T_{n-1}(x_0)$ (with $T_0(x) = 1$). What are the boundary conditions at x = a and x = b for $T_n(x)$? Show that $T'_1(x)$ obeys a first order differential equation and solve it (introduce $V(x) = -\int_0^x dy F(y)$).

Impose the boundary condition for $T'_1(x)$ at x = a. Deduce a formula for $T_1(x_0)$.

5/ Consider the situation where $F(x) = -\mu$, when the reflection is at a = 0. Compute $T_1(x_0)$. Discuss the result : consider limiting cases (i) $\mu b/D \ll 1$, (ii) $\mu b/D \gg 1$ for $\mu > 0$, (iii) $|\mu|b/D \gg 1$ for $\mu < 0$.

2 A multiplicative process (~30mn)

A. Preliminary : the Wiener process.

We recall that the Wiener process can be represented as $W(t) = \int_0^t d\tau \, \eta(\tau)$ where $\eta(t)$ is a normalised Gaussian white noise such that $\langle \eta(t) \rangle = 0$ and $\langle \eta(t) \eta(t') \rangle = \delta(t - t')$.

- 1/ Compute the correlator $\langle W(t)W(t')\rangle$ and deduce the distribution $P_t(W)$ of W(t).
- **2**/ Show that $\langle e^{pW(t)} \rangle = \exp\{\frac{1}{2}p^2t\}.$

 \bigwedge The result of this question will be useful in 2.B and also at the end of 3.

B. A multiplicative stochastic process.

We first consider a general process described by the stochastic differential equation (SDE)

$$dx(t) = F(x(t)) dt + \sqrt{2D(x(t))} dW(t) \qquad \text{(Itô)}$$

- 1/ Use Itô calculus (cf. appendix) to compute $d(x(t)^n)$. Deduce $\frac{d}{dt} \langle x(t)^n \rangle$.
- 2/ We now consider F(x) = k x and $D(x) = \omega x^2$ (with $\omega > 0$). Show that, in this case, one obtains a *differential equation* for the *n*-th moment $\langle x(t)^n \rangle$. Solve it for $x(0) = x_0$ fixed. Discuss the dependence of the moments in the sign of k.
- 3/ To shed light on this result, we proceed in a different manner : starting from the Itô SDE $dx(t) = k x(t) dt + \sqrt{2\omega} x(t) dW(t)$ deduce the Itô SDE for $y(t) = \ln x(t)$. Give the corresponding Stratonovich SDE and integrate it assuming $x(0) = x_0$. Give y(t), and eventually x(t) as a function of t and W(t). Recover the moments $\langle x(t)^n \rangle$ found in the previous question.
- 4/ Deduce the conditional probability $\mathscr{P}_t(x|x_0)$ for the process x(t).

3 Fluctuations in a laser (~1h30mn)

A laser is a cavity with an optical field mode ω_0 and atoms with a resonant transition. The atoms are excited (pumping) so that some energy is injected in the field mode to compensate the losses (the laser can be viewed as a "self sustained" anharmonic oscillator). For a solid state laser, we can obtain an equation for the (complex) field amplitude A(t) of the form

$$\frac{\mathrm{d}A(t)}{\mathrm{d}t} = 2b\left(I_0 - |A(t)|^2\right)A(t)$$
(3)

where the electromagnetic field is $E(t) = \operatorname{Re}(A(t)e^{-i\omega_0 t})$. The coefficients b > 0 and $I_0 > 0$ depend on the coupling between the field and the atoms, the relaxation rates and the pumping.

1/ Find A(t) assuming a real initial value A(0) > 0. Plot E(t) for $bI_0 \ll \omega_0$. Hint: Note that $\frac{1}{A(I_0 - A^2)} = \frac{1}{I_0} \left(\frac{1}{A} + \frac{A}{I_0 - A^2} \right)$.

The rest of the problem is independent of this first question : we now study the effect of additional noise originating from the fluctuations inside the cavity (thermal vibrations, motion of atoms, etc). Its evolution is described by the SDE

$$dA = \psi(|A|^2) A dt + \sqrt{2D} d\mathcal{W}(t) \qquad \text{where } \psi(|A|^2) = 2b \left(I_0 - |A|^2\right) \tag{4}$$

where $d\mathcal{W}(t)$ is some complex noise $(d\mathcal{W}(t) = dW_x(t) + i dW_y(t))$ where dW_x and dW_y are two i.i.d. real noises). As we have shown in the tutorial, writing $A = \sqrt{I} e^{i\theta}$, the intensity and the phase obey the two SDE

$$dI = [2I\psi(I) + 4D] dt + 2\sqrt{2DI} dW_A(t) \qquad (Itô)$$
(5)

$$d\theta = \sqrt{\frac{2D}{I}} \, dW_{\theta}(t) \tag{Itô}$$

where $dW_A(t)$ and $dW_{\theta}(t)$ are two *independent* normalised *real* noises $(dW_A(t)^2 = dt$ and $dW_{\theta}(t)^2 = dt$). We now want to identify the related Fokker-Planck equation.

2/ Preliminary : Consider the Itô SDE dx = a(x) dt + b(x) dW(t). What are $\langle dx \rangle / dt$ and $\langle dx^2 \rangle / dt$?

This should help to make the connection with the FPE $\partial_t P_t(x) = -\partial_x [a(x)P_t(x)] + \frac{1}{2}\partial_x^2 [b(x)^2 P_t(x)].$

3/ Using this remark, show that the FPE for the joint distribution $P_t(I, \theta)$ of the intensity and the phase is

$$\frac{\partial P_t(I,\theta)}{\partial t} = \left[-\frac{\partial}{\partial I} 2I \,\psi(I) + 4D \frac{\partial}{\partial I} I \frac{\partial}{\partial I} + \frac{D}{I} \frac{\partial^2}{\partial \theta^2} \right] P_t(I,\theta) \tag{7}$$

- 4/ Give the FPE for the marginal distribution of the intensity $Q_t(I) = \int d\theta P_t(I, \theta)$ and show that it reaches an *equilibrium* distribution at large time $Q_t(I) \to Q^*(I)$. Find the expression of $Q^*(I)$. Plot the possible profiles depending on the parameters.
- 5/ Assuming $\langle I \rangle \gg \sqrt{\operatorname{var}(I)}$ give the expressions of $\langle I \rangle$ and $\operatorname{var}(I)$. In this limit, simplify the SDE for I(t) and deduce the correlation function for the intensity $\langle I(t)I(t')\rangle_c$. Identify a first time scale τ_I .
- 6/ Show that the marginal distribution of the phase $R_t(\theta) = \int_0^\infty \mathrm{d}I P_t(I,\theta)$ obeys the FPE

$$\frac{\partial R_t(\theta)}{\partial t} = D_\theta \frac{\partial^2 R_t(\theta)}{\partial \theta^2} \tag{8}$$

and give the expression of D_{θ} (simplify the expression by using $\langle I \rangle \gg \sqrt{\operatorname{var}(I)}$).

- 7/ The analysis is simplified by assuming that $\theta \in \mathbb{R}$ is the cumulative phase (and not the phase modulo 2π). Argue that the cumulative phase can be related to a Wiener process $\theta(t) \propto W(t)$ and give the coefficient.
- 8/ Now assuming that the intensity is almost constant $I(t) \simeq I_0$, i.e. the field is $E(t) = \sqrt{I_0} e^{-i\omega_0 t + i\theta(t)}$, compute the correlator

$$\langle E(t)E(t')^* \rangle$$
 (9)

Deduce the power spectrum of the laser

$$S(\omega) = \int dt \, \langle E(t_0)E(t_0+t)^* \rangle \, e^{i\omega t}$$
(10)

Identify a new time scale τ_{θ} associated with the phase fluctuations.

9/ Discuss the two time scales τ_I and τ_{θ} .

Proofreading (~10mn)

Appendix

Fourier transform

Consider a function f on \mathbb{R} . The Fourier transform and its inverse are

$$\hat{f}(k) = \int_{\mathbb{R}} \mathrm{d}x \, f(x) \,\mathrm{e}^{-\mathrm{i}kx} \quad \text{and} \quad f(x) = \int_{\mathbb{R}} \frac{\mathrm{d}k}{2\pi} \hat{f}(k) \,\mathrm{e}^{\mathrm{i}kx}$$
(11)

Integral

$$\int_{\mathbb{R}} \mathrm{d}x \,\mathrm{e}^{-x^2} = \sqrt{\pi} \tag{12}$$

Itô-Doblin calculus

The main rules for calculation are

- If W(t) is the Wiener process, $dW(t)^2 = dt$ and $dW(t)^n = 0$ for n > 2.
- If x(t) is a continuous stochastic process and $\varphi(x)$ a smooth function, one has

$$\mathrm{d}\varphi(x) = \varphi'(x)\,\mathrm{d}x + \frac{1}{2}\varphi''(x)\,\mathrm{d}x^2$$

(from which one can recover the Itô formula).

Itô/Stratonovich

• The Itô SDE dx(t) = a(x) dt + b(x) dW(t) can be put in correspondence with the Stratonovich SDE $dx(t) = \left[a(x) - \frac{1}{2}b'(x)b(x)\right] dt + b(x) dW(t)$. The process is described by the FPE $\partial_t P_t(x) = -\partial_x \left[a(x)P_t(x)\right] + \frac{1}{2}\partial_x^2 \left[b(x)^2 P_t(x)\right]$.

• Conversely, the Stratonovich SDE $dx(t) = \alpha(x) dt + b(x) dW(t)$ corresponds to the Itô SDE $dx(t) = \left[\alpha(x) + \frac{1}{2}b'(x)b(x)\right] dt + b(x) dW(t).$

To learn more

On the theory of single mode laser, see the article : Jon H. Shirley, *Dynamics of a simple maser model*, Am. J. Phys. **36**(11), 949–963 (1968)

SOLUTIONS WILL BE AVALAIBLE AT http://www.lptms.universite-paris-saclay.fr/christophe_texier/