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2 Wetting transition

The substrate is at z = 0 and the fluid with density n(z) above. The grand potential is

gf [n(z)] =

∫ ∞

0
dz

[
1

2
B
[
∂zn(z)

]2
+W (n(z))

]
, (1)

Additionally there is a surface term (interaction between the substrate and the fluid) :

gs(ns) = a0 − a1
ns

nl − nv
+

1

2
a2

n2s
(nl − nv)2

+ . . . (2)

where ns = n(z = 0) is the density of the fluid at the solid surface.

1/ The form (1) is a Ginzburg-Landau functional and (2) is a Landau expansion.

2/ Field equation is
δgf
δn(z)

= −B n′′(z) +W ′(n(z)) = 0 (3)

We denote n∗(z) its solution.

3/ We identify a conserved quantity :

E =
B

2

[
n′∗(z)

]2 −W (n∗(z)) (4)

(independent of z). At infinity the density is that of the vapor, n∗(z → ∞) = nv, hence
E = −W (nv) = 0. As a result, the solution satisfies n′∗(z) = ±

√
2W (n∗(z))/B. Note that

the vapor density is the lowest, hence n∗(z) decreases with z.

4/ We deduce

gf [n∗] = B

∫ ∞

0
dz

[
n′∗(z)

]2
= −B

∫ ∞

0
dz

dn∗(z)

dz

√
2

B
W (n∗(z)) =

√
2B

∫ ns

nv

dn
√
W (n)

(5)

A. Thin-film profile.— We choose the simple form W (n) = c (n−nv)2(n−nl)2 for nv < ns <
nl.

5/ The field equation leads to the

n′(z) = −
√

2c

B
(nl − n)(n− nv) (6)
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6/ Integration is easy. We write

dn

(nl − n)(n− nv)
= −

√
2c

B
dz i.e.

∫ n∗(z)

ns

dz

(
1

nl − n
+

1

n− nv

)
= −z/ξ (7)

where ξ =

√
B

2c
(nl − nv)

−1. We get

n∗(z)− nv
nl − n∗(z)

=
ns − nv
nl − ns︸ ︷︷ ︸

=∆

e−z/ξ (8)

i.e

n∗(z) =
nv + nl ∆e−z/ξ

1 + ∆e−z/ξ
(9)

We check that it decreases from n∗(0) = ns to n∗(z → ∞) = nv.

7/ If ns ≫ nv, then n∗(z) ≃ nl
[
1 + e(z−z0)/ξ

]−1
where z0 = ξ log

(
ns

nl − ns

)
. It is a step

function where the drop of the density occurs around z0, on a scale ξ. Hence z0 can be
interpreted as the height of the liquid/gas interface (this makes sense for z0 ≫ ξ).

B. Wetting transitions

8/ Consider a liquid/gas interface where the density varies from nl to nv. The vapor-liquid
interfacial energy is

γ = gf [n∗] =
√
2B

∫ nl

nv

dn
√
W (n) =

√
2Bc

∫ nl

nv

dn (nl − n)(n− nv)

=
√
2Bc

∫ nl−nv

0
dx (nl − nv − x)x =

√
2B c (nl − nv)

3

(
1

2
− 1

3

)
=

√
2B c

6
(nl − nv)

3

9/ In the general case where ns ̸= nl,

gf [n∗(z)] =
√
2B

∫ ns

nv

dn
√
W (n) =

√
2B c (nl − nv)

3

[
1

2

(
ns − nv
nl − nv

)2

− 1

3

(
ns − nv
nl − nv

)3
]
(10)

10/ We set ψ =
nl − ns
nl − nv

. For ns ∈ [nv, nl] we have ψ ∈ [0, 1] (ψ = 1 for the vapor and ψ = 0

for the liquid). We write
ns − nv
nl − nv

= 1− ψ (11)

hence
gf [n∗] = γ

(
1− 3ψ2 + 2ψ3

)
. (12)

11/ We write the surface contribution in terms of the new parameter

gs(ns) = gs(nl) +

(
a1 − a2

nl
nl − nv

)
ψ + 1

2 a2 ψ
2 . (13)

As a result, the total grand potential is

gtot(ns) = γ + gs(nl) +

(
a1 − a2

nl
nl − nv

)
ψ +

(
1

2
a2 − 3γ

)
ψ2 + 2γ ψ3 (14)

which has the form of a Landau expansion, in terms of the order parameter ψ ∈ [0, 1].
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12/ We introduce ϵ = (nl − ns)/ns. We find

1

ψ
=

(
1− nv

nl

)(
1 +

1

ϵ

)
(15)

Above, we have introduced ez0/ξ = ∆ = −1 + 1/ψ. Hence there is a mapping between the
order parameter ψ and the position of the interface z0. In the liquid phase ψ → 0 and the
position of the interface diverges (wetting). In the vapor phase (no wetting) ψ ≲ 1 and the
position of the interface is z0 ≲ 0, density is low at the interface.

For ψ ≪ 1 we have ϵ ≃ ψ ≃ e−z0/ξ.

13/ Because ϵ ≃ ψ we find a similar expansion

gtot = γ + gs(nl) + α ϵ+ β ϵ2 + θ ϵ3 + . . . (16)

(no need to compute the coefficients).

(a) (b)

Figure 1: Plot of the system grand potential gtot as a function of the parameter z0 for two
different temperatures for a given set of microscopic coefficients. (a) β > 0. (b) with another
set of parameters with β < 0

14/ The figure shows the grand potential as a function of z0 (instead of ϵ or ψ). In the figure
(a), the top curve has a minimum for z0 = ∞ (liquid, ns = nl) and the other curve has a
minimumu for z0 finite (ns < nl). This describes the transition between a wet substrate and
non-wet substrate.

15/ Figure (a) : the transition looks second order as we go continuously from one situation to
the other.

Figure (b) : clearly the minimum jumps discontinuously when one goes from one curve to
the other. The transition is first order.

Apparently, wetting transition is more likely first order (coefficients corresponding to second
scenario).
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