
Master 2 iCFP - Soft Matter & Physics for biology

Advanced Statistical Physics – Exam
Tuesday 9 january 2024

Duration : 3h

Lecture notes are allowed (nothing else, no cell phone, no calculator,...)

! Write Exercices 1 & 2 on separate sheets (with your name on both!) !
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...

2 Wetting transition

Introduction.— We study a fluid in either liquid or vapor phase, on the top of a substrate.
Complete wetting is characterized by a macroscopic liquid film in between the solid substrate
and the vapor. Partial wetting is characterized by the solid substrate covered by a wedge or
finite drop of the fluid. In the macroscopic picture, the remainder of the solid contacts the
vapor. However, interactions with the solid can result in a local density of molecules near the
substrate that is quite different from the density of either the liquid or the vapor. We consider
the following cases: (i) The interaction with the solid substrate is repulsive, favoring a low
density of molecules on the substrate - i.e., a gas. In this case, there is solid-vapor equilibrium
and one would not expect small contact angle wetting of the substrate by the liquid. (ii) The
interaction with the substrate is attractive, favoring a high density of the fluid. In this case,
there is the possibility for solid-fluid-vapor equilibrium, with a layer of fluid on the substrate
whose density is larger than that of the vapor, but may not equal that of the bulk fluid phase.
When this intervening fluid layer is macroscopically thick, one has complete wetting. When
this intervening fluid layer is not macroscopically thick, it can coexist with a macroscopic liquid
phase.

Equilibrium equations.—We consider a vapor-liquid system in contact with a solid substrate,
where the total grand potential per unit area, gtot = gf [n(z)] + gs(ns), consists of the sum of
gf , the liquid/vapor grand potential, with the fluid/substrate interfacial contribution gs. For
simplicity, we consider a situation translation invariant in two directions : the plane substrate
is normal to the z direction, and assume that the layer density only depends on z. For the fluid
above the substrate (z > 0), we consider the free energy

gf [n(z)] =

∫ ∞

0
dz
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where n(z) is the density of the fluid-vapor above the solid (z > 0). The contribution W (n)
includes the chemical potential and also subtracts off the grand potential of the uniform bulk
phase. The interfacial grand potential is assumed to be given with a Virial expansion

gs(ns) = a0 − a1
ns

nl − nv
+
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n2s
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+ . . . (2)

where ns = n(z = 0) is the density of the fluid at the solid surface, while nl and nv are the
bulk, equilibrium liquid and vapor densities respectively. The first term in this expression is a
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constant term, the second represents an attraction (when a1 > 0) of the molecules to the surface
(recall that if the molecules are repelled from the surface it is highly unlikely for a fluid-like
layer to exist near the surface of the substrate), and the third term represents an ”excluded-
volume” type of interaction (which can be repulsive or attractive) of the molecules adsorbed on
the surface. For simplicity, we consider the case where this interaction is repulsive (a2 > 0) so
the added complication of a liquid-gas phase separation by the adsorbed molecules is absent.
We consider the case where the substrate is uniformly covered by a layer of ”fluid”, but that
this layer is not necessarily at the equilibrium fluid density.

1/ Comment on the form of the grand potentials (1) and (2).

Strategy.—We consider the total grand potential is thus a function of spatially varying density,
n(z), and by the value of the density on the surface, ns = n(z = 0). We first minimize gtot with
respect to the n(z) with a fixed value of the surface density, ns to find the profile for arbitrary
surface densities. Afterward, one uses this solution for n(z) to minimize gtot again to find the
local surface density, including the contributions from both gs and gf , both of which depend
on ns.

2/ Derive the equation on n(z) resulting from the minimization of gf [n] with respect to the
density profile n(z), in terms of ∂2n/∂z2 and ∂W/∂n.

3/ Assuming the boundary condition W = 0 in the liquid or vapor phase far away from the
substrate, show that the solution for n∗(z) satisfies
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∂n∗
∂z

)2

=W (n∗(z)) . (3)

4/ Using the latter equation and assuming n(z → ∞) = nv, show that the fluid grand potential
is merely

gf [n∗] =

∫ ns

nv

dn
√

2BW (n) . (4)

A. Thin-film profile.— In the following, we consider the simplified form

W (n) = c (n− nv)
2(n− nl)

2 , (5)

and clearly we have nv < ns < nl.

5/ Write the corresponding equilibrium equation for ∂n/∂z.

6/ Show that its solution such that n∗(z → ∞) = nv is

n∗(z) =
(nv − nl) + nl (1 + ∆e−z/ξ)

1 + ∆e−z/ξ
, (6)

where ∆ =
ns − nv
nl − ns

> 0 and ξ =

√
B

2c
(nl − nv)

−1.

If ns ≫ nv, then n∗(z) ≃ nl
[
1 + e(z−z0)/ξ

]−1
where z0 = ξ log

(
ns

nl − ns

)
.

7/ Plot the density profile n∗(z), and comment on the meaning of z0.
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One can observe an increase in the thickness of the film z0 by changing temperature. We
consider the case where ns is relatively insensitive to the temperature, but, as is usual for the
liquid-gas transition, the liquid density, nl(T ), decreases as one approaches the bulk transition
temperature for the phase separation. One then expects a finite thickness film of size z0 at
low temperatures where nl ≫ ns, and a transition to an infinitely thick layer at some higher
temperature, Tw, when nl(Tw) = ns. As the temperature approaches the wetting transition
temperature Tw, nl(T ) → ns, and the thickness of the film diverges; there is a macroscopically
thick fluid layer in between the solid and liquid, i.e. a transition to complete wetting.

B. Wetting transitions.—We define the vapor-liquid interfacial energy γ =

∫ nl

nv

dn
√
2BW (n).

8/ Show that
γ = 1

6

√
2B c (nl − nv)

3 . (7)

9/ In the general case where ns ̸= nl, show that

gf [n∗(z)] =
√
2B c (nl − nv)
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(8)

10/ We set ψ =
nl − ns
nl − nv

. What is the range for ψ ? Show that

gf [n∗] = γ
(
1− 3ψ2 + 2ψ3

)
. (9)

11/ Show that the fluid/substrate interaction can be expressed as

gs(ns) = gs(nl) +

(
a1 − a2

nl
nl − nv

)
ψ + 1

2 a2 ψ
2 . (10)

Eventually, we consider the case of thick wetting films where nl ≃ ns, so that we can assume

ψ ≪ 1. We also define ϵ =
(nl − ns)

ns
. To simplify our calculations, we assume nv ≪ nl.

12/ Relate ϵ to z0.

13/ Find the expansion
gtot = γ + gs(nl) + α ϵ+ β ϵ2 + θ ϵ3 + . . . (11)

With this result in hand, together with the relationship between ϵ and z0, one can then plot
gtot as a function of z0 (instead of ϵ or ψ). Depending on the type of interaction between the
substrate and the fluid, but also on the temperature, we can typically find the following figures
for gtot, each for a given set of parameters, but for different temperatures, see Fig. 1.(a) and (b).

14/ Comment on the behavior of the system, and on a possible transition.

15/ Comment on the order of the transition for the thickness of the film.

Solutions will be avalaible at http://www.lptms.universite-paris-saclay.fr/christophe_texier/
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(a) (b)

Figure 1: Plot of the system grand potential gtot as a function of the parameter z0 for two
different temperatures for a given set of microscopic coefficients. (a) β > 0. (b) with another
set of parameters with β < 0
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