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PART 1 : Out-of-equilibrium statistical physics

0 Introduction

This first set of lectures is devoted to out-of-equilibirum statistical physics. Equilibrium statisti-
cal physics provides a well defined procedure to study the thermodynamic properties of systems
with complex dynamics. The main idea is to replace the study of the complex dynamics of the
system, i.e. how its state ~�(t) evolves in time (here ~� represents a point in phase space), by
some statistical information, i.e. the probability ⇢(~�) to find the system in a given state. The
first approach would require to solve a macroscopic number of di↵erential equations, while the
beauty of the second approach lies on the fact that the determination of the probability density
relies on very few information, what can be understood as a result of a maximum entropy prin-
ciple. The choice of the distribution, microcanonical, canonical, grand canonical, etc, is driven
by physical considerations or simply by convenience.

Out-of-equilibirum statistical physics requires a statistical treatment of the dynamics, which
can be achieved by various approaches, phenomenoligical or microscopic. On the more phe-
nomenological side : the Langevin equation, the master equation and the Fokker-Planck equation
provide di↵erent approaches for the analysis of stochastic processes. On the more microscopic
side : kinetic equations (BBGKY hierarchy, Boltzmann equation, Vlasov equation, hydrody-
namic equations,...). Note that the frontier between phenomenological and microscopic is not so
sharp, as we will see by deriving a Langevin equation from a microscopic model (§ f) page 43).

1 Stochastic processes (1) : the Langevin equation for a particle
in a fluid

The aim of this introductory chapter is to start the discussion of stochastic processes with a
concrete and simple example, and introduce several general and important ideas. Consider a
particle in a fluid, submitted to a friction force. The usual phenomenological model is friction
proportional to the velocity (Stokes regime) :

Ff = �� v , (1.1)

where � is the friction coe�cient. For a spherical particle of radius R, fluid mechanics gives
� = 6⇡⌘R where ⌘ is the viscosity of the fluid (for example, ⌘ ' 10�3 kg.m�1.s�1 for water at
T = 20 oC). In the absence of any other external force, the Newton equation of motion takes
the form m v̇ = �� v. The friction coe�cient has dimension of a mass divided by a time, hence
we can write

� =
m

⌧
(1.2)

where ⌧ is the relaxation time for the velocity.

1.1 Fluctuations and Langevin force

In 1827, the scottish botanist Robert Brown observed with a microscope that pollen grains at
the surface of water move erratically. 1 It was understood later that this observation supports
the atomist description of matter as it is the manifestation of the fluctuations in the fluid (erratic
motion of the molecules). A clear description of the phenomenon was given much later by Albert
Einstein in 1905. If the particle (the pollen grain) is small, it is not only submitted to the friction

1You can find some historical perspectives in the excellent article of Bertrand Duplantier [9].
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force but it is also sensitive to the fluctuations in the fluid, i.e. the collisions with molecules.
The typical collision time between molecules in a fluid is ⌧coll ⇠ 10�15 s, thus we expect that
the Brownian particle experiences collisions with the rate 1/⌧coll and which can be considered
as independent. The friction force is due to the e↵ect of these collisions over a much larger time
scale. Additionally to the friction force, we model the frequent collisions by introducing in the
Newton equation a force ⇠(t) fluctuating in time, called the “Langevin force” :

m
dv(t)

dt
= �� v(t) + ⇠(t) (1.3)

dx(t)

dt
= v(t) (1.4)

Because the collisions are exerted at random along all directions, we expect that

h⇠(t)i = 0 (1.5)

where h· · ·i denotes statistical averaging 2 (it is also true if we consider averaging over time
for a single history). As the Langevin force models the force exerted on the particle by the
molecules, it is natural to assume short time correlations h⇠(t)⇠(t0)i = C

⌧coll
'((t� t

0)/⌧coll) where

' is normalised function of width ⇠ 1 centered on the origin (like (1/2)e�|x| or ⇡�1/2e�x
2

) and C

the strength of the fluctuations. As we are interested in the dynamics of the Brownian particle
over time � ⌧coll we can simply consider

⌦
⇠(t)⇠(t0)

↵
= C �(t� t

0) (1.6)

(which corresponds formally to ⌧coll ! 0). A random function characterised by such local
correlations is called a “white noise”.

Figure 1: Robert Brown (1773-1858), Albert Einstein (1879-1955), Paul Langevin (1872-1946)
and Jean Perrin (1870-1942).

This model was introduced by Paul Langevin 3 Why studying a model for the motion of
a pollen grain at the surface of a fluid (or more generally a “colloid” in a fluid) is an impor-
tant problem ? The reason is that several ideas of the Langevin model have a much broader
application in out-of-equilibrium statistical physics.

We now analyse the statistical properties of the particle. Taking advantage that the equation
of motion is linear, its integration gives

v(t) = v(0) e�t/⌧ +
1

m

Z
t

0

dt
0
⇠(t0) e�(t�t

0
)/⌧

. (1.7)

2Statistical averaging corresponds to average over di↵erent histories of the particle, with same initial con-
ditions but di↵erent realisations of the Langevin force. This is the procedure followed by Jean Perrin in his
experiments [35] ; cf. Fig. 3.

3 P. Langevin, “Sur la théorie du mouvement brownien”, C. R. Acad. Sci. (Paris) 146, pp. 530–533 (1908).
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time

Figure 2: A realization of the Ornstein-Uhlenbeck process v(t) defined by (1.3) when ⇠(t) is a
Gaussian white noise.

This representation makes easy to deduce the statistical properties of v(t) from those of ⇠(t). If
the initial velocity is non random, we have

hv(t)i = v(0) e�t/⌧ . (1.8)

After a time larger than ⌧ = m/�, the memory of the initial velocity is lost and the velocity is

independent of v(0). We also get the correlator hv(t)v(t0)i
c

def

= hv(t)v(t0)i � hv(t)i hv(t0)i :

⌦
v(t)v(t0)

↵
c
=

1

m2

Z
t

0

dt1 e�(t�t1)/⌧

Z
t
0

0

dt2 e�(t
0
�t2)/⌧ h⇠(t1) ⇠(t2)i =

C e�(t+t
0
)/⌧

m2

Z
min(t,t

0
)

0

dt1 e2t1/⌧

(1.9)

thus ⌦
v(t)v(t0)

↵
c
=

C ⌧

2m2

⇣
e�|t�t

0
|/⌧ � e�(t+t

0
)/⌧

⌘
. (1.10)

The correlations decay in time over the same time scale ⌧ like the average time. The decorrelation
of the velocity can be understood from the fact that the velocity decorrelates from the noise on
the same time scale : we check easily that

⌦
v(t)⇠(t0)

↵
=

C

m
✓H(t� t

0) e�(t�t
0
)/⌧

. (1.11)

The stochastic process described by (1.3) where ⇠(t) is a Gaussian white noise is known as
the “Ornstein-Uhlenbeck process”.

- Exercice 1.1 Comparison between time average and statistical average : One con-
siders the random ”function” given by the sum of impulses ⇠(t) =

P
N

n=1
n �(t� tn) defined over

the interval [0, T ], where
• the tn’s are independent and identically distributed (i.i.d) random times uniformly distributed
over [0, T ] (i.e. one tn has distribution p(tn) = 1/T ). We denote by � = N/T (for N !1 and
T !1) the rate of occurence of the random times.
• The n’s are i.i.d random variables with common distribution w() with finite

⌦


2
n

↵
.

a) Compute the time average of ⇠(t), over the time interval [0, T ]. Compare with the statistical
average (over tn’s and n’s).

b) What is the condition on the random function ⇠(t) allowing to define a time averaged cor-
relator eC(t � t

0) = ⇠(t)⇠(t0)
c

= ⇠(t)⇠(t0) � ⇠(t) ⇠(t0) ? Compare to C(t � t
0) = h⇠(t)⇠(t0)i

c
=

h⇠(t)⇠(t0)i � h⇠(t)i h⇠(t0)i.

1.2 A fluctuation-dissipation relation

After a su�cient long time, we expect that the particle is at thermal equilibrium with the
fluid (which should be at thermal equilibrium), hence hv(t)2i = kBT/m (equipartition theorem).
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On the other hand, the outcome of the Langevin analysis is hv(t)2i = C/(2m�). Consistency
of the previous analysis with equilibrium statistical physics imposes a constraint between the
strength C of the Langevin noise (the fluctuations in the fluid), the friction coe�cient � and the
temperature :

C
#

fluctuations

= 2

dissipation

"

� kBT (1.12)

this is a “fluctuation-dissipation relation” and a first formulation of the fluctuation-dissipation
theorem (FDT). The mass has disappeared, which emphasizes that this is a property of the
thermal bath (the fluid). We could write the correlator of the noise

⌦
⇠(t)⇠(t0)

↵
= 2� kBT �(t� t

0) . (1.13)

The phenomenological coe�cients C, the strength of the Langevin force, and �, the friction
coe�cient, are not two independent parameters (at least when thermal equilibrium holds). This
reminds that friction and fluctuations have the same physical origin : the interaction of the
particle with the molecules of the fluid. Below (§ p. 43), we will introduce a microscopic model
of friction and try to clarify the origin of this relation.

- Exercice 1.2 Langevin equation for random initial velocity : The correlator (1.10)
corresponds to a fixed initial velocity. Consider now the case where the initial velocity is random,

distributed according to P (v0) / exp
�
� mv

2

0

2kBT

 
.

a) Compute the new correlator, denoted hv(t)v(t0)iequil.

b) Can we compare the two correlators ?

- Exercice 1.3 Stationary measure of the Ornstein-Uhlenbeck process : In the sta-
tionary regime, compare the correlator with the one obtained in Exercise ??. Deduce what is
the measure of the Ornstein-Uhlenbeck process.

In Eq. (1.10), the second term is a transient term coming from the initial condition v(0) = 0.
Hence for times t , t

0 � ⌧ we can write

⌦
v(t)v(t0)

↵
=

kBT

m
e�|t�t

0
|/⌧ (1.14)

The correlations (1.11) between velocity and Langevin force can also be rewritten in terms of
the temperature

⌦
v(t)⇠(t0)

↵
=

2kBT

⌧
✓H(t� t

0) e�(t�t
0
)/⌧

. (1.15)

- Exercice 1.4 Dissipation of the energy in the Langevin equation : Consider the
kinetic energy Ekin = 1

2
mv

2. Give dEkin

dt
and deduce a di↵erential equation for hEkini. Interpret

the two terms and solve it.

1.3 Di↵usion

Now that we have obtained the statistical properties of the velocity, let us analyze the statistical
properties of the position. The average position is simply

hx(t)i = v(0)⌧
⇣
1� e�t/⌧

⌘
(1.16)

On average, after a time t� ⌧ , the particule covers a distance v(0)⌧ , which is not surprising as
the memory of the initial velocity v(0) is lost after time ⌧ . What about the fluctuations ? In
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the stationary regime the correlator of the speed is a ”narrow function” of width ⌧ , with weight

Z
+1

�1

d(t� t
0)
⌦
v(t)v(t0)

↵
equil

c
=

2kBT

�
. (1.17)

As a result, neglecting the transient regime at short times, we can write

⌦
x(t)2

↵
c
=

Z
t

0

dt1

Z
t

0

dt2 hv(t1)v(t2)ic ' t

Z
+1

�1

d(t1 � t2) hv(t1)v(t2)iequil

c
=

2kBT

�
t (1.18)

The linear behaviour characterizes di↵usion motion. We introduce the di↵usive constant

D
def

= lim
t!1

⌦
x(t)2

↵
c

2t
(1.19)

In other terms, we have obtained above a general relation between the velocity correlator and
the di↵usion constant

D
def

=

Z
1

0

dt hv(t)v(0)i (1.20)

Coming back to Langevin model, Eqs. (1.3,1.4), we get the expression

D =
kBT

�
(1.21)

which is known as the “Einstein relation”. It was obtained in Einstein 1905’s article on the Brow-
nian motion. 4 It is also known as the “Einstein-Stokes law” or “Einstein-Stokes-Sutherland
law”. This is another formulation of the FDT, relating three di↵erent physical quantities, the
di↵usion constant characterizing the fluctuations of the motion, the friction coe�cient charac-
terizing the dissipation and the temperature.

- Exercice 1.5 : Choose initial conditions for a fixed initial velocity x(0) = 0 and v(0) = v0.
Compute hx(t)i. Then, Study precisely

⌦
x(t)2

↵
c
. Analyze the crossover between the short time

and large time
⌦
x(t)2

↵
c
/ t di↵usive behaviour.

Figure 3: Measurements of Jean Perrin (1908) ; from [35]. Left : few examples of trajectories.
Right : final points after the several histories (for a fixed time).

4A. Einstein, “Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden

Flüssigkeiten suspendierten Teilchen”, Annalen der Physik 322(8), 549–560 (1905).
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- Exercice 1.6 Mean square displacement from the Langevin equation : Our aim is
to compute the mean square displacement

⌦
x(t)2

↵
of a Brownian particle in a fluid We assume

that x(0) = 0 and that the particle is initially at equilibrium with the fluid. We apply the
method proposed by Langevin in his famous article (quoted in footnote 3).

a) Prove that d
2

dt2
x(t)2 + 1

⌧

d

dt
x(t)2 = 2v(t)2 + 2

m
x(t) ⇠(t).

b) Give an argument to justify hx(t) ⇠(t)i = 0. What is
⌦
v(t)2

↵
?

c) Argue that d

dt

⌦
x(t)2

↵ ��
t=0

= 0 and deduce

⌦
x(t)2

↵
=

2kBT

�

h
t� ⌧

⇣
1� e�t/⌧

⌘i
(1.22)

Analyze carefully the limiting behaviours (interpret the t! 0 behaviour) and plot the function.

1.4 Large scale properties and the overdamped regime

Over large time scales (� ⌧), the correlator (1.14) seems a narrow function which can be replaced
by a delta function

⌦
v(t)v(t0)

↵
equil

c
=

C

�2

e�|t�t
0
|/⌧

2⌧

large scale

⇡ C

�2
�(t� t

0) =
1

�2

⌦
⇠(t)⇠(t0)

↵
. (1.23)

Furthermore, assuming that ⇠(t) is Gaussian, 5 this corresponds to write

v(t)
large scale

⇡ 1

�
⇠(t) (1.24)

i.e. to neglect the acceleration term in Newton’s equation :

0 ⇡ ��v(t) + ⇠(t) (overdamped regime) . (1.25)

This approximation is called the “overdamped regime”, which is achieved either by studying the
process over large time scales, t� ⌧ , or by formally considering the limit of strong damping,
� !1. As a result we obtain that the velocity equals the force.

Overdamped regime : ”Aristote equation”.— The pre-Galileo-Newtonian postulate,
proposed by Aristote, asserted that velocity is proportional to force. 6 The above discussion
has shown that this makes sense for the motion of a particle in a viscous fluid. If an additional
(conservative) force F (x) is introduced in the equation of motion for the overdamped regime
(1.25), we have

dx(t)

dt
⇡ 1

�
[F (x(t)) + ⇠(t)] (overdamped regime) . (1.26)

I call this equation the ”Aristote equation”, although this is a bit anachronistic (di↵erential
calculus was invented only at the end of XVIIth century by Leibniz and Newton).

5Gaussian processes have only two finite cumulants 1 and 2, all others being zero. Equality of averages and
variances of two Gaussian processes implies that the have the same statistical properties.

6In the book ”Aristote’s Physics”, it is claimed that the velocity of a falling body is proportional to its weight,
i.e. the velocity is proportional to the force. In other terms the motion requires a force for Aristote (384-322
BC). It required almost two thousand years to understand that force induces acceleration, not motion : motion
can exist without force. This was the achievement of Galileo Galilei (1564-1642 AC).
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Figure 4: The dynamics described by the Newton equation conserves the energy, whereas the
energy is dissipated during the ”Aristote dynamics”.

A last comment about the physical content of the ”Aristote equation”, which we rewrite

dx(t)

dt
= �1

�

@V (x)

@x
+
p

2D ⌘(t) (1.27)

where V (x) is the potential, such that F (x) = �V
0(x), and ⌘(t) a normalised Gaussian white

noise, i.e. with h⌘(t)i = 0 and h⌘(t)⌘(t0)i = �(t � t
0). Contrary to the Newton equation,

which describes a conservative dynamics, the Aristote equation describes a non conservative
dynamics, along which energy is dissipated (cf. Exercise 1.4). In particular, in the D ! 0 limit,
the trajectory converges towards the first stationary point (Fig. 4). If the first stationary point
is a local minimum like on the figure, only a fluctuation (finite D) can untrap the particle.

We will come back later to a general analysis of this stochastic di↵erential equation.

1.5 The free Brownian motion (the Wiener process)

In the overdamped regime, in the absence of the external force F (x), the position is just the
integral of a Gaussian white noise

x(t) = x(0)|{z}
=0

+
1

�

Z
t

0

du ⇠(u) (1.28)

Let us simplify the notations and introduce a normalised Gaussian white noise ⌘(t) =
⇠(t)/

p
C so that

h⌘(t)i = 0 and
⌦
⌘(t)⌘(t0)

↵
= �(t� t

0) . (1.29)

We now consider the normalised free Brownian motion, with no external force (the “Wiener

process”) by setting x(t) =
p
C

�
W (t). Obviously

dW (t)

dt
= ⌘(t) ) W (t) =

Z
t

0

du ⌘(u) (1.30)

thus
⌦
W (t)W (t0)

↵
=

Z
t

0

du

Z
t
0

0

dv �(u� v) =

Z
min(t,t

0
)

0

du (1.31)

Finally ⌦
W (t)W (t0)

↵
= min

�
t, t
0
�

(1.32)

Interpretation : consider the case t < t
0, we have hW (t)W (t0)i = h[W (t0)�W (t)]W (t)i +⌦

W (t)2
↵
. The second term is t (di↵usion) ; the first term vanishes as the two increments

W (t0)�W (t) =
R
t
0

t
du ⌘(u) and W (t) =

R
t

0
du ⌘(u) are independent.

- Exercice 1.7 : Check that the increment depends only on the time di↵erence

h
⇥
W (t)�W (t0)

⇤
2i = |t� t

0| (1.33)
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Figure 5: A typical Brownian trajectory : W (t) as a function of t. If one zooms, trajectory looks
the same (scale invariance).

Continuity.— In the limit t ! t
0 we get limt!t0h

⇥
W (t) �W (t0)

⇤
2i = 0. This last equation

suggests that the curve W (t) is continuous. As a matter of fact the two statements are
disconnected : the fact that this limit is zero does not imply continuity (cf. Exercise 2.5)!

In order to prove continuity, we should consider the probability

Proba
�
|W (t)�W (t0)| < ✏

 
= erf

 
✏p

2|t� t0|

!
. (1.34)

This expression simply follows from the fact that the increment between times t and t
0 is

Gaussian, with variance |t � t
0|, hence the cumulative distribution related to the error func-

tion erf(x) (see Appendix ??). This expression shows that 8 ✏ > 0, there exists a su�ciently
small time di↵erence, choose |t� t

0|⌧ ✏
2, so that we are sure that the distance is smaller than

✏ : Proba
�
|W (t) �W (t0)| < ✏

 
' 1 �O(e�✏

2
/(2|t�t

0
|)). Because we can choose ✏ as small as we

want, this corresponds to continuity of the process.
Continuity can also be understood in a simpler manner by constructing the Brownian motion

from the discrete random walk, W (t) =
Pt/✏

⌧=1
�W⌧ where h�W⌧ i = 0 and h�W⌧�W⌧ 0i = ✏ �⌧,⌧ 0 ,

and taking the continuum limit of small jumps �W⌧ ⇠
p
✏! 0 occuring with high rate 1/✏!1.

Non di↵erentiability Another consequence of (1.33) is that
*✓

W (t)�W (t0)

t� t0

◆
2
+

=
1

|t� t0| (1.35)

which goes to infinity when t! t
0 : the derivative of typical curves is infinite, i.e. W (t) is non

di↵erentiable. We can see on the plot that the curve is indeed extremely irregular (see Fig. 5).

Scaling This irregularity is related to scale invariance and fractal behaviour (with fractal
dimension 1/2). For a scaling factor ↵ > 0, it is clear that

⌦
W (↵t)W (↵t

0)
↵

= ↵ min
�
t, t
0
�

= ↵
⌦
W (t)W (t0)

↵
(1.36)

Because W (t) is Gaussian, all statistical information is encoded in the two point function,
hence this equality means that we can identify the statistical properties of W (↵t) with those of

10



p
↵W (t). Mathematicians express this through and “equality in law” (or “equality in distribu-

tion”)

W (↵t)
(law)

=
p
↵W (t) (1.37)

(the ”laws” of the two sides are equal). The same argument applies to the Gaussian white noise
gives

⌘(↵t)
(law)

=
1p
↵
⌘(t) . (1.38)

- Exercice 1.8 From the Wiener process to the Ornstein-Uhlenbeck process : We
consider the Wiener process described by the equation dW (u)

du
= ⌘(u), where ⌘(u) is a normalised

Gaussian white noise.

a) Consider '(u) a monotonous function. Argue that

⌘('(u))
(law)
=

1p
|'0(u)|

⌘(u) (1.39)

b) Deduce the stochastic di↵erential equation for

x(t) =
W (u)p

u
with u = u0e

2�t (1.40)

, Important points

• Master the analysis of the linear Langevin equation (1.3) (integrate, average, etc)
• Fluctuation-dissipation relation (di↵erent forms) : Langevin force and damping force have the
same origin, hence the relation.
• Wiener process : main properties.

2 Stochastic processes (2) : Markov processes and master equa-
tion

We have discussed above few simple stochastic processes (the Wiener process and the Ornstein-
Uhlenbeck process). Let us now introduce some general ideas (vocabulary) allowing for a general
analysis of stochastic processes.

Figure 6: Marian von Smoluchowski (1872-1917) is considered as the father of the theory of
stochastic processes.
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2.1 Generalities : joint probabilities, conditional probabilities

The aim of the section is to introduce some useful tools and concepts needed to describe random
processes. In the previous section, we have obtained an integral representation of the trajectory
in terms of the Langevin force, which has been used in order to analyze its statistical properties.
In general, one considers a random process X(t), i.e. a random function of the time, and one
is interested in its statistical properties. Its probability weight should be given by a functional
P [X(t)], which is rather complicate to manipulate (for example an explicit calculation of an
average might be di�cult, e.g. hX(t)i =

R
DX(t) P [X(t)] X(t) requires to define how to perform

the integral over the functions). For this reason we will introduce other tools more simple
conceptually and practically : instead of considering a probability weight DX(t) P [X(t)] which
allows to know the value of the process at all times, we introduce a joint distribution which
provides statistical information at a discrete set of times.

Joint probability : In order to characterize the statistical properties of the random process,
we can introduce the joint probability or the n-point function

Pn(xn, tn; · · · ; x2, t2; x1, t1)| {z }
 �
time

= h�(xn �X(tn)) · · · �(x1 �X(t1))i (2.1)

corresponding to the probability (density) for the process to be equal to x1, · · · , xn at times
t1, · · · , tn. We can also write

Pn(xn, tn; · · · ; x2, t2; x1, t1) dx1 · · · dxn = Proba{X(t1) 2 [x1, x1+dx1] & · · · & X(tn) 2 [xn, xn+dxn]}

From the definition, it is clear that one integration connect the n-point to the n � 1-point
functions

Z
dxk Pn(xn, tn; · · · ; xk+1, tk+1; xk, tk; xk�1, tk�1; · · · ; x1, t1) (2.2)

= Pn�1(xn, tn; · · · ; xk+1, tk+1; xk�1, tk�1; · · · ; x1, t1) (2.3)

It is clear from (2.1) that the joint distribution with n arguments is appropriate to express the
n-point correlation function of the process :

hX(t1)i =

Z
dx1 P1(x1, t1) x1 (2.4)

hX(t2)X(t1)i =

Z
dx1dx2 P2(x2, t2; x1, t1) x2 x1 (2.5)

etc.

Conditional probability : Another important concept is the one of conditional probability
corresponding to the probability for the process to pass through x1, · · · , xn at successive times
t1, · · · , tn, given that it has previously passed through y1, · · · , yn at successive times ⌧1, · · · , ⌧n :

Pn|m(xn, tn; · · · ; x1, t1 | ym, ⌧m; · · · ; y1, ⌧1) =
Pn+m(xn, tn; · · · ; x1, t1; ym, ⌧m; · · · ; y1, ⌧1)

Pm(ym, tm; · · · ; y1, ⌧1)
(2.6)

In particular, the conditional probability is useful to write conditional averages. Example :

hX(t2)X(t1) |X(0) = x0i =

Z
dx1dx2 x2 x1 P2|1(x2, t2; x1, t1 |x0, 0) , (2.7)

which is the correlator over trajectories which all start from the same point X(0) = x0.

12



2.2 Markov processes

A very important class of random processes are Markov processes. A Markov process is a random
process whose evolution after time t0 only depends on its value at time t0. Mathematically, this
property takes the form

Pn|m(xn, tn; · · · ; x1, t1 | ym, ⌧m; · · · ; y1, ⌧1| {z }
past history

) = Pn|1(xn, tn; · · · ; x1, t1 | ym, ⌧m) (2.8)

which expresses that history prior to ⌧m does not matter : only the last position ym at time ⌧m
determines the evolution at times t1, · · · , tn.

Figure 7: Andrëı Andrëıevich Markov (1856-1922).

Let us examine the consequences of this assumption. Consider for example the three point
function :

P3(x3, t3; x2, t2; x1, t1) = P1|2(x3, t3|x2, t2; x1, t1) P2(x2, t2; x1, t1) (2.9)

= P1|2(x3, t3|x2, t2; x1, t1) P1|1(x2, t2|x1, t1) P1(x1, t1) (2.10)

Markov
= P1|1(x3, t3|x2, t2) P1|1(x2, t2|x1, t1) P1(x1, t1) (2.11)

We can generalize this to any joint distribution. We simplify the notation as P1|1(x, t|y, t0) ⌘
P (x, t|y, t0) and P1(x, t) ⌘ P (x, t) and we conclude that

A Markov process is fully characterized by

P (x, t|y, t0) and P (x, t) only.

Chapman-Kolmogorov equation : Start from the general property
Z

dx2 P3(x3, t3; x2, t2; x1, t1) = P2(x3, t3; x1, t1) . (2.12)

For a Markov process, using (2.11), one gets the Chapman-Kolmogorov equation

Z
dx2 P (x3, t3|x2, t2) P (x2, t2|x1, t1) = P (x3, t3|x1, t1) (2.13)

The probability to go from x1 to x3 is the sum over x2 of the probabilities conditioned to passed
through x2.
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Propagator : Integrating the two point-point function P2(xf , tf ; xi, ti) = P (xf , tf |xi, ti) P (xi, ti)
over the initial coordinate, we get

P (xf , tf ) =

Z
dxi P (xf , tf |xi, ti) P (xi, ti) (2.14)

Which shows that the conditional probability relates the distribution at initial time ti to the
distribution at final time tf . For this reason, P (xf , tf |xi, ti) is sometimes called the “propagator”.

Figure 8: Andrëı Nikoläıevitch Kolmogorov (1903-1987), well-known by physicists for his major
contributions to the theory of dynamical systems and probability.

Homogeneous Markov processes : In the following, in order to simplify the discussion, we
will restrict ourselves to Markov processes such that the transition probability is invariant under
time translation

P (x2, t2|x1, t1) = P (x2, t2 � t1|x1, 0) (2.15)

Such random processes are denoted “homogeneous”. Since it only depends on the time di↵erence,
we will also write the propagator as Pt(x|x0).

a) A first example of Markov process

We can come back to the Langevin equation (1.3) for the velocity. (i) The equation for v(t) is
first order, hence the evolution at t > 0 is fully determined by v(0) = v0. (ii) The Langevin
force is a white noise (⇠ uncorrelated in time), thus no time correlations are hidden in the noise.
From (i) & (ii) we conclude that the process is Markovian.

Let us now discuss the related fundamental probabilities P (v, t) and P (v, t|v0, 0), which can
be easily obtained if we assume furthermore that the Langevin noise is Gaussian. 7 From the
above calculations we have, cf. (1.8,1.10)

hv(t)i = v0 e�t/⌧ (2.16)

Var[v(t)] =
kBT

m

⇣
1� e�2t/⌧

⌘
(2.17)

The process v(t) is a convolution of the Gaussian Langevin force ⇠(t), hence it is also Gaussian
(a sum of Gaussian variables is also Gaussian). The knowledge of these two moments is su�cient
to characterize the full distribution, which is here conditioned by the initial velocity : 8

Pt(v|v0) =
r

m

2⇡kBT
�
1� e�2t/⌧

� exp

(
� m (v � v0 e�t/⌧ )2

2kBT
�
1� e�2t/⌧

�
)

. (2.18)

7The distribution of the noise is a Gaussian : P [⇠] / exp
�
� 1

2C

R
dt ⇠(t)2

 
. On can deduce from this that

h⇠(t)⇠(t0)i = C �(t � t
0) [hint : discretize the time to check this].

8This argument was used in the historical paper : G. E. Uhlenbeck and L. S. Ornstein, “On the Theory of the

Brownian Motion”, Phys. Rev. 36(5), 823–841 (1930).
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At large time, the conditional probability converges toward the equilibrium distribution

Pt(v|v0) �!
t!1

P (v) =

r
m

2⇡kBT
e
�

m

2kBT
v
2

(2.19)

(the Gibbs distribution). Here, the ”one point distribution” P (v) is independent of the time
due to the existence of a stationary state (this is not always the case). This is also why the con-
ditional probability rapidly converges (exponentially fast) toward the equilibrium distribution.
The process described by equation (1.3), or the conditional probability (2.18), is known as the
Ornstein-Uhlenbeck process. It is the subject of the Doob theorem (the only homogeneous
Gaussian stationary random process is the Ornstein-Uhlenbeck process). 9

- Exercice 2.1 : Recover the correlator hv(t)v(t0)i
c
given by (1.10) from the conditional

probability. Consider both cases of initially fixed velocity and random velocity.

b) Markovian or non-Markovian ?

Random walk .— After each step, a random walker forgets past history (where he is coming
from) : this is a Markov process.

Choosing clothes every morning.— Consider choosing clothes from a closet every morning
as a stochastic process. The selection depends on the weather of the previous day : there is a
memory e↵ect hence the process is non Markovian.

v(t) is a Markov process.— We have pointed out that the Langevin equation (1.3) describes
a Markov process because
(i) the di↵erential equation is first order, hence the solution for t > 0 depends only on some
initial value v(0) ;
(ii) the noise is �-correlated, hence there is no memory hidden in the Langevin force.

x(t) is a non Markovian process.— The position x(t) of the particle is a non Markovian
process. There are two points of view leading to this conclusion.

• it obeys the stochastic di↵erential equation (SDE) m ẍ(t) = �� ẋ(t) + ⇠(t), which is second
order. The noise is still �-correlated, however, the solution of the di↵erential equation is de-
termined both by the initial position x(0) and the initial velocity ẋ(0), which depends on the
history before t = 0 (velocity indicates where the particle comes from). We break point (i) while
point (ii) holds. The process x(t) is non Markovian.

• We could also argue that x(t) obeys a first order SDE, ẋ(t) = v(t), whose solution is determined
only by x(0), hence point (i) holds. The velocity now plays the role of the noise. This ”noise”
is now characterized by a finite correlation time (memory time), hv(t)v(t0)i = kBT

m
e�|t�t

0
|/⌧ (one

says that the SDE for x(t) involves a ”colored noise”). Within this point of view we break point
(ii), which leads to the same conclusion, as it should, that x(t) is non Markovian.

(x(t), v(t)) is a 2D Markov process.— x(t) alone is a non Markovian process, however it can
be considered as the first component of a two-dimensional Markov process ~ (t) = (x(t), v(t)).
Indeed, the system of di↵erential equations for (x(t), v(t)) is first order and involves a �-correlated
noise. It presents the more general form of a multidimensional Langevin equation

 ̇i = �i(~ ) + Bij ⌅j(t) (2.20)

9The Ornstein-Uhlenbeck process is more frequently introduced as a model for a particle attached to a spring
in the overdamped regime : ẋ(t) = �k x(t) + ⇠(t) (I forget the friction coe�cient �).
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where here ~� = (v, F (x) � � v) is the drift (we have added a conservative force). The noise
~⌅(t) = (0, ⇠(t)) is uncorrelated in time. The matrix is Bxx = Bxv = Bvx = 0 and Bvv = 1.
Hence it is a 2D Markovian process. We will see that the joint distribution Pt(x, v) obeys the
“Kramers equation” @tPt =

⇥
� @xv � @v(F (x)� � v) + �kBT @

2
v

⇤
Pt.

Conclusion : The analysis of this example shows that the identification of a Markov process
is sometimes a question of perspective, and also illustrates that Markov processes are elementary
building blocks. Many non Markovian processes can be constructed from Markov processes.

2.3 Master equation

a) Master equation for continuous processes

Let us start with the case of continuous processes, which is more general. As we have seen,
Eq. (2.14), the evolution of the distribution of a Markov process can be represented in terms of
the conditional probability which plays the role of a “propagator”

P (x, t) =

Z
dx0 P (x, t|x0, t0) P (x0, t0) . (2.21)

However, this equation and (2.13) are not of great help to determine the two fundamental
functions P (x, t) and P (x, t|x0, t0). The distribution is more conveniently obtained by solving
an evolution equation for an infinitesimal time : such an evolution equation can be related to
the above integral equation by considering the evolution during an infinitesimal time �t! 0. In
this case we expect

P (x, t + �t|x0, t) ' �(x� x0) + �t Wt(x|x0) + O(�t2) (2.22)

The linear correction follows from the Markov assumption : at short time, the transition proba-
bility is linear with time and involves a transition rate Wt(x|x0)dx for performing the transition
from x0 to [x, x + dx].

If we restrict ourselves to homogeneous processes (time translation invariant) we have

Wt(x|x0)!W (x|x0) (homogeneous process) (2.23)

independent of time. For homogeneous processes, we find the di↵erential equation (in time)

@P (x, t)

@t
=

Z
dx
0
W (x|x0) P (x0, t) (2.24)

This is the general form of the Master equation for a continuous process. The fact that the
di↵erential equation in time is first order means that the future evolution of the probability
density for times t > 0 depends only on the distribution P (x, 0) and not on the past history
(Markov property). This is the (a posteriori) justification for the expansion (2.22). Note that
the conservation of probability requires that

Z
dxf W (xf |xi) = 0 ) @

@t

Z
dx P (x, t) = 0 8 t (2.25)

so that probability
R

dx P (x; t) = 1 is conserved. This condition follows from the normalization
condition of the conditional probability, in the expansion (2.22). Obviously, the conditional
probability obeys the same equation

@Pt(x|x0)

@t
=

Z
dx
0
W (x|x0) Pt(x

0|x0) for initial condition P0(x|x0) = �(x� x0) . (2.26)
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In a specific problem, the transition ”rates” W (x|x0) are given and the aim is to solve the master
equation (2.24), or (2.26).

In the most general case, a Markov process can combine

• a di↵usion : in this case the integral kernel is replaced by a second order di↵erential operator

• jumps : leading to an integral term in the master equation, like in (2.24).

Below, we will give concrete examples.

b) Master equation for discrete processes

For simplicity, let us first consider a random process which takes discrete values X(t) 2 {x1, · · · , xM}
and denote Pn(t) = Proba{X(t) = xn}. The Markovian nature of the process implies that
Pn(t + �t) depends on the state of the process at time t, i.e. the probability Pn(t), and the
probability for some transition between t and t + �t. We denote by Wn,m > 0 the rate for a
transition from m to n, with n 6= m, meaning that the probability to make a transition m! n

on the interval [t, t + �t] is Wn,m�t. Therefore

Pn(t + �t)
Markov

= Pn(t)
⇣
1�

X

m( 6=n)

Wm,n�t

| {z }
proba to leave n

⌘
+
X

m( 6=n)

Wn,m�t| {z }
proba for m!n

Pm(t) (2.27)

It is convenient to define the diagonal elements as Wn,n

def

= �
P

m ( 6=n)
Wm,n < 0. Letting �t! 0,

we obtain the first order di↵erential equation

d

dt
Pn(t) =

X

m

Wn,mPm(t) (2.28)

Eq. (2.28) is the master equation for a discrete process. The coe�cients Wn,m form a M⇥M
matrix W , which satisfies the condition

X

n

Wn,m = 0 (2.29)

ensuring the conservation of probability
P

n
Pn(t) = 1 8 t. Note that this condition is related

to an asymmetry of the matrix (Wn,m 6= Wm,n in general) : the sum of all elements of a
column is zero, however summing elements along a line is non zero in general. By using Wn,n =
�
P

m ( 6=n)
Wm,n we can rewrite the master equation as

d

dt
Pn(t) =

X

m ( 6=n)

[Wn,mPm(t)�Wm,nPn(t)] (2.30)

(we can also replace
P

m ( 6=n)
!
P

n
). This form avoids to add the restriction (2.29).

Birth and death processes.— A subclass of these discrete processes are “birth and death
processes”. They correspond to the case where the transition matrix is tridiagonal, i.e. allows
only transitions between nearest neighbour states. The master equation has the form

d

dt
Pn(t) = dn+1 Pn+1(t) + bn�1 Pn�1(t)� (dn + bn) Pn(t) (2.31)

where dn > 0 and bn > 0 are death and birth rates, respectively. A simple example is the Poisson
process studied below in great detail. Another example will be discussed in Exercise 2.14.

We discuss now several examples of Markov processes (discrete or continuous).
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c) The random telegraph process

We consider the most simple Markov process X(t), taking only two possible values X1 or X2 (this
is a ”two level system” for stochastic processes). Hence we should introduce two probabilities
Pi(t) = Proba{X(t) = Xi} with i 2 {1, 2}. In general, there are two di↵erent transition rates
�1 (from X1 to X2) and �2 (from X2 to X1). A typical realization of the process is represented
on Fig. 9. A physical realization is presented in Fig. 10.

Figure 9: Random telegraph process with X1 = �1 and X2 = +1.

The two probability obey the set of di↵erential equations

dP1(t)

dt
= ��1 P1(t) + �2 P2(t) (2.32)

dP2(t)

dt
= +�1 P1(t)� �2 P2(t) (2.33)

in each equation, one term populates the state and the other empties the state.

Measuring current by counting electrons in a nanowire quantum dot

S. Gustavsson⇤, I. Shorubalko⇤, R. Leturcq, S. Schön, and K. Ensslin
Solid State Physics Laboratory, ETH Zürich, CH-8093 Zürich, Switzerland

(Dated: February 5, 2008)

We measure current by counting single electrons tunneling through an InAs nanowire quantum
dot. The charge detector is realized by fabricating a quantum point contact in close vicinity to the
nanowire. The results based on electron counting compare well to a direct measurements of the
quantum dot current, when taking the finite bandwidth of the detector into account. The ability to
detect single electrons also opens up possibilities for manipulating and detecting individual spins in
nanowire quantum dots.

A highly-sensitive charge detector is a powerful tool for
probing electronic properties of mesoscopic structures. In
contrast to conventional transport measurement, the sys-
tem under investigation does not need to be connected
to leads. This makes the measurement technique low-
invasive and allows charge transitions within the nanos-
tructure to be investigated [1]. By adding time resolution
to the detector, tunneling of individual electrons can be
detected in real-time [2]. This provides the possibility
to extract statistics for the tunneling electrons and to
probe electron-electron correlations [3, 4], as well as for
determining electron spin dynamics [5, 6].

Another possible application of time-resolved charge
detection is to use it as a metrology standard for current.
Bylander et al experimentally verified the fundamental
relation I = e f by relating a highly-correlated current I

through an array of tunnel junctions to the frequency re-
sponse f of a single-electron transistor [7]. In this work,
we combine a quantum dot (QD) formed in a semicon-
ductor nanowire with a quantum point contact (QPC)
acting as the charge detector. The large energy scales of
the nanowire QD enable operation at T = 4 K and allow
the QPC to be operated at larger bias voltages compared
to GaAs QDs [8]. This together with the high sensitivity
of the detector make time-resolved single-electron detec-
tion possible in a regime where we can simultaneously
measure the QD current with a conventional current me-
ter. In this way, we count electrons one by one and make
direct comparisons to the measured current. We find that
the current measured by counting is lower than the one
measured with conventional techniques. The di↵erence
can be quantitatively accounted for by considering the
electrons missed because of the limited bandwidth of the
charge detector, which is a known quantity [9].

InAs nanowires are catalytically grown by metal-
organic vapor phase epitaxy (the detailed recipe is de-
scribed in [10]). An InAs nanowire is deposited on top of
a shallow (37 nm) AlGaAs/GaAs heterostructure based
two-dimensional electron gas (2DEG). The QD in the
InAs nanowire and a QPC in the underlying 2DEG are
defined in a single etching step using patterned electron
beam resist as an etch mask. This method guarantees

⇤
These authors contributed equally to this work.

perfect alignment as well as strong coupling between the
two devices [11].

Figure 1(a) shows a scanning electron microscope
(SEM) image of a device similar to the one used in the
measurements. The QD is defined by the etched con-
strictions in the nanowire between S and D. The QPC is
formed between the two etched trenches that separates
it from the rest of the 2DEG. The regions marked by L
and R are used as side gates to control the QD popula-
tion and to tune the coupling between the QD and the
source and drain leads. In the experiment, the QPC was
biased with a DC voltage of VQPC = 1 mV. In addition,
a voltage was applied to the 2DEG on both sides of the
QPC to compensate for the shift in QPC potential when
changing the voltages on gates L, R. The bias of the QPC
was kept smaller than the single-level spacing of the QD
to avoid QD excitations due to photon absorbtion [8].
The measurements presented here were performed at a
temperature of 1.7 K, but we have tested that the setup
produces similar results at T = 4 K.
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FIG. 1: (color online) (a) SEM image of the device. The
quantum dot is formed in the nanowire, with the quantum
point contact located in the 2DEG directly beneath the QD.
(b) Typical time trace of the QPC conductance, showing a few
electrons tunneling into and out of the QD. The upper level
corresponds to a situation with n electrons on the QD. (c)
Rise time of the detector, defined as the time needed for the
current to cross the midline between current levels belonging
to the n and n + 1 electron states.
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Measuring current by counting electrons in a nanowire quantum dot

S. Gustavsson⇤, I. Shorubalko⇤, R. Leturcq, S. Schön, and K. Ensslin
Solid State Physics Laboratory, ETH Zürich, CH-8093 Zürich, Switzerland

(Dated: February 5, 2008)

We measure current by counting single electrons tunneling through an InAs nanowire quantum
dot. The charge detector is realized by fabricating a quantum point contact in close vicinity to the
nanowire. The results based on electron counting compare well to a direct measurements of the
quantum dot current, when taking the finite bandwidth of the detector into account. The ability to
detect single electrons also opens up possibilities for manipulating and detecting individual spins in
nanowire quantum dots.

A highly-sensitive charge detector is a powerful tool for
probing electronic properties of mesoscopic structures. In
contrast to conventional transport measurement, the sys-
tem under investigation does not need to be connected
to leads. This makes the measurement technique low-
invasive and allows charge transitions within the nanos-
tructure to be investigated [1]. By adding time resolution
to the detector, tunneling of individual electrons can be
detected in real-time [2]. This provides the possibility
to extract statistics for the tunneling electrons and to
probe electron-electron correlations [3, 4], as well as for
determining electron spin dynamics [5, 6].

Another possible application of time-resolved charge
detection is to use it as a metrology standard for current.
Bylander et al experimentally verified the fundamental
relation I = e f by relating a highly-correlated current I

through an array of tunnel junctions to the frequency re-
sponse f of a single-electron transistor [7]. In this work,
we combine a quantum dot (QD) formed in a semicon-
ductor nanowire with a quantum point contact (QPC)
acting as the charge detector. The large energy scales of
the nanowire QD enable operation at T = 4 K and allow
the QPC to be operated at larger bias voltages compared
to GaAs QDs [8]. This together with the high sensitivity
of the detector make time-resolved single-electron detec-
tion possible in a regime where we can simultaneously
measure the QD current with a conventional current me-
ter. In this way, we count electrons one by one and make
direct comparisons to the measured current. We find that
the current measured by counting is lower than the one
measured with conventional techniques. The di↵erence
can be quantitatively accounted for by considering the
electrons missed because of the limited bandwidth of the
charge detector, which is a known quantity [9].

InAs nanowires are catalytically grown by metal-
organic vapor phase epitaxy (the detailed recipe is de-
scribed in [10]). An InAs nanowire is deposited on top of
a shallow (37 nm) AlGaAs/GaAs heterostructure based
two-dimensional electron gas (2DEG). The QD in the
InAs nanowire and a QPC in the underlying 2DEG are
defined in a single etching step using patterned electron
beam resist as an etch mask. This method guarantees

⇤
These authors contributed equally to this work.

perfect alignment as well as strong coupling between the
two devices [11].

Figure 1(a) shows a scanning electron microscope
(SEM) image of a device similar to the one used in the
measurements. The QD is defined by the etched con-
strictions in the nanowire between S and D. The QPC is
formed between the two etched trenches that separates
it from the rest of the 2DEG. The regions marked by L
and R are used as side gates to control the QD popula-
tion and to tune the coupling between the QD and the
source and drain leads. In the experiment, the QPC was
biased with a DC voltage of VQPC = 1 mV. In addition,
a voltage was applied to the 2DEG on both sides of the
QPC to compensate for the shift in QPC potential when
changing the voltages on gates L, R. The bias of the QPC
was kept smaller than the single-level spacing of the QD
to avoid QD excitations due to photon absorbtion [8].
The measurements presented here were performed at a
temperature of 1.7 K, but we have tested that the setup
produces similar results at T = 4 K.
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FIG. 1: (color online) (a) SEM image of the device. The
quantum dot is formed in the nanowire, with the quantum
point contact located in the 2DEG directly beneath the QD.
(b) Typical time trace of the QPC conductance, showing a few
electrons tunneling into and out of the QD. The upper level
corresponds to a situation with n electrons on the QD. (c)
Rise time of the detector, defined as the time needed for the
current to cross the midline between current levels belonging
to the n and n + 1 electron states.
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Figure 10: A physical realization of the random telegraph process : the charge inside a quantum
dot is measured as a function of the time with a neighbouring probe. The current IQPC through
the probe is proportional to the number of electrons inside the central island, which fluctuates by
one unit (one electron). From Ref. [16].

In the following exercice, we study the corresponding master equation, (2.28) for a 2 ⇥ 2
matrix W .

- Exercice 2.2 Random telegraph process :
a) Derive the set of di↵erential equations for P1(t) and P2(t). Deduce a matricial form d

dt
P (t) =

W P (t), where P = (P1 P2)T is the column vector ( T denotes tranposition).

b) Find the stationary solution, denoted by P
⇤

i
, and give the general solution of the master

equation.

c) Determine the conditional probability Pt(i|j). Discuss detailed balance. Compute
P

j
Pt(n|j) P

⇤

j

and interpret.

d) Express hX(t)i and hX(t)X(t0)i in the stationary regime. For simplicity, choose X1 = 0 and
X2 = 1. Show that the correlator C(t� t

0) = hX(t)X(t0)i � hX(t)i hX(t0)i is

C(t� t
0) =

�1�2

(�1 + �2)2
e�(�1+�2)|t�t

0
|
. (2.34)
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e) Deduce the power spectrum S(!) of the telegraphic noise (use the Wiener-Khintchine theorem
discussed below, § 2.5, and the relation with the correlation function C(t)).

d) The Poisson process (statistics of uncorrelated events)

The Poisson process takes integer values N (t) 2 N and starts at initial time from N (0) = 0.
With probability rate �, the process is incremented by one, i.e. during an interval of time of dura-
tion dt, the process increases by one with probability � dt. We denote Pn(t) = Proba{N (t) = n}
its probability.

The Poisson process (PP) counts the occurences of independent events. For instance the
number of drops of rain falling on the floor during a time interval t. Or the number of desinte-
grations in a radioactive material during a time t.

Figure 11: A typical realization of the Poisson process : N (t) as a function of t.

The master equation of the PP is

8
><

>:

dPn(t)

dt
= �Pn�1(t)� �Pn(t) for n > 0

dP0(t)

dt
= ��P0(t)

(2.35)

In other terms, the rate ”matrix” has elements on the diagonal and just below the diagonal
Wn,m = �

�
� �m,n + �m,n�1

�
.

- Exercice 2.3 Master equation for the PP :
a) Show that the master equation for the Poisson process is (2.35).

b) Introduce the generating function G(z; t)
def
=
P
1

n=0
z
n

Pn(t). What is the value of G(z; 0) ?
Get a di↵erential equation for G(z; t) and solve it.

c) Deduce that

Pn(t) =
(�t)n

n!
e��t (2.36)

d) Determine the cumulants hN (t)kic of the Poisson process.

e) Give the distribution q(⌧) of the time separating two successive events [indication : relate q(⌧)
and P0(t)].

Note that (2.36) corresponds to the initial condition N (0) = 0, hence the conditional prob-
ability of the Poisson process is Pt(n|m) = Pn�m(t) for n > m and Pt(n|m) = 0 for n < m.

This remark reflects the fact that the Poisson process is both translation invariant in time
(Wn,m does not depend on time) and ”space”

Wn,m = �
�
� �m�n,0 + �n�m,1

�
= function(n�m) . (2.37)
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Using translation invariance, we deduce that the conditional probability of the Poisson pro-
cess is

Pt(n|m) =

(
(�t)

n�m

(n�m)!
e��t for n > m

0 for n < m

(2.38)

- Exercice 2.4 Conditional probability for the PP : Consider the Poisson process with
N (0) = 0. Check that

P
m

Pt(n|m) Pt0(m|n0) = Pt+t0(n|n0).

- Exercice 2.5 Two-point correlator of the PP :

a) For N (0) = 0, express hN (t)i in terms of the probability. Compute it.
b) Express hN (t)N (t0)i as a double sum and compute it when t

0
< t. Deduce the correlator

hN (t)N (t0)i
c
= hN (t)N (t0)i � hN (t)i hN (t0)i. Compare with the Wiener process.

c) Deduce
D⇥

N (t)�N (t0)
⇤
2
E

c

. Comment on the limit t! t
0.

- Exercice 2.6 Derivative of the PP : We consider the noise ⇠(t) =
P

n
�(t�tn), where the

times are i.i.d. for a uniform density �. I.e., when they are ordered, the events occur randomly
and independently with rates �. In other terms, the noise is the derivative of the Poisson process
introduced above ⇠(t) = N 0(t).

We introduce the generating function of the noise G[h]
def
=
⌦
exp

R
dt h(t) ⇠(t)

↵
, where h•i is the

averaging over the random times tn’s.

a) Show that G[h] = exp
�
�
R

dt(eh(t) � 1)
 
.

Hint: Consider that the N times are not ordered, distributed over [0, T ]N with measure dt1 · · · dtN/T
N .

b) Deduce the connex correlation functions (cumulants) : h⇠(t)i = � and h⇠(t1) · · · ⇠(tn)i
c

=
� �(t1 � t2) · · · �(t1 � tn).
Hint: Consider functional derivatives of ln G[h].

In conclusion, ⇠(t) = N 0(t) is a non Gaussian white noise.

- Exercice 2.7 n-point correlations of the PP : Using the result of Exercise 2.6, deduce
the n-point correlations hN (t1)N (t2) · · ·N (tn)i

c
for the Poisson process.

e) The compound Poisson process

A natural generalization of the Poisson process is the compound Poisson process (CPP) 10 : we
consider now that the process X(t) makes random jumps

X(t+n ) = X(t�n ) + ⌘n (2.39)

where the ⌘n’s are i.i.d., distributed according to a distribution w(⌘). As for the Poisson process,
the jumps occur at random times tn with rate �. After a time t, the number of jumps N (t) is
random (it is a PP), hence we can write the CPP in terms of the PP as

X(t) =

N (t)X

n=0

⌘n (2.40)

with ⌘0 = X(0) = 0.

Numerics : this form shows that it is very simple to simulate the CPP with a computer. One
can generate two independent sequences of random numbers : the exponentially distributed
random time intervals ⌧n = tn � tn�1 > 0 (cf. Exercise 2.3) and the random amplitudes ⌘n’s.

10in French: “processus de Poisson composé”.
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Figure 12: Compound Poisson process X(t) for Gaussian jumps.

Master equation : The master equation of the CPP is

@P (x, t)

@t
= �

Z
d⌘w(⌘) [P (x� ⌘, t)� P (x, t)] (2.41)

i.e. of the form (2.24) for

W (x|x0) = �
⇥
w(x� x0)� �(x� x0)

⇤
. (2.42)

Note that here, the transition kernel is (time and space) translation invariant, as for the PP.

- Exercice 2.8 Master equation for the CPP :
a) Show that the master equation for the CPP is (2.41).

b) Continuum limit.— Study the limit � ! 1 with w ! 0 such that a = �h⌘ni and b = �h⌘2
ni

are kept finite (argue that, in this limit, �h⌘kni ! 0 for k > 2).

c) Introducing the Fourier transforms bP (k, t) =
R

dx e�ikx
P (x; t) and ŵ(k) =

R
d⌘ e�ik⌘

w(⌘),
show that the solution is

P (x, t) =

Z
+1

�1

dk

2⇡
e�t [ŵ(k)�1]+ikx

. (2.43)

Discuss the continuum limit.

d) When h⌘2
ni =1, the process belongs to the class of Lévy flights. For example, if w(⌘) ⇠ c/⌘

2

for ⌘ ! ±1 we have ŵ(k) ' 1� c|k| for k ! 0. Deduce P (x, t) over large scales. Discuss also
the more general case where ŵ(k) ' 1� c|k|µ for k ! 0, with µ 2]0, 2[.

- Exercice 2.9 Derivative of the CPP - a non Gaussian white noise :
a) Using the representation ⇠(t) = X

0(t) =
P

n
⌘n �(t � tn), where both the times tn’s and the

coe�cients ⌘n’s are random, derive the connex correlation function of the noise h⇠(t1) · · · ⇠(tn)i
c
.

Hint: follow the same steps as in Exercise 2.6.

b) Show that the noise becomes a Gaussian white noise in a certain limit.

2.4 Markov chains

An important class of random processes are Markov chains, which are homogeneous random
processes, discrete with respect to both the time and the state. This makes such processes
rather convenient for numerical analysis.

a) Stochastic matrix

We consider a random process X(t) 2 {1, · · · ,M} and denote Pn(t) = Proba{X(t) = n}. The
master equation (2.28) introduced above involves transitions at random times. For Markov
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chain, the jumps occur at regular discrete times, thus the master equation takes the form

Pn(t + 1) =
X

m

Mnm Pm(t) (2.44)

where
Mnm = Proba{m! n} 2 [0, 1] (2.45)

is the M ⇥M matrix of transition probabilities at each time step. M is called a “stochastic
matrix”. It satisfies X

n

Mnm = 1 (2.46)

Example of Markov chain : the biased RW.— A simple example is the case of the
random walk on the line, where, at each time step, the walker jumps to the left with probability
q or to the right with probability p. Then

Mnm = p �m,n�1 + q �m,n+1 (2.47)

(with p + q = 1). The problem is studied in detail in Exercise 2.12 below.

For the following, it is useful to rewrite the master equation (2.44) in a form closer to the
di↵erential equation (2.30) by using (2.46)

Pi(t + 1)� Pi(t) =
X

j( 6=i)

[Mij Pj(t)�Mji Pi(t)] (2.48)

- Exercice 2.10 Continuum limit of the Markov chain : Consider a Markov chain with
jumps occuring every �t. Argue that the master equation (2.28) is recovered by considering the
continuum limit

Mij = �ij + �t Wij with �t! 0 . (2.49)

If M is a stochastic matrix, what is the constraint on the matrix W ?

b) The Perron-Fröbenius theorem and the stationary state

We can interpret the condition (2.46) as the existence of a left eigenvector L
(0) = (1, · · · , 1)T

for eigenvalue �0 = 1 :
L

(0)T
M = L

(0)T or M
T
L

(0) = L
(0)

, (2.50)

where (·)T denotes transposition (the vectors are column vectors). The Perron-Fröbenius the-
orem states that (i) �0 = 1 is non-degenerate, (ii) it is the largest eigenvalue, (iii) the related
right eigenvector

M R
(0) = R

(0)
, (2.51)

has positive components. For a finite number of states M, this corresponds to the stationary
solution, R

(0) = (P ⇤
1
, · · · , P

⇤

M
)T. Normalization condition reads L

(0)T
R

(0) =
P

i
P
⇤

i
= 1 (the

scalar product is the product of the line and the column vectors). We can rewrite equation
(2.51) as X

j( 6=i)

⇥
Mij P

⇤

j �Mji P
⇤

i

⇤
= 0 . (2.52)
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c) Classification of Markov processes

We now discuss the di↵erent scenarii which might occur. We keep considering the case of Markov
chains, although a similar discussion is more general.

(i) Equilibrium.— Often, the existence of a stationary solution is ensured by a condition
stronger than (2.52), called the detailed balance condition

Mij P
⇤

j �Mji P
⇤

i = 0 8 (i, j) (detailed balance) (2.53)

If detailed balance is fulfilled, one says that P
⇤

i
is an equilibrium state. We can also

conveniently relate the ratio of rates to the ratio of probabilities

Mij

Mji

=
P
⇤

i

P
⇤

j

(detailed balance ⌘ equilibrium) (2.54)

The relation holds 8(i, j). For each pair of states, the ratio of occupations coincides with
the ratio of transition probabilities. This is a probabilistic definition of equilibrium.

(ii) NESS (non-equilibrium stationary state).— If the detailed balance condition (2.53)
is not fulfilled (at least for some couples (i, j)) but the condition

X

j( 6=i)

⇥
Mij P

⇤

j �Mji P
⇤

i| {z }
6=0

⇤
= 0 (stationarity) (2.55)

holds, one says that the stationary state is a non-equilibrium steady state. Such states are
characterised by the existence of non zero probability fluxes.

(iii) Transient process.— When M!1 it is possible that the eigenvector (· · · , P
⇤

i
, · · · )T

is not normalisable, so that there is no stationary state. One says that the process is
transient.

Depending on the matrix Mij which defines the Markov chain, one encounters one of the three
situations.

k

mn Pn
*

Wnm Pm
*

n

m

Equilibrium NESS

n

m

W

Figure 13: Equilibrium state versus NESS : In equilibrium, probability currents should equilibrate
for each pair of states. In the NESS, there exist loop(s) in which current(s) circulate (here, due
to an imbalance Wmn P

⇤
n > Wnm P

⇤
m, there is a net circulation n! m! k ! n).

With the master equation (2.28).— The form (2.30) is appropriate for the same discussion :
Equilibrium requires detailed balance condition

Wnm P
⇤

m = Wmn P
⇤

n 8 (n, m) . (2.56)

Wnm being a rate, J
⇤(m ! n) = Wnm P

⇤
m is the probability current between the two states,

in the stationary state. In the stationary state, currents between states should compensate
globally, if probability is conserved. Detailed balance means that probability currents between
each pair of state equilibrate. There is no circulating probability current between more than
two states (Fig. 13).
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d) Spectral decomposition - Relaxation

- Exercice 2.11 Warm up : diagonalization of a non-symmetric 2⇥ 2 matrix : We
consider the real non-symmetric matrix

M =

✓
0 e�h

eh 0

◆
(2.57)

Show that it is diagonalisable. Find the right and left eigenvectors and discuss the normalisation.

The stochastic matrix M , with positive matrix elements, is not symmetric in general,
M

T 6= M . We have seen above that its eigenvalue �0 = 1 is associated with a couple of
left and right eigenvectors L

(0) and R
(0). If M is diagonalisable, its eigenvalues �n < 1 are asso-

ciated with a biorthogonal set of left and right eigenvectors L
(n) and R

(n). We can choose the
orthonormalisation condition as L

(n)T
R

(m) = �n,m, which leads to the spectral representation

M =
X

n

�nR
(n)

L
(n)T

. (2.58)

This is useful in order to solve the master equation (2.44). Denoting by P (0) = (P1(0), · · · , PM(0))T

the initial conditions, we can write

P (t) = M
t
P (0) i.e. Pn(t) =

X

j

�
t

j R
(j)

n L
(j)T

P (0)| {z }
cj

def
=

(2.59)

cj is the coe�cient of the initial vector on the basis of eigenvectors P (0) =
P

j
cjR

(j). Note that

c0 = L
(0)T

P (0) =
P

j
Pj(0) = 1 carries all the normalisation.

Conditional probability.— An example of initial condition is Pn(0) = �nm i.e. coe�cients

cj = L
(j)

m . Then, the solution of the master equation (2.44) is the conditional probability

Pt(n|m) =
�
M

t
�
nm

(2.60)

Relaxation towards stationary state.— Now let us discuss the large time behaviour.
Using that �0 = 1 > �1 > �2 > · · · , the large time behaviour takes the form

Pn(t) '
t!1

P
⇤

n|{z}
⌘R

(0)

n

+ c1 �
t

1R
(1)

n| {z }
�!
t!1

0

(2.61)

where we have used c0 = 1 (normalisation). This shows that 1/⌧relax = � ln�1 is the relaxation
rate towards the stationary state. Relaxation is usually exponentially fast, unless the gap in the
spectrum vanishes and the spectrum is continuous.

Remark 1 : apart �0 = 1, the eigenvalues are not real in general , however complex eigen-
values should come in conjugate pairs since M is a real matrix (and the same for eigenvectors).
Thus, in the general case, the rate of relaxation towards stationary state is

1

⌧relax

= � ln |�1| (2.62)

Hence, in general the ranking of e.v. is �0 > |�1| > |�2| > · · · , i.e. the spectral radius is one.
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Remark 2 : When M is non symmetric, it is not always diagonalisable. However it can
always be decomposed in terms of Jordan blocks.

- Exercice 2.12 Biased random walk in a ring : Consider the random walk in a ring with
L sites, such that with Mnm = p �n,m+1 + q �n,m�1 for n, m 2 {1, · · · , L}. Periodic boundary
conditions are M1L = p and ML1 = q.

a) Argue that the stationary state is an equilibrium state when p = q = 1/2 and a NESS for
p 6= q.

b) Give the spectrum of eigenvalues �k and eigenvectors (left/right) of the stochastic matrix M .
Write p = 1+v

2
and q = 1�v

2
with v 2 [�1, +1]. Check that the ”spectral radius” is unity, i.e.

|�k| 6 1 8 k.

c) Decompose the conditional probability Pt(n|m) over the eigenvalues and the eigenvectors.

d) Consider the limit L!1 and discuss the bottom of the spectrum. Compute Pt(n|m) in the
two limiting cases v = 0 and v = ±1.

Remark 3 : All these spectral considerations also apply to the master equation (2.28) for
continuous time.

- Exercice 2.13 Spectral analysis applied to Eq. (2.28) and Perron-Fröbenius th. :
a) Solve Eq. (2.28) by using spectral analysis (in the same spirit as it was done for the Markov
chain). What is expected for the eigenvalues of Wnm ?

b) What is the representation of the propagator equivalent to (2.60) ? Deduce that

X

m

Pt(n|m) P
⇤

m = P
⇤

n . (2.63)

e) Simple examples :

Molecular vapour at thermal equilibrium : consider a vapour of molecules at thermal
equilibrium. Each molecule has energy levels "n, expected to be occupied according to canonical
weights P

⇤
n / e��"n . The molecule in an excited state falls in a state with lower energy by emis-

sion. Equilibrium and detailed balance imply that the absorption and emission rates between
two levels fulfill the relation

�n m

�m n

=
P
⇤
n

P ⇤m

= e��("n�"m) (2.64)

i.e. emission is more probable than absorption. This observation (Gibbs equilibrium is compati-
ble with an imbalance between emission and absorption) is the key point of Einstein first theory
of spontaneous emission (at the origin of the di↵erence between emission and absorption). 11

- Exercice 2.14 Illustration of the three scenarii for a birth and death process : Let
us consider the master equation describing the one dimensional di↵usion on Z with transitions
between nearest neighbour sites

@tPn(t) = Wn,n�1Pn�1(t) + Wn,n+1Pn+1(t)� (Wn�1,n + Wn+1,n) Pn(t) (2.65)

i.e. Wn,m is a tridiagonal (infinite) matrix with Wn,n = �Wn�1,n �Wn+1,n. Hence, this is an
example of birth and death process.

11Albert Einstein, “Zur Quantentheorie der Strahlung”, Physilakische Zeitschrift 18, 121–128 (1917).
On trouvera l’article reproduit dans : A. Einstein, Œuvres choisies. 1. Quanta, Seuil (1989), textes choisis et
présentés par F. Balibar, O. Darrigol & B. Jech.

25



a) Current : check that the master equation can be rewritten under the form

@tPn = �Jn + Jn�1 (2.66)

and express the probability current Jn(t) related to the distribution Pn(t) (Jn measures the
current at time t between sites n and n + 1).

We now choose the matrix such that

Wn,m = e[V (m)�V (n)]/2 (2.67)

where V (x) is a known function.

b) Equilibrium (J = 0).— Show that

P
⇤

n = C e�V (n) (2.68)

is a stationary solution corresponding to a vanishing probability current. Discuss the normalis-
ability.

c) NESS (J 6= 0).— Find the stationary solution corresponding to Jn = J 8n. Show that it is

P
⇤

n = J e�V (n)

1X

m=n

e[V (m+1)+V (m)]/2 (2.69)

Discuss the normalisability (consider the continuum limit for simplicity).

d) Provide an example where there is no stationary state.

f) Detailed balance, reversibility and ergodicity

Let us consider a Markov chain with master equation (2.44), such that detailed balance is
fulfilled. We denote by P

⇤

i
the equilibrium solution. Define

Dt

def

=
X

i

(Pi(t)� P
⇤

i
)2

P
⇤

i

=
X

i

Pi(t)2

P
⇤

i

� 1 > 0 (2.70)

which measures the distance of the distribution at time t to the equilibrium distribution. One
can study the evolution of the quantity by considering �Dt = Dt+1�Dt. Some algebra making
use of detailed balance (2.54) leads to

�Dt = �1

2

X

i,j,k

MjiMkiP
⇤

i

 
Pj(t)

P
⇤

j

� Pk(t)

P
⇤

k

!
2

6 0 (2.71)

Conclusion :

• Dt > 0

• �Dt 6 0

• We conclude that Dt & and thus Pi(t)! P
⇤

i
.

This shows that detailed balance ensures that the system reaches equilibrium. This remark is
borrowed from [24].
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g) A practical (and important) application of Markov chains : the Monte Carlo
method

Consider a physical observable O. At thermal equilibrium, the probability of a microstate
is P` / e��E` . If the number of states Nstate is too large, it might be di�cult to compute
numerically the sum

hOi
eq

=
NstateX

`=1

P`O` (2.72)

For example, if one considers N Ising spins, the sum runs over Nstate = 2N microstates, which
becomes rapidly untracktable if N is large (a square of 10 ⇥ 10 spins 1/2 has Nstate ⇠ 1030

microstates).

Figure 14: Nicholas Metropolis (1915-1999).

The central idea of equilibrium statistical physics is to replace the study of the microscopic
(deterministic) dynamics by a probabilistic description. The Monte Carlo method replaces the
probabilistic description by a stochastic dynamics defined as follows : if the system is in state
| i i at time t, a move to another state |f i chosen randomly is made with probability

Proba{i! f} ⌘Mfi = min
⇣
1, e��(Ef�Ei)

⌘
. (2.73)

For example, in a spin system, one chooses a spin randomly and flip it, thus the di↵erence of
energy Ef � Ei is due to a local change, and the energy di↵erence is very easy to compute.
This means that the matrix Mnm changes randomly at each time step. Assuming Ef > Ei, the
stochastic matrix has the form

M =

0

BBBB@

. . .

1� e��(Ef�Ei) 1
e��(Ef�Ei) 0

. . .

1

CCCCA
 | i i
 |f i (2.74)

All other diagonal matrix elements are equal to one and all other non diagonal matrix elements
equal to zero. This is the Metropolis algorithm (from the name of the inventor of the method,
Nicholas Metropolis). Because Mfi/Mif = e��(Ef�Ei), such dynamics converges towards the
Gibbs equilibrium. Finally the statistical average is replaced by the time average over the
stochastic dynamics involving Nstep

O(t) =
1

Nstep

NstepX

t=1

O(t) . (2.75)

The number of steps Nstep can be chosen orders of magnitude smaller than Nstate, still large
enough in order to ensure some ergodicity (see the book [19] for a detailed discussion).
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Going from the microscopic dynamics to the Monte Carlo method, the scheme is the follow-
ing :

Classical mechanics Equilib. statistical physics Monte Carlo method
deterministic �! probabilistic �! stochastic

evolution description dynamics

2.5 Spectral analysis of stochastic processes – Wiener-Khintchine theorem

Convention for Fourier transform in time : We define the Fourier transform in time as

eC(!) =

Z
+1

�1

dt C(t) ei!t et C(t) =

Z
+1

�1

d!

2⇡
eC(!) e�i!t

. (2.76)

Consider a homogeneous (time translation invariant) and stationary random process x(t)
defined on the interval t 2 [0, T ], where T is the observation time. It is characterised by the

correlation function Cxx(⌧)
def

= hx(t) x(t + ⌧)i, assumed rapidly decreasing (assume hx(t)i = 0 for
simplicity). Because the process is stationary, we prefer to consider its discrete Fourier transform
(cf. appendix page ??) 12

x̃n =

Z
T

0

dt

T
x(t) e+i!nt et x(t) =

X

n

x̃ne�i!nt où !n =
2n⇡

T
avec n 2 Z . (2.77)

|2>
ωn ΔωΔω

Analyseur

<|xn~Signal x(t)
Δω

Amplificateur/

1

Gain
ω

)=ω(S Σ

Figure 15: Measure of the noise : the signal is amplified, duplicated and multiplied by itself. The
result is averaged over a long time T .

Noise spectrum.– Let �! be the bandwidth of the apparatus (with �! � 1/T ). We define
the noise spectrum as the average of the square modulus of the Fourier components in the
bandwidth, i.e. in the interval [!,! +�!] :

S(!)
def

=
1

�!

X

!n2[!,!+�!]

h|x̃n|2i (2.78)

This is precisely the outcome of the device represented in figure 15 : sample ! ampli/filter !
multiplicator ! measurement.

Wiener-Khintchine theorem.– From the above hypothesis, one can verify that :

hx̃nx̃
⇤

mi =
1

T
�n,m

eCxx(!n) (2.79)

12Later, we will define the Fourier transform in space as fq =
R
V

dr f(r) e�iqr, where q is quantized if the volume

is finite, and f(r) = 1

V

P
q
fq e+iqr !

R
dq

(2⇡)d
fq e+iqr.
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Figure 16: Norbert Wiener (1894-1964) & Aleksandr Yakovlevich Khinchin (1894-1959).

where eCxx(!) =
R

+1

�1
d⌧ Cxx(⌧) ei!⌧ . Only components corresponding to opposite frequencies

!n and !�n are correlated 13. Thus one has :
P

!n2[!,!+�!]
h|x̃n|2i = N�!

T
eCxx(!) where N�! =

�!T/2⇡ is the number of frequencies !n in the bandwidth. Finally one gets

S(!) =
eCxx(!)

2⇡
(2.80)

i.e. a relation between the noise spectrum (fluctuations at frequency !) and the correlations.
A random process characterized by short time correlations thus corresponds to a broad noise
spectrum. The limit of correlation with zero range is called a “white noise” (flat spectrum).

Details of derivation of (2.79) : Write hx̃nx̃
⇤

mi =
R

T

0

dt

T

R
T

0

dt
0

T
ei!nt�i!mt

0
Cxx(t�t

0) = 1

T

R
T

0

dt
0

T
ei(!n�i!m)t

0 R T�t
0

�t0 d(t�
t
0)ei!n(t�t

0
)
Cxx(t � t

0). Short range correlation allows to write
R

T�t
0

�t0 d(t � t
0) · · · !

R
+1

�1
d(t � t

0) · · · .

ω1/τc

S (ω)

Figure 17: Wiener-Khintchine theorem : width of noise spectrum is inversely proportional
to the correlation time ⌧c of the process (⌧c is the width of C(⌧)).

- Exercice 2.15 : As a simple application of the Wiener-Khintchine theorem, we analyze the
correlation of the velocity for the process defined by the phenomenological Langevin equation

dv(t)

dt
= �

Z
dt
0
�(t� t

0) v(t0) + ⇠(t) (2.81)

where ⇠(t) is the Langevin force (assumed to be a stationary random process with short time
correlations). Here the friction is nonlocal in time, controlled by a causal function �(t), with
finite width ⌧m. Show that

Cvv(⌧) =

Z
+1

�1

d!
eC⇠⇠(!)

2⇡| {z }
SForce(!)

e�i!⌧

|�̃(!)� i!|2 (2.82)

Consider the limit C⇠⇠(⌧) = 2D�
2
�(⌧) et �(t) = � �(t) and compute explicitly the correlator.

13One can as well consider a process defined on R by writing T ! 1. The Fourier transform is then defined as
x̃(!) =

R
dt x(t)ei!t and one can show that hx̃(!)x̃(!0)i = 2⇡�(! + !

0) eCxx(!). Correspondence between the two
formulations is ensured by the substitutions x̃(!) $ T x̃n and 2⇡�(! � !

0) $ T �n,n0 .
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- Exercice 2.16 : Consider now the case of a Langevin force correlated over the finite time
⌧c (a microscopic time) : CFF (t) = 2D�

2 1

2⌧c
e�|t|/⌧c . We expect the function �(t) to be of finite

width ⌧m ; Assume �(t) = � ✓(t) 1

⌧m
e�t/⌧m . The three time scales fulfill : ⌧c . ⌧m ⌧ 1/�. Analyze

the residus of |�̃(!)� i!|�2 justify that one can consider ⌧m ! 0 while keeping a finite ⌧c, what
simplifies the evaluation of the integral. Show then that Cvv(⌧) = D�

1�(�⌧c)
2 [e��|t| � �⌧ce�|t|/⌧c ].

Analyze the behaviour at short time as well.

, Important points

• Markov process (definition).
• Be familiar with the various forms of the master equation (continuous/discrete ; Markov chain).
• A good exercise : recover the properties of the Poisson process (and the CPP).
• Definition of the stochastic matrix. Use of spectral information to solve the master equation.
• Detailed balance and the classification of Markov processes.
• Wiener-Khintchine theorem : relation between the correlation function of an homogeneous
process and its noise spectrum.

3 Stochastic processes (3) : stochastic di↵erential equations

In § 1, we have discussed a specific case of stochastic di↵erential equation (SDE), the Langevin
equation m

d

dt
v(t) = �� v(t)+⇠(t) involving a �-correlated Langevin force. We took advantage of

the linearity to obtain an integral representation of the solution, which makes easy the analysis
of the statistical properties of the solution. The aim of this paragraph is to consider a more
general situation and consider SDE of the form d

dt
x = F (x) +

p
2D(x) ⌘(t), where ⌘(t) is a

normalised Gaussian white noise.
SDE are particularly well suited for numerical simulations (it is easy to generate many

realizations of such processes). Here, the aim is to introduce some tools allowing for a statistical
analysis of the solution. Finally, let us stress that by considering that ⌘(t) is a Gaussian white
noise, in this chapter we restrict ourselves to the study of continuous Markov processes
(with no jump). 14

3.1 SDE with drift and additive noise

Let us come back to the analysis of the stochastic process described by Eq. (1.26). We write

dx(t)

dt
= F (x(t)) +

p
2D ⌘(t) (3.1)

where ⌘(t) is a normalised Gaussian white noise with

h⌘(t)i = 0 and
⌦
⌘(t)⌘(t0)

↵
= �(t� t

0) . (3.2)

An analysis similar to the one of Section 1 is not possible (unless F (x) / x) due to the nonlinear
character of the equation. Let us introduce the Wiener process

W (t) =

Z
t

0

dt
0
⌘(t0) (3.3)

14Remember the end of § 1 : the Wiener process W (t) =
R

t

0
du ⌘(u) is continuous but not di↵erentiable. The

solution x(t) of the SDE has the same regularity.
We could also write a di↵erential equation for a Markov process with jumps by considering that a noise ⌘(t)

such that
R

t

0
du ⌘(u) is a Poisson process or a compound Poisson process, i.e. ⌘(t) =

P
n
⌘n �(t� tn). The analysis

would be more complicated because the equation for Pt(x) would then involve an integral operator instead of a
di↵erential operator, like in the Fokker-Planck equation (e.g. the equation (2.41) describing the simple case of
the CPP involves an integral operator).
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which allows to rewrite the SDE in a form popular in the Mathematical literature :

dx(t) = F (x(t)) dt +
p

2D dW (t) . (3.4)

This emphasizes that x(t) has the same regularity as the Wiener process W (t) : continuous
but non di↵erentiable. One of the question raised in this chapter is precisely to give a rigorous
meaning to the di↵erential equation for non di↵erentiable functions !

Being interested in statistical properties of the solution, it is natural to consider its distri-
bution, or at least to build an equation for it, the Fokker-Planck equation. Below we show that
the corresponding FPE is

@Pt(x)

@t
= � @

@x
[F (x) Pt(x)] + D

@
2

@x2
Pt(x) (3.5)

where Pt(x) is the distribution of x(t). In the next section, we will furhter discuss how to solve
this equation.

Proof : I define the increment �W (t) = W (t + �t) �W (t). The most important observation
is the independence of the increments (chapter 1) and the property

⌦
�W (t)2

↵
= �t i.e. �W (t) ⇠ O

�p
�t
�

(3.6)

see above, Eq. (1.33). The distribution of �W (t) does not depend on time t, but only on the
time di↵erence �t. We now introduce the increment of the process

�x(t)
def

= x(t + �t)� x(t) ' F (x(t)) �t +
p

2D �W (t) (3.7)

Consider a test function '(x). We study the evolution of h'(x(t))i.

h'(x(t + �t))i � h'(x(t))i

=

⌧
'
0(x)

h
F (x) �t +

p
2D �W

i
+

1

2
'
00(x)

h
F (x) �t +

p
2D �W

i
2

+ · · ·
�

(3.8)

=
⌦
'
0(x(t)) F (x(t))

↵
�t +

p
2D

⌦
'
0(x(t)) �W (t)

↵
+ D

⌦
'
00(x(t))

↵
�t + · · · (3.9)

where we have kept terms O(�t). Because x(t) is only correlated with the increment �W (t0) for
t > t

0, we see that x(t) and �W (t) are uncorrelated, thus

⌦
'
0(x(t)) �W (t)

↵
=
⌦
'
0(x(t))

↵
h�W (t)i = 0 . (3.10)

Finally
d

dt
h'(x(t))i =

⌦
'
0(x(t)) F (x(t))

↵
+ D

⌦
'
00(x(t))

↵
(3.11)

The key point was that the expansion was performed up to second order in �x(t) because the
second order term in �W gives some first order contribution in �t, due to (3.6). We can now
rewrite the equation in terms of the distribution

@

@t

Z
dx Pt(x)'(x) =

Z
dx Pt(x)

⇥
'
0(x) F (x) + D'

00(x)
⇤

(3.12)

=

Z
dx'(x)

✓
� @

@x
[F (x) Pt(x)] + D

@
2
Pt(x)

@x2

◆
(3.13)

Because the equation is valid 8 ', we can remove the integral, hence (3.5). Qed.
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3.2 SDE with multiplicative noise : Itô or Stratonovich ?

The SDE (3.1) is not the most general form of stochastic di↵erential equation as it corresponds
to the case where the di↵usion constant is uniform in space. The aim of the paragraph is to
discuss the case of SDE of the form

dx(t)

dt
= a(x(t)) + b(x(t)) ⌘(t) (not well defined! ) (3.14)

where b(x) =
p

2D(x) can be related to a x-dependent di↵usion constant (note that the sign of

b(x) plays no role because ⌘(t)
(law)

= �⌘(t)). As we explain now, this form is however not well
defined.

The noise is here multiplied by a function of the process : one says that the noise is
multiplicative, whereas it is said additive in SDE (3.1). For a multiplicative white noise,
with singular correlations h⌘(t)⌘(t0)i = �(t � t

0), the di↵erential equation (3.14) is ambiguous :
something is missing in order to define precisely the solution of this di↵erential equation. This
is not surprising : if ⌘(t) is a Gaussian white noise, x(t) has the same regularity as the Brownian
motion, i.e. is continuous but not di↵erentiable. The existence of a di�culty comes from the
fact that we manipulate a di↵erential equation involving objects which are not di↵erentiable in
the sense of functions !

If the di�culty comes from the singular nature of the white noise (�-correlations), one could
argue that we should rather study a di↵erent model for a more regular (non white) noise.
However, that would be very painful ! The white noise is the simplest model which ensures that
the process defined by the SDE is Markovian. The price to pay for this simplicity is that we
have to add a prescription to interpret the SDE.

a) Discretization (numerical simulation)

A first approach to give a precise meaning to (3.14) could be to discretize time (this is natural for
numerical implementation of the stochastic di↵erential equation). We introduce xn = x(t = n �t)
together with i.i.d. Gaussian variables �Wn such that h�Wni = 0 and h�Wn�Wmi = �t �n,m. The
discretized SDE is

xn+1 = xn + a(xn) �t + b(xn) �Wn . (3.15)

Note that by construction xn and �Wm are independent for n 6 m (the process does not depend
on the noise in the future or at equal time).

This discretization procedure is perfectly fine, however it turns out that in the limit �t! 0,
the resulting continuous function x(t) = xn does not obeys the usual rules of di↵erential calculus
(for regular functions), as we will see below. This is not necessarily a problem, however this
deserves a clarification.

b) Origin of the ambiguity

To clarify this point, we come back to the continuous description and consider a slightly di↵erent
type of noise, made of �-peaks at random times

⌘(t) =
X

n

�(t� tn) (3.16)

(we could also add some random weigths, it would not change the discussion). If the times occur
with a finite rate �, the noise ⌘(t) is a white noise since h⌘(t)⌘(t0)ic = � �(t � t

0), however it is
of non Gaussian nature because higher cumulants are non zero (cf. Exercise 2.6, page 20).
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In the close neighbourhood of time tn, we can forget the drift and approximate the evolution
as

dx(t)

dt
= · · · + b(x(t)) �(t� tn) for t ⇠ tn (3.17)

This implies that x(t) is discontinuous at tn. When dealing with a continuous function  (t)
we can write  (t) �(t � tn) =  (tn) �(t � tn). The product is however not clearly defined
when the function  (t) is discontinuous at tn... Should we replace  (t) by  (t�n ),  (t+n ) or
1

2

⇥
 (t�n ) +  (t+n )

⇤
,... or something else ? Here, we are faced to this problem, which makes the

time evolution ambiguous : Eq. (3.17) shows that x(t) makes a jump whose amplitude is b(x(t)),
i.e. depends on the process at a time where the process is discontinuous and still unkown ! How
to choose this time ? We propose two possible interpretations of the evolution (3.17) :

(i) Proposal 1 ($ ”Itô”) Interpret the equation as d

dt
x(t) = · · · + b(x(t�n )) �(t� tn), then

x(t+n ) = x(t�n ) + b(x(t�n )) (3.18)

This is a natural choice for numerics. This is analogous to (3.15).

(ii) Proposal 2 ($ ”Stratonovich”) A physicist rather considers that the �-peak is a
mathematical model for a regular narrow function of finite width �(t)! �

✏(t), for example
�
✏(t) = 1

2✏
e�|t|/✏. Then starting from (3.17) one writes dx(t)/b(x(t)) ' �

✏(t � tn) dt and
integrate around the �✏, eventually taking the limit ✏! 0+. One gets

Z
x(t

+
n )

x(t
�
n )

dx

b(x)
= 1 (3.19)

which obviously di↵ers from (3.18).

- Exercice 3.1 : Consider a multiplicative noise with b(x) = � x where � is a positive
constant. Compare the two evolutions (3.18) and (3.19) in this case.

The choice of the prescription, i.e. the precise meaning to give to the multiplicative noise
term, determines the evolution and contribute to define the stochastic process with the SDE. We
stress that given two di↵erent interpretations of the same equation (3.17) leads to two di↵erent
evolutions, (3.18) or (3.19), i.e. define two di↵erent processes. A similar problem occurs with
the SDE (3.14) where ⌘(t) is a Gaussian white noise. Several interpretations can be given to the
multiplicative noise term.

Figure 18: Kiyoshi Itô (1915-2008) and Ruslan Leont’evich Stratonovich (1930-1997).

The two evolutions (3.18) and (3.19) will be further studied in Exercise 3.9 below.
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c) Itô convention and Itô calculus

The simpler choice which first comes in mind is to consider that the process and the increment at
equal time are independent. This is a natural choice if one discretizes the evolution, as explained
above, see Eq. (3.15). This is appropriate for numerical simulations. This is known as the Itô
convention, corresponding to the ”proposal 1” discussed above (and to discretization procedure,
Eq. (3.15)). In order to specify in which sense the SDE is understood, we add a prescription

dx(t) = a(x(t)) dt + b(x(t)) dW (t) (Itô). (3.20)

where the label ”Itô” indicates that

Itô : x(t) and dW (t) are statistically independent at coinciding times

Itô calculus also makes use of
dW (t)2 = dt (3.21)

(we can omit the averaging when considering the infinitesimal noise increment ; see the appendix
of this chapter on stochastic integrals in order to understand why h· · ·i can be omitted here,
while it should be kept for h�W (t)2i = �t). Roughly speeking we have dW (t) ⇠ O(

p
dt) and for

this reason dW (t)2+n = 0 for n > 0.

Itô formula.— An important formula concerns the change of variable x! '(x), where '(x)
is a regular function, di↵erentiable a least twice. If x(t) obeys (3.20), we deduce

d'(x(t)) =


'
0(x) a(x) +

1

2
'
00(x) b(x)2

�
dt + '

0(x) b(x) dW (t) (Itô) (3.22)

(in the r.h.s. x stands for x(t)). This is known as the “Itô formula”.

Proof : using Itô calculus, we must keep a second order term in equalities between in-
finitesimal increments :

d'(x) = '
0(x) dx +

1

2
'
00(x) dx

2
. (3.23)

This is due to (3.21) : a term O(dt) is produced by the O(dx
2) term : dx

2 =
⇥
a(x) dt +

b(x) dW (t)
⇤
2

= b(x)2 dW (t)2 +2a(x)b(x)dW (t)dt+ a(x)2dt
2 = b(x)2 dt. The first term dropped

was O(dW (t)dt) = O(dt
3/2) (= 0 in di↵erential calculus).

- Exercice 3.2 : Write the Itô formula for the multiplicative noise dx(t) = x dW (t). The
apply the formula to '(x) = x

2

Itô formula implies that “Itô calculus” does not correspond with the ”usual” dif-
ferential calculus when W (t) is a regular (di↵erentiable) function. Indeed, (3.22) shows that

d'(x(t)) 6= '
0(x(t)) dx(t) (Itô). (3.24)

Despite this drawback (for physicists), the Itô calculus is widely used by probabilists (and
justified for certain physical situations). In particular, it is natural for financial mathematics,
which is not a surprise as the time is discrete in finance : it corresponds to the discretization
scheme mentioned above, Eq. (3.15), where �t is the elementary time step for trading on markets.

Remark : Within Itô convention, x(t) and W (t) are independent (at equal time). It follows
that averaging (3.22) is straightforward (this is the interest of Itô’s convention!) and gives

d

dt
h'(x(t)i = h'0(x(t)) a(x(t))i+ 1

2
h'00(x(t)) b(x(t))2i . (3.25)
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Related FPE.– One can immediatly deduce the FPE related to the Itô equation (3.20). Write
(3.25) as

@

@t

Z
dx Pt(x)'(x) =

Z
dx Pt(x)


'
0(x) a(x) +

1

2
'
00(x) b(x)2

�
(3.26)

In the r.h.s, integrations by part allow to factorize '(x). Because the relation is true 8'(x), we
conclude that

@Pt(x)

@t
= � @

@x
[a(x) Pt(x)] +

1

2

@
2

@x2

⇥
b(x)2 Pt(x)

⇤
(3.27)

How to get the FPE from the SDE in a simple manner ? Above, the relation between
the Itô SDE and the FPE was demonstrated by introducing a test function. A simpler way is
to use hdW (t)2inoise = dt (physicist’s notation) and to remark that the drift and the ”di↵usion”
are given by

ha(x)i =
hdxinoise

dt
and

⌦
b(x)2

↵
=
hdx

2inoise

dt
(3.28)

As an application we consider the multidimensional case

dxi(t) = ai(~x) dt + bij(~x) dWj(t) (Itô). (3.29)

with hdWi(t)dWj(t)inoise
= �ijdt. Only the di↵usion term is more complicated

hdxidxjinoise

dt
= hbikbjki (3.30)

(with Einstein’s convention for implicit summation over repeated indices). Then

@tPt(~x) = �@i [ai(~x)Pt(~x)] +
1

2
@i@j [bik(~x)bjk(~x)Pt(~x)] . (3.31)

Application : Kramers and Smoluchowski equations.— Consider the equations

(
dx = v dt

dv =
⇣
� v

⌧
+ F (x)

m

⌘
dt + 1

m

p
2kBT� dW (t)

(3.32)

The drift terms are ax = hdxinoise

dt
= v and av = hdvinoise

dt
= � v

⌧
+ F (x)

m
. The di↵usive terms

are b
2
xx = hdx

2inoise/dt = v
2dt ! 0, b

2
vv = hdv

2inoise/dt = 2kBT�/m
2 = 2kBT/(m⌧) and

b
2
xv = hdxdvinoise/dt ⇠ hv dW (t)inoise ! 0. Finally, the FPE for the joint distribution is

✓
@t + v @x +

F (x)

m
@v

◆
Pt(x, v) =

1

⌧
@v

✓
v +

kBT

m
@v

◆
Pt(x, v) (3.33)

This equation is called the Kramers equation.

- Exercice 3.3 Smoluchowski equation : Using the overdamped limit introduced in § 1
get an equation for Pt(x) =

R
dv Pt(x, v) in the limit of strong friction.

d) Stratonovich convention

�-function does not exist in real life : for physicists, it is only a mathematical model for an
extremely narrow function. Similarly, white noise is only a mathematical model and physicists
should find more natural to think at the Gaussian white noise in the SDE (3.14) as the limit of
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a regular Gaussian noise with a finite but small correlation time. A concrete example of such a
”real life” correlator is 15

h⌘✏(t)⌘✏(t0)i =
1

2✏
e�|t�t

0
|/✏ (3.34)

with ✏ ”small” (much smaller than all characteristic time scales of the problem). It is conve-
nient to introduce the notation W

✏(t) =
R
t

0
du ⌘

✏(u), which is regular (not only continuous, but
di↵erentiable now). In general we have

h
⇥
@tW

✏(t)
⇤
2i ⇠ 1/✏ (3.35)

(for the correlator given above, we have h
⇥
@tW

✏(t)
⇤
2i = 1/(2✏)). Let us write the regularised

SDE
dx

✏(t) = ↵(x✏) dt + �(x✏) dW
✏(t) (3.36)

The noise is regular, hence the solution x
✏(t) is also regular (this SDE is well defined). The

standard rules of di↵erential calculus for regular functions apply to x
✏(t) : hence, the ✏ ! 0

limit of this equation does not correspond to the Itô prescription.

Stratonovich SDE.— The limit ✏ ! 0+ of the regularised SDE (3.36) is our definition of
the “Stratonovich SDE” :

dx(t) = ↵(x) dt + �(x) dW (t) (Stratonovich) (3.37)

(Mathematicians proceed in a di↵erent manner). Because it is defined as a limit of a regular
process, ordinary rules of di↵erential calculus hold within the Stratonovich conven-
tion (this is its interest !) : what is true for ✏ > 0 remains true at ✏ = 0, which is not a singular
point (this is the spirit of regularization in Physics). The drawback is that, as it di↵ers from
the Itô convention, the correlations at equal time are more di�cult to characterize

Stratonovich : x(t) and dW (t) are in general correlated at coinciding times

This is a bit subtle : x(t) and dW (t0) are uncorrelated for t
0
> t, as the process depends only

on the noise in the past : h'(x(t)) dW (t0)i / ✓H(t � t
0) (causality). Within the Stratonovich

convention, the process and the noise are correlated at equal time (these correlations are studied
in Exercise 3.6 below). Note that this has to do with our definition of ✓H(0).

Two questions :

• Q1: what is the FPE related to the Stratonovich SDE (3.37) ?

• Q2: what is the relation between the Stratonovich SDE (3.37) and the Itô SDE (3.20) (if they
both aim to describe the same process) ?

Stratonovich SDE and FPE.— In the Exercise 3.4 below, we demonstrate that, using the
usual rules of di↵erential calculus (for regular functions), the Stratonovich SDE (3.37) is related
to the FPE

@Pt(x)

@t
= � @

@x
[↵(x) Pt(x)] +

1

2

@

@x


�(x)

@

@x
[�(x) Pt(x)]

�
(3.38)

15This choice is interesting because, from the theoretical point of view, we know how to generate such a non
white noise from a white noise. We can simply solve the SDE d

dt
⌘
✏(t) = �(1/✏)⌘✏(t) + (1/✏)⌘̃(t) where ⌘̃(t) is a

white noise (this was done in chapter 1).
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- Exercice 3.4 From the Stratonovich SDE to the FPE : We consider the SDE dx

dt
=

↵(x) + �(x) ⌘(t). For additive noise (�(x) = cste) the mapping onto the FPE is simple and
has been discussed above. Di�culties arise for multiplicative noise. To circumvent this, we
perform a transformation of the SDE which leads to additive noise. Using ordinary rules of
di↵erential calculus means that we interpret the SDE with the Stratonovich interpretation.

a) Consider z(t) =
R
x(t) dx̃/�(x̃). Write the SDE for z(t).

b) Give the FPE for Qt(z), the distribution of z(t).

c) Deduce the FPE for Pt(x), the distribution of x(t).

Itô SDE versus Stratonovich SDE.— With this result in hand, it is easy to answer to the
second question : we can rewrite the FPE Eq. (3.38) as

@Pt(x)

@t
= � @

@x

✓
↵(x) +

1

2
�(x)�0(x)

◆
Pt(x)

�
+

1

2

@
2

@x2

⇥
�(x)2 Pt(x)

⇤
(3.39)

which corresponds to (3.20) if

a(x) = ↵(x) +
1

2
�(x)�0(x) and b(x) = �(x) . (3.40)

Remark 1 : Note that Mathematicians follow a di↵erent strategy to define the Stratonovich
SDE : in 1961, Stratonovich introduced a ”symmetrized” form of stochastic integrals and di↵er-
ential forms (at the end of this chapter, the appendix on stochastic integrals give a flavour of
this strategy).

Remark 2 : The study of the Langevin equation (chapter 1) suggests another approach
to the problem. A way to introduce a regular noise with h⌘✏(t)⌘✏(t0)i = 1

2✏
e�|t�t

0
|/✏ is to add to

(3.36) a di↵erential equation for the noise. We recognize the correlations obtained in chapter 1.
This provides a concrete way to analyze the limit ✏! 0 : we can study the couple of di↵erential
equations @tx✏(t) = a(x✏) + b(x✏) ⌘✏(t), Eq. (3.36), and @t⌘✏(t) = �(1/✏) ⌘✏(t) + (1/✏) ⌘̃(t), where
⌘̃(t) is a Gaussian white noise. In this perspective, ⌘✏(t) is called a “colored noise” for the
process x

✏(t). Clearly, the limit ✏! 0+ is the white noise limit, ⌘✏(t)! ⌘̃(t) (cf. the discussion
of the overdamped regime in chapter 1). The analysis of the two coupled SDE in this limit can
be achieved thanks to a ”projection method” (see [12, 49] for discussions).

To close the paragraph, I emphasize :

• when b(x) is not constant (case of multiplicative noise), the two SDE dx = a(x)dt +
b(x)dW (t) (Itô) and dx = a(x)dt + b(x)dW (t) (Stratonovich) describe two di↵erent pro-
cesses (related to di↵erent FPEs).

• Conversely dx = a(x)dt + b(x)dW (t) (Itô) and dx = ↵(x)dt + �(x)dW (t) (Stratonovich)
describe the same process provided (3.40) hold (then, they are related to the same FPE).

- Exercice 3.5 Stratonovich corresponds to standard di↵erential calculus : Let us
check that the rules defined above for Stratonovich SDE are compatible with the usual rules of
di↵erential calculus for ordinary regular functions. Using the relation (3.40), transform the Itô
formula (3.22) in the Stratonovich convention and check that

d'(x(t)) = '
0(x(t)) dx(t) (Stratonovich). (3.41)
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I.e. within the Stratonovich’s prescription, standard rules of di↵erential calculus for regular
functions do apply.

- Exercice 3.6 Correlation between the process and the noise (Stratonovich) : Con-
sider the Stratonovich equation (3.37).

a) Denoting ⌘(t) = dW (t)/dt, show that h�(x(t)) ⌘(t)i can be expressed as the average of a
function of x(t).

Hint : use the relation between Itô and Stratonovich SDE.

b) Let us now consider a more general problem and analyze h�(x(t)) ⌘(t)i, where �(x) is an
arbitrary function (in general � 6= �) and where x(t) solves (3.37). Noticing that the Gaussian
white noise ⌘(t) is a Gaussian field and using the Furutsu-Novikov theorem (??), show that

h�(x(t)) ⌘(t)i =
1

2

⌦
�0(x(t))�(x(t))

↵
(Stratonovich) (3.42)

e) Take home message

• If a SDE appears in a physical model, it should be most frequently interpreted in the
Stratonovich sense (if the white noise is the limit of a regular noise with symmetric correla-
tion function). Whithin the Stratonovich convention, ordinary rules of di↵erential calculus
hold.

• Remember how to relate the Stratonovich SDE (3.37) to the FPE (3.38) is the most im-
portant.

• Itô calculus is simple, however one must take care that rules of di↵erential calculus should
be changed in order to account for dW (t)2 = dt : expansion must be performed up to
second order d'(x) = '

0(x) dx + 1

2
'
00(x) dx

2, from which we recover the Itô formula.

• The relation between Itô SDE with FPE is given by Eq. (3.27) (straightforward to deduce
from the Itô formula).

• Stratonovich SDE and Itô SDE (3.40) are related through a transformation of the drift
term :

Itô ! Stratonovich : ↵(x) = a(x)� 1

2
b(x) b

0(x) & �(x) = b(x)

Stratonovich ! Itô : a(x) = ↵(x) +
1

2
�(x)�0(x) & b(x) = �(x)

Bibliography : More can be found in the book of Gardiner [12]. For a presentation for
mathematicians, see the book [30].

- Exercice 3.7 A student makes a computer simulation of a SDE :
a) A student is doing his internship in finance. His advisor asks him to simulate numerically
the SDE controlling the evolution of an asset, dS(t) =

⇥
r dt + � dW (t)

⇤
S(t), where the actual-

ization rate contains a fixed part, r, and a fluctuating part controlled by the volatility �. What
recurrence should the student implement on the computer to simulate this evolution ?

b) Another student is doing an internship in soft matter physics. His advisor asks him to sim-
ulate the equation for the position of a particle in a fluid, dx(t)/dt = F (x(t)) +

p
2D(x) ⌘(t),

where ⌘(t) is a Gaussian white noise. Same question.
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f) A simple illustration : evolution of an asset

In finance, the simplest model for the time evolution of an asset is to assume a growth rate with
a fixed part and a random part, which corresponds to the simple SDE

dx(t) = x(t) [r dt + � dW (t)] (Itô). (3.43)

(the amplitude � of the fluctuating part is the ”volatility”). If W (t) would be a regular (dif-
ferentiable) function, one would simply divide the equation by x and use d ln x = dx/x. This
cannot be done here : within Itô calculus, the expression of d ln x should account for the second
order term dx

2. We can proceed in two equivalent manners.

Method 1 (use Itô formula) : Application of Itô formula is easy from d ln x = dx

x
� dx

2

2x2 .
Here we have dx(t)2 = �

2
x(t)2 dW (t)2 = �

2
x(t)2 dt. Thus

d ln x(t) =

✓
r � �

2

2

◆
dt + � dW (t) (Itô). (3.44)

Because the noise is additive, the SDE can be as well be interpreted in the Stratonovich sense.
One can now simply integrate the equation

x(t) = x(0) e
�
r�

�
2

2

�
t+�W (t) (3.45)

This analysis shows that one must be careful with integration of Itô di↵erential equation.
Note that a naive integration of (3.43) with the usual rules of integration (i.e. interpreting

(3.43) within the Stratonovich sense), would have missed an exponential factor e�
�
2

2
t).

Method 2 (use relation to the Stratonovich SDE) : Using the rule given above, we find
that the Itô SDE is related to the SDE

dx(t) =

✓
r � �

2

2

◆
x(t) dt + � x(t) dW (t) (Stratonovich). (3.46)

Now, we can safely divide the Stratonovich SDE by x(t) and integrate. We obtain the same
result, Eq. (3.45), as it should.

Let us stress an advantage of the Itô SDE : Using independence of x(t) and dW (t) at the same
time, we can average the Itô equation, leading to d

dt
hx(t)i = r hx(t)i, hence hx(t)i = hx(0)i ert.

This is pretty straightforward.
Let us now average the solution (3.45) for fixed x(0) in order to check that it is consistent

with this result :

hx(t)i = x(0) e
�
r�

�
2

2

�
t

D
e�W (t)

E
= x(0) e(r��

2
/2)t+

1

2
�
2hW (t)

2i = x(0) ert (3.47)

where we have used the Gaussianity of W (t). It was more direct to average the Itô SDE.

- Exercice 3.8 Vanishing of the mean velocity : Consider the SDE for the drift F (x)
and the x-dependent di↵usion constant D(x) :

dx(t) = F (x) dt +
p

2D(x) dW (t) (Stratonovich). (3.48)

What is the drift ensuring that d

dt
hx(t)i = 0 ?
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- Exercice 3.9 Itô and Stratonovich evolutions for non Gaussian white noise
⌘(t) =

P
n ⌘n �(t � tn) : In the beginning of § 3.2, we introduced a natural method to sim-

ulate an Itô SDE by discretizing time, cf. Eq. (3.15). Using the connection between Itô and
Stratonovich SDE, we can also use (3.15) to simulate a Stratonovich SDE, by a careful choice
of the drift (Exercise 3.7). In the present exercise, we discuss another approach, which allows to
make a computer simulation of a Itô or Stratonovich SDE. The idea is based on the discussion of
§ 3.2 using non Gaussian white noise. We show here that, in a certain limit, the two evolutions
(3.18) and (3.19) indeed correspond to Itô and Stratonovich conventions, respectively. These
equations provide recurrences easy to implement on a computer.

We consider the SDE

dx(t)

dt
= a(x(t)) + b(x(t)) ⌘(t) where ⌘(t) =

X

n

⌘n �(t� tn) (3.49)

is a non Gaussian white noise : tn are random times occuring with rate � and the i.i.d. amplitudes
are chosen such that h⌘ni = 0 and �

⌦
⌘

2
n

↵
= 1. Then h⌘(t)⌘(t0)i = �(t� t

0) (the noise is however
non Gaussian : higher cumulants are non zero, as discussed in Exercise 2.9).

a) How do the two equations (3.18) (”Itô”) and (3.19) (”Stratonovich”) are modified by the
introduction of the weights ⌘n ?

b) Consider first a simple example and set a(x) = 0 and b(x) = � x (like in Exercise 3.1). Write
the two recurrences in this case.

c) What is the limit of the Gaussian white noise ? Show that the two rules correspond to Itô
and Stratonovich SDE in this limit.
Hint : it is more easy to consider the evolution of ln x(t).

d) We now consider the general case (3.49). Study the two recurrences of question a) in the
limit ⌘n ! 0 (up to second order). Deduce the corresponding SDE.

Historical note on Doblin-Itô calculus

Until 2000, Itô was considered as the foundator of what is usually denoted today the ”Itô
calculus”. However in 2000, a sealed envelope (”pli cacheté” number 11-668), received in 1940
from a young mathematician named Vincent Doblin (born Wolfgang Döblin), was opened at
Académie des Sciences de Paris, which showed that Doblin’s contribution anticipated the work
of Itô on stochastic calculus. Hence, we should rather name it ”Doblin-Itô calculus”.
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mines, Wolfgang Doeblin ne peut plus
travailler. En mai, il est décoré de la croix
de guerre pour avoir rétabli les commu-
nications de son bataillon sous le feu de
l'ennemi et à partir du 14 juin il participe,
avec bravoure et un réel mépris de la
mort, aux combats très durs du front de
la Sarre jusque dans les Vosges où son
régiment, décimé, encerclé, est sur le
point de se rendre. Dans la nuit du 20 au
21 juin, il tente de traverser, seul, les
lignes allemandes, mais il n'y parvient
pas et se tire une balle dans la tête le
matin du 21, après avoir détruit tous ses
papiers. Ce n'est qu'en avril 1944 que son
corps sera identifié, à la suite des
recherches entreprises par son amie
d'université, Marie-Antoinette Tonnelat,
qui deviendra professeur de Physique
théorique à la Sorbonne.

Que contient 
le pli 11668?
On considère une particule soumise à
l'action continuelle du hasard et d'une
dérive déterminée. Mathématiquement,
la façon dont la particule poursuit son
mouvement à partir d'une certaine posi-
tion x atteinte en un temps donné s peut
être décrite par deux coefficients, le coef-
ficient de diffusion et celui de dérive. On
se propose de calculer, par exemple, la
probabilité que cette particule ne

dépasse pas une certaine valeur, disons
y, en un temps ultérieur t. Tel est le
problème de Kolmogorov. Les méthodes
employées par Kolmogorov et ses
émules sont ”analytiques“, elles consis-
tent à résoudre une certaine équation
vérifiée par la probabilité dont il s'agit.
L'approche de Wolfgang Doeblin est tout
à fait différente, elle est ”trajectorielle“
et annonce la théorie moderne des
processus développée à partir des
années cinquante. Doeblin montre que
le mouvement le plus général se décom-
pose en deux parties, dont l'une, la plus
stochastique des deux, est une martin-
gale et suit les trajectoires d'un mouve-
ment brownien muni d'une horloge
particulière. Le mouvement brownien
mathématique est le plus simple des
mouvements continus sans mémoire,

son étude fine est connue déjà à l'époque
de Doeblin, notamment grâce aux
travaux remarquables de Paul Lévy. De
sorte que le théorème de représentation
de Doeblin permet une étude précise des
mouvements les plus généraux: étude
locale en un point, branches infinies, proba-
bilité d'atteinte de grandes valeurs, etc.

Le théorème de Doeblin ne sera retrouvé
que vingt ans plus tard. Sa méthode de

démonstration, qui consiste à se
ramener à des propriétés de martingale,
une notion qui vient juste d'être intro-
duite par J. Ville en 1939, est très nova-
trice. Elle ne sera pleinement comprise
que vingt ans plus tard, lorsqu'il aura été
prouvé que toute martingale continue
est un mouvement brownien changé de
temps. En outre, apparaît dans le pli une
ébauche originale du calcul différentiel
stochastique, qui avec l'apport d'Itô et
de sa célèbre formule, deviendra la 
clé de voûte de l'édifice probabiliste
moderne.

Qu'a-t-on découvert à l'intérieur du pli
11668, une fois ouvert? Une vie, trop vite
interrompue, qui renaît, et l'esquisse,
clairement dessinée, de l'analyse
stochastique des années 1950-2000…

1 Chargé de mission à l’Académie des sciences

Le Comité
de l’environ-
nement
Par Jean-Yves Chapron 1

Créé en 1989, le Comité de l’environ-
nement est à l’origine d’une dizaine

de rapports de l’Académie des sciences.
Il se penche actuellement sur trois
dossiers principaux: la surexploitation
des ressources biologiques marines, la
question des déchets en liaison avec la
santé, et l’éducation à l’environnement
et à la santé.
Les deux premiers thèmes feront l’objet
d’une présentation ultérieure dans ces
colonnes.
Les travaux sur le troisième thème
doivent aboutir à l’automne.
En effet, le Comité a constaté que la
perception des problèmes environne-
mentaux et de santé par le public se
forme selon une approche simplifica-
trice et souvent teintée de sensationna-
lisme. Le propos n’est pas de faire le
procès de la presse mais d’insister sur
l’importance d’une bonne formation de
nos concitoyens pour leur permettre de
décoder et d’évaluer les messages
médiatiques, et de mettre ainsi en pers-
pective, dans leur complexité, les ques-
tions de santé et d’environnement.
Après avoir procédé à plusieurs audi-
tions, le Comité a conclu que le socle des
connaissances de base en la matière
devait être construit dès l’école élémen-
taire, et que, précisément, on constatait
une insuffisance de la part scientifique
de la formation, naturellement polyva-
lente, délivrée aux professeurs d’écoles.
C’est pourquoi, en accord avec les
responsables ministériels, et en liaison
avec l’Académie de médecine, il a été
décidé de rédiger deux ” livrets de l’en-
seignant “, l’un consacré à l’environne-
ment, l’autre à la santé. Ces textes, de
taille limitée (une trentaine de pages
chacun), seront conçus comme des
aides pratiques pour les enseignants, et
regrouperont des items transversaux.
Ils sont destinés à figurer parmi les
documents d’accompagnement des
nouveaux programmes.

n et le Pli cacheté 11 668

Figure 19: Vincent Doblin (1915-1940). A page of the pli cacheté (from [4]).

Wolfgang Döblin was the son of a well-known german writer, Alfred Döblin. Because he was
jewish and opponent to the nazism, Alfred Döblin escaped Germany to Zürich at the begining
of 1933 with part of his family, followed by his son Wolgang. They arrived in Paris in the fall
of 1933. Wolfgang obtained the french nationality in 1936, becoming ”Vincent Doblin”. In
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1938 he passed his PhD, under the supervision of the famous mathematician Maurice Fréchet
(Fig. ??), however, at the end of 1938, he was incorporated in the French army. Refusing to
serve as an o�cer, he was a↵ected to the communications. During this period in the army,
at the begining of the war, he was sent to the Ardennes and was able to produce important
scientific results, which he chose to send to the Académie des Sciences under the form of a “pli
cacheté”, entitled “sur l’équation de Kolmogoro↵, par Vincent Doblin”. Just after the collapse
of the French army, as his company was surrounded by germans in the Vosges region, Vincent
Doblin tried unsuccessfully to cross the german lines and eventually preferred to commit suicide
rather being captured. It was only possible to open the “pli cacheté” 60 years after his death.
Although Vincent Doblin was already known in the mathematics community despite his youth,
the importance of his contribution was not anticipated before 2000.

To learn more : look at the article [4] (available on the internet) written by the two prob-
abilists Bernard Bru and Marc Yor, who analyzed the pli cacheté and recognized its scientific
importance. Or the book by Marc Petit [36].

- Exercice 3.10 Electromagnetic noise : We consider a model of electromagnetic noise :
the two components of the electric field Ex + i Ey obey the two uncoupled SDE

(
dEx(t) = �� Ex(t) dt +

p
D dWx(t)

dEy(t) = �� Ey(t) dt +
p

D dWy(t)
(3.50)

where Wx and Wy are two independent Wiener processes, hence we can write

dW
2

x = dW
2

y = dt and dWxdWy = 0 (3.51)

(remember that averages can be omitted for elementary di↵erential increments).

1/ We introduce the intensity and the phase : Ex = A cos ✓ and Ey = A sin ✓. Write the SDE
for A(t) and ✓(t) within the Stratonovich convention.

2/ We write Ex + i Ey = A ei✓ = e�+i✓.

Using Itô calculus, express d�+i d✓ as a function of �, ✓ and the noises dWx(t) and dWy(t).
Show that

dWA(t) = cos ✓(t) dWx(t) + sin ✓(t) dWy(t) and dW✓(t) = � sin ✓(t) dWx(t) + cos ✓(t) dWy(t)
(3.52)

are two independent noises. Deduce two Itô SDE for �(t) and ✓(t) involving these new noises.

3/ Using the Itô formula, deduce the Itô SDE for the amplitude A = |Ex + i Ey|. Compare the
related Stratonovich SDE for A to the one obtained in the question 1/. Discuss

4/ Write the SDE for the amplitude under the form

dA(t) = �V
0(A(t)) dt +

p
D dWA(t) (3.53)

and give the ”potential” V (A). Find its minimum and plot V (A).

5/ Write the FPE related to the SDE for A(t). Deduce the equilibrium distribution. Discuss
the distribution of the intensity I = A

2. Compute hIi and
p
hI2i

c
.

APPENDIX : Stochastic integrals

If you feel unsatisfactory with the above presentation of Itô/Stratonovich convention, you can
read this paragraph (borrowed from chapter 4 of [12]). Instead of considering the SDE, one
considers integrals of the form

R
t

0
dW (t0) G(t0) which requires the same discussion as for SDE.
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Itô integral.— One defines the Itô integral as

Itô

Z
t

0

dW (t0) G(t0)
def

= ms-lim
N!1

NX

i=1

�Wi G(ti�1) (3.54)

where �Wi = W (ti) � W (ti�1). Here “ms-lim” stands for “mean-square limit” of a random
variable, meaning that :

ms-lim
N!1

XN = X1 if lim
N!1

h[XN �X1]2i = 0 . (3.55)

Let us study an example. Consider the integral Itô
R
t

0
dW (t0) W (t0). One has to analyze the

sum

NX

i=1

�Wi Wi�1 =
1

2

NX

i=1

⇥
(�Wi + Wi�1)

2 �W
2

i�1 � �W 2

i

⇤
=

1

2

NX

i=1

W
2

i �
1

2

N�1X

i=0

W
2

i �
1

2

NX

i=1

�W
2

i

=
1

2

⇥
W

2

N �W
2

0

⇤
� 1

2

NX

i=1

�W
2

i (3.56)

It is easy to show that ms-lim
N!1

P
N

i=1
�W

2

i
= t (this is the reason why one writes dW (t)2 = dt

without the average). Thus

Itô

Z
t

0

dW (t0) W (t0) =
1

2

⇥
W (t)2 �W (0)2 � t

⇤
(3.57)

which di↵ers (by �t/2) from the usual Riemann integral of a regular function.

Stratonovich integral.— Now introduce the definition of the Stratonovich integral

Z
t

0

dW (t0) G(t0)
def

= ms-lim
N!1

NX

i=1

�Wi

G(ti) + G(ti�1)

2
(3.58)

(I use the standard notation for integration, anticipating that it will coincide with usual Riemann
integrals).

Consider now the same integral as before
R
t

0
dW (t0) W (t0) with the new convention. This

time, one deals with

NX

i=1

�Wi

Wi + Wi�1

2
=

1

2

NX

i=1

W
2

i �
1

2

NX

i=1

W
2

i�1 =
1

2
W

2

N �
1

2
W

2

0 (3.59)

so that we have recovered
Z

t

0

dW (t0) W (t0) =
1

2

⇥
W (t)2 �W (0)2

⇤
(3.60)

as for the integration of regular functions.

From stochastic integral to SDE : in the books [30, 12], stochastic integrals are first
discussed along these lines, then SDE are introduced as derivatives of stochastic integrals.
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APPENDIX : Microscopic foundations of the Langevin equation

The aim of this paragraph is to go beyond the phenomenological Langevin model and clarify the
physical origin of the Langevin equation from a microscopic description. We introduce a model
with a purely Hamiltonian conservative dynamics, within which will emerge the e↵ective dissi-
pative dynamics described by the Langevin equation. This will allow to identify the microscopic
origin of the dissipation.

Model.— From Section 1, one would be tempted to model the collisions in the fluid, however
the microscopic dynamics would be di�cult to analyze. Instead, we consider a particle coupled
to a macroscopic number of uncoupled harmonic oscillators modelling the “environment” (also
called the “bath”). In this model, the oscillators represent the eigen-modes of the macroscopic
system (like the phonon modes in a fluid). We now study the deterministic dynamics governed
by the Hamiltonian

H =
p
2

2m
+ V (x) +

X

n

"
p
2
n

2
+

1

2
!

2

n

✓
qn �

cn x

!2
n

◆
2
#

(3.61)

i.e.

Hsys(x, p) =
p
2

2m
+ V (x) (3.62)

Henv({qn, pn}) =
X

n


p
2
n

2
+

1

2
!

2

nq
2

n

�
(3.63)

and the coupling is linear (this is very important for the following)

Hint = �x

X

n

cn qn +
1

2
x

2
X

n

c
2
n

!2
n

(3.64)

Here cn are coupling constants.
A physical realization is : an electron in an atom, coupled to the electromagnetic modes.

Or : an electric device coupled to a L-C line.

- Exercice 3.11 Dissipation in a transmission line : A perfect transmission line (a
coaxial cable) is characterised by an inductance and a capacitance per length. A possible discrete
model is a series of discrete capacitive and inductive elements (without resistance), i.e. only non-
dissipative elements.

Qn

n ...
In−1In+1 In

n+1U

n+2Q Qn+1

UUn+2...

We consider harmonic solutions In(t) = Ĩne�i!t. We recall that the impendance of the capaci-
tance is ZC = 1/(�i!C) and that of the inductance ZL = �i!L, where ! is the frequency.

1/ We first study the eigenmodes of the infinite line. Using Kirchho↵ laws, write the equations
satisfied by the currents Ĩn.

2/ Propagative modes.– Show that the modes In(t) = eiqn�i!(q)t only exist in a finite band-

width ! 2 [0,!0] where !0

def
= 2/

p
LC. Give the dispersion relation.

3/ Evanescent modes.– Study solutions of the form In(t) = (�1)neqn�i!(q)t. Over what dis-
tance can propagate such modes ?
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4/ Impedance of semi-infinite line.– We denote by Zn the impedance of a finite line in-
volving n couples of L � C elements. Give the recurrence between Zn and Zn+1. Deduce the
impedance of the semi-indinite line Z1 ⌘ Z(!). Plot Re Z(!) and Im Z(!). Discuss the fact
that Re Z(!) 6= 0 for a certain interval of frequencies (comment this at the light of question 1).

Integration of the bath equations of motion.— We first derive the equations of motion
8
><

>:

m ẍ = F (x)� x

X

n

c
2
n

!2
n

+
X

n

cnqn

q̈n = �!2

nqn + cn x

(3.65)

where F (x) = �V
0(x). Let us integrate the equations of motion for the bath, which is possible

thanks to the linearity. We can use that the retarded Green’s function for the harmonic oscillator,
i.e. the causal solution of G̈

R(t) + !
2
nG

R(t) = �(t) is G
R(t) = ✓H(t) sin(!nt)

!n
. Thus we can solve

the equation of motion for the oscillators

qn(t) = qn(0) cos(!nt) + q̇n(0)
sin(!nt)

!n

+ cn

Z
t

0

dt
0
sin(!n(t� t

0))

!n

x(t0) (3.66)

We split the source term in Eq. (3.65) in two parts

X

n

cn qn(t) =

⇠(t)

z }| {
X

n

cn

✓
qn(0) cos(!nt) + q̇n(0)

sin(!nt)

!n

◆
+

Z
t

0

dt
0 �(t� t

0) x(t0) (3.67)

where

�(t)
def

=
X

n

c
2

n

sin(!nt)

!n

(3.68)

is a function depending of the microscopic parameters of the model. We denote ⇠(t) “the
noise”, which is controlled by the dynamical variables of the bath, i.e. a macroscopic number
of degrees of freedom. For this reason, it is expected to exhibit a complex dynamics. UsingR
1

0
dt ei!t = 1

0+�i!
we remark that

Z
1

0

dt�(t) =
X

n

c
2
n

!2
n

(3.69)

which appears in the equation of motion above. With this definitions, we can rewrite the e↵ective
equation for the particle as

m ẍ(t) = F (x(t))� x(t)

Z
1

0

d⌧ �(⌧) +

Z
t

0

d⌧ �(⌧) x(t� ⌧) + ⇠(t) (3.70)

Integration over the bath degrees of freedom is responsible for both the integral term and the
”noise” term.

Noise and spectral function.— Because the bath involves a macroscopic number of degrees
of freedom, it is natural to assume thermal equilibrium for the bath, say at t = 0, for the
bath variables

P ({qn, pn}) / e��Henv (3.71)
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so that

hqn(0)qm(0)i = �n,m
kBT

!2
n

(3.72)

hq̇n(0)q̇m(0)i = �n,m kBT (3.73)

Then the noise correlator is

C(t� t
0) =

⌦
⇠(t)⇠(t0)

↵
= kBT

X

n

c
2
n cos(!n(t� t

0))

!2
n

(3.74)

At this stage it is useful to define the spectral function

J(!)
def

= ⇡

X

n

c
2
n

2!n

�(! � !n) (3.75)

which depends on the distribution of frequencies and coupling constants. We can write the
function

�(t) =
2

⇡

Z
1

0

d! J(!) sin(!t) (3.76)

and the correlator

C(t) =
2kBT

⇡

Z
1

0

d!
J(!)

!
cos(!t) (3.77)

in terms of the spectral function. Two remarks :

• In practice, we expect a dense spectrum of oscillators for frequencies ! > 0 (it is natural
to assume that the spectrum of eigenmodes start at ! = 0 since there exist low frequency
excitations ususally).
What kind of behaviour can we expect for J(!) ? Imagine that coupling constant is a smooth
function of the frequency c

2
n = g(!n). Then J(!) = ⇡

2!

P
n

g(!n) �(!� !n) ' ⇡

2!
g(!) ⇢(!) for

! ! 0, where ⇢(!) is the spectral density. For a linear spectrum (like photons, or phonons)
we have ⇢(!) ⇠ !

d�1 and thus we expect a power law J(!) ⇠ g(!)!d�2 at low frequency. A
simple assumption is g(0) =cste.

• The spectrum of eigen-frequencies is usually cut o↵ at a frequency !D related to the micro-
scopic scale (for phonon modes in a crystal, !D is the Debye frequency, related to the lattice
spacing).

The Ohmic case, J(!) / ! for small frequency : a concrete example.— assuming a
broad spectrum of frequencies, of width !D of the form

J(!) = �0 !
!

2

D

!2 + !
2

D

(3.78)

gives
C(t) = kBT �0 !D e�!D|t|

. (3.79)

Its integral is Z
+1

�1

dt C(t) = 2�0 kBT (3.80)

which recall us something...
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E↵ective equation of motion.— Let us come back to the analysis of the e↵ective equation
of motion (3.70). If the spectral function is broad (width ⇠ !D), we expect the function �(t) to
be narrow in time (width ⇠ 1/!D). For future convenience, we introduce

�(t) =

Z
1

t

dt
0 �(t0) (3.81)

which also decays rapidly over the scale ⇠ 1/!D. We introduce a heaviside function in its
definition to make it causal

�(t) = ✓H(t)
X

n

c
2
n cos(!nt)

!2
n

=
2 ✓H(t)

⇡

Z
1

0

d!
J(!)

!
cos(!t) (3.82)

is a ”narrow function” of width 1/!D.
An integration by parts gives

Z
t

0

d⌧ �(⌧) x(t� ⌧) = �(0) x(t)� �(t) x(0)�
Z

t

0

d⌧ �(⌧) ẋ(t� ⌧) (3.83)

Considering times t� 1/!D, we drop the term �(t) x(0). We end with the e↵ective equation of
motion

m ẍ(t) = F (x(t))�
Z

t

0

d⌧ �(⌧) ẋ(t� ⌧) + ⇠(t) (3.84)

This makes clear the physical interpretation of the integral term as a friction term, non local
in time. The nonlocality is not a surprise after all, as, from a microscopic perspective, damping
needs some time to establish.

FDT.— Finally we have the relation between the correlator of the noise and the friction

C(⌧) = kBT �(⌧) for ⌧ > 0 (FDT) (3.85)

which relates the correlator of the noise to the damping (friction) function.
In the microscopic model, the damping term is an integral term. The relation between the

damping and the strength of the noise results from the integration of the microscopic equation
of motions, assuming equilibrium for the bath only (not for the particle, like in the phenomeno-
logical Langevin approach). We can compare the two approaches

• In the § 1 we have introduced two terms in the Langevin equation : the friction controlled
by �0 and the noise controlled by the strength C. We have then assumed that the particle
is at canonical equilibrium Psys(x, p) / exp[��

2
mv

2]. Comparing with the statistical prop-
erties of the solution of the Langevin equation, we have deduced that the two parameters
of the model cannot be independent but must be related by C = 2�0kBT . To some extent,
this relation was assumed for consistency.

• Here, we have only assumed that, being macroscopic, the bath is at thermal equilibrium
Pbath(x, p) / e��Hbath . As a result of the integration of the conservative dynamics, we have
deduced the relation C = 2�0kBT . A by-product is that if we study the statistic for the
particle, one can show that it is described by canonical equilibrium (the particle reaches
equilibrium because it interacts with the bath).

Quantum model : a very similar analysis can be performed within a quantum frame. Mainly,
the correlator of the noise (i.e. of the initial bath variables) involves a di↵erent function and
one is led to a “quantum Langevin equation” (cf. [13] or [45]).
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Energetic considerations : We now study the energy of the system

d

dt
Hsys = ẋ [mẍ� F (x)] = �v(t)

Z
t

0

d⌧ �(⌧) v(t� ⌧) + v(t) ⇠(t) (3.86)

Clearly, the second term corresponds to the work of the Langevin force

d̄W

dt
= v(t) ⇠(t) (3.87)

hence the first term should be interpreted as the heat received by the system

d̄Q

dt
= �v(t)

Z
t

0

d⌧ �(⌧) v(t� ⌧) . (3.88)

One can consider the model with �(⌧) = �0 !D e�!D⌧ . Assuming 1/!D ⌧ ⌧ = m/�0, we
expect that v(t) is smooth on the scale 1/!D so that we can treat ⇠(t) as a white noise. Hence
v(t) ' 1

m

R
t

0
dt
0
⇠(t0) e�(t�t

0
)/⌧ . We can estimate the average work of the Langevin force

hd̄W i
dt

=
1

m

Z
t

0

dt
0
⌦
⇠(t)⇠(t0)

↵
e�(t�t

0
)/⌧ =

C

m
✓H(0) =

C

2m
=

kBT

⌧
(3.89)

where we have used that ✓H(0) = 1/2 (this is consistent with a symmetric regularised � function).
The averaged heat is

hd̄Qi
dt

= �
Z

t

0

dt
0
�(t� t

0)
⌦
v(t)v(t0)

↵
(3.90)

Because the correlator hv(t)v(t0)i decays much slower than the damping function (we have as-
sumed !D⌧ � 1) we can write �(t� t

0) hv(t)v(t0)i ' �(t� t
0)
⌦
v(t)2

↵
, hence

hd̄Qi
dt
' �

⌦
v(t)2

↵ Z 1

0

dt
00
�(t00) = �kBT

m
�0 = �kBT

⌧
(3.91)

As it should the total energy is conserved on average

hd̄W i+ hd̄Qi = 0 (3.92)

The Langevin force furnishes some work to the particle and the bath receives the heat which is
dissipated. The bath receives the entropy dSbath = �d̄Q/T , thus the dissipation corresponds to
the production of entropy with rate

d hSbathi
dt

= +
kB

⌧
(3.93)

Stochastic thermodynamics.— Here, I have applied some concepts of thermodynamics to
a single particle. This type of question has attracted a lot of attention for ⇠ 25 years and is the
subject of the field of “stochastic thermodynamics”. If you are interested you can have a look
to the reviews [23, 8, 27, 42, 41, 25] or to the lectures of Bernard Derrida at collège de France
(2015-2016), https://www.college-de-france.fr/site/bernard-derrida/

, Important points

• Understand the di↵erence between Itô and Stratonovich conventions (for multiplicative noise).
• For Itô calculus : remember dW (t)2 = dt and be careful with di↵erential calculus ! Be able
to recover the Itô formula.
• Be familiar with the relations between SDE (Itô or Stratonovich) and the FPE.
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4 Stochastic processes (4) : the Fokker-Planck approach

When studying a stochastic process, the main goal is to determine its statistical properties,
i.e. its distribution. The Fokker-Planck equation is an important equation which controls
the evolution of the distribution of a Markov processes with no jump. In this chapter, we
discuss several applications of the Fokker Planck equation and will demonstrate the power of
the approach, compared to the stochastic di↵erential equation approach : in particular we will
see that we can address more subtle properties, like exit problem or first passage time.

Figure 20: Adriaan Fokker (1887-1972) and Max Planck (1858-1947)

4.1 Interpretation of the Fokker-Planck equation

The Fokker-Planck equation (FPE) describes a specific class of stochastic processes for which
the integro-di↵erential master equation (2.24) can be reduced to a di↵erential equation :

@Pt(x)

@t
= � @

@x
[F (x) Pt(x)] +

@
2

@x2
[D(x) Pt(x)] (4.1)

Below, we explain precisely in what limit and under what conditions we can go from (2.24)
to (4.1). The equation is also known as the “Kolmogorov equation”or, for D(x) ! D, the
“Smoluchowski equation”. Let us first give the interpretation of the two terms in the Fokker-
Planck equation (applications will be discussed below).

a) Drift : e↵ect of the energy

Imagine that only the first term is present and that F (x)! F is uniform, we get

@Pt(x)

@t
= �F

@Pt(x)

@x
. (4.2)

The solution is Pt(x) = '(x�F t) thus F is the velocity (for uniform F , there is no deformation of
the distribution). The first term in (4.1) is the drift term, where “the drift” F (x) is interpreted
as the force acting on the particle (remember that velocity=force). This is an e↵ect of the energy
as the force derives from a potential energy (at least in 1D).

b) Di↵usion : e↵ect of the entropy

Consider now the e↵ect of the second term of (4.1) for a uniform D(x)! D.

@Pt(x)

@t
= D

@
2
Pt(x)

@x2
. (4.3)

As t grows, the distribution increases where the function is convex and diminishes where the
function is concave (Fig. 21). This leads to a spreading of the distribution. The second term in
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Figure 21: the spreading of the distribution due to the di↵usion term.

(4.1) is the di↵usion term, D(x) playing the role of a x-dependent di↵usion constant. This is
an entropic e↵ect (density tends to homogeneizes).

c) Current density

The Fokker-Planck equation can be rewritten under the form of a conservation equation

@Pt(x)

@t
= �@Jt(x)

@x
(4.4)

where

Jt(x) = F (x) Pt(x)| {z }
drift current

di↵usion currentz }| {
� @

@x
[D(x) Pt(x)] (4.5)

is the current density. The drift current is the usual velocity⇥density. The di↵usion term
accounts for the fact that when the density is not uniform, particles moves from high density
regions to low density regions in order to homogenize the density (entropic e↵ect).

In dimension d, the current density is a vectorial field and has dimension [J ] = L
1�d

/T (in
1D this is a current).

4.2 From the master equation to the Fokker-Planck equation

In the previous chapter, we have related stochastic di↵erential equations (SDE) to the FPE. This
connection has relied on the fact that the noise in the SDE is a Gaussian white noise. The FPE
thus describes a subclass of Markov processes. In this paragraph, we would like to understand
the emergence of the FPE from a broader perspective, starting from the more fundamental
master equation. We will show in which limit and under what conditions we can replace the
master equation by the FPE.

a) Kramers-Moyal expansion

We consider the case where the state of the system is described by a coordinate which varies
continuously in R. Our starting point is the general master equation (2.24), i.e.

@Pt(x)

@t
=

Z
dx
0
W (x|x0) Pt(x

0) with

Z
dx W (x|x0) = 0 (4.6)

to ensure conservation of probability. This equation only relies on Markov assumption.
We have studied in detail the specific case of translation invariant jump processes (CPP,

Exercise 2.8) : in this case the transition kernel W (x|x0) is a function of the di↵erence x � x
0

and takes the form W (x|x0) = �w(x� x
0)� � �(x� x

0), with a simple interpretation : � is the
jump rate and w(⌘) the distribution of jump amplitude.
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Let us now turn to a general jump process. Two remarks : (i) the kernel accounts for jump
from x

0 to x, hence, in the master equation, the term W (x|x0)Pt(x0) increases the probability
at x, thus W (x|x0) > 0 for x 6= x

0. (ii) In order to fulfill the condition
R

dx W (x|x0) = 0, the
kernel must then contain a term / ��(x � x

0). From these two remarks, we conclude that we
can in general rewrite the transition kernel as

W ( x
#

final

| x
0

#

initial

) ⌘ w̃( x
0

#

initial

; ⌘
#

jump

= x� x
0)� �(x� x

0)

Z
dx
00
w̃(x0; x00 � x

0) . (4.7)

where w̃(x0; ⌘) > 0 is a positive function. Comparison with the CPP case shows that w̃(x0; ⌘) can
be interpreted as the distribution of the amplitude of the jumps made from the initial position
x
0, multiplied by a jump rate. With this reparametrisation of the transition kernel, the master

equation now reads

@Pt(x)

@t
=

Z
d⌘ w̃(x� ⌘; ⌘) Pt(x� ⌘)� Pt(x)

Z
d⌘ w̃(x; ⌘) . (4.8)

Although it will not much used below, we can introduce the rate to perform a jump from x :

�(x)
def

=

Z
d⌘ w̃(x; ⌘) (4.9)

and the distribution of the amplitude of jumps from x : w(x; ⌘)
def

= w̃(x; ⌘)/�(x), which is now
correctly normalised,

R
d⌘w(x; ⌘) = 1.

The master equation being an integro-di↵erential equation, its analysis is not straightforawrd
in general (unless in simple cases where translation invariance holds, as it was shown in Exer-
cise 2.8). We now want to show how (under what conditions) it can be replaced by a partial
di↵erential equation (PDE) much more easy to handle. The main assumptions are now

• w̃(x0; ⌘) is a sharp function of ⌘ (small jumps dominate)

• w̃(x0; ⌘) and P (x0; t) are smooth functions of x
0.

These assumptions allow an expansion of the function of x� ⌘ in powers of ⌘

Z
d⌘ w̃(x� ⌘; ⌘) Pt(x� ⌘) =

Z
d⌘

1X

n=0

(�⌘)n
n!

@
n

@xn
[w̃(x; ⌘) Pt(x)] (4.10)

After introduction of this series in (4.8), the n = 0 term is cancelled by the last term of Eq. (4.8).
We can introduce

an(x)
def

=

Z
d⌘ ⌘n w̃(x; ⌘) (4.11)

which is ⇠ n-th moment of the jumps from x, multiplied by a rate. Precisely, with the above
notations : an(x) = �(x)

R
d⌘ ⌘n w(x; ⌘) = �(x) h⌘ni

x
, where both the jump rate and the moment

depend on x.
The condition that w̃(·; ⌘) is a ”narrow” function should be rather reformulated as an(x) <1

8n. Permuting integration over ⌘ and derivations with respect to x, we end with

@Pt(x)

@t
=
1X

n=1

(�1)n

n!

@
n

@xn
[an(x) Pt(x)] (4.12)

which is known as the Kramers-Moyal expansion. Of course such an expansion only exists if
the distribution of jumps is such that all moments an(x) are finite. Under this form, the equation
is not more easy to manipulate than the integral form from which we started. However, with
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the above assumption that w̃(x; ⌘) is a narrow function of ⌘, corresponding to small jumps at
high rate, we expect the moments an(x) to decay fast with n, which allows a truncation of the
expansion. The truncated equation

@Pt(x)

@t
= � @

@x
[a1(x) Pt(x)] +

1

2

@
2

@x2
[a2(x) Pt(x)] (4.13)

is the Fokker-Planck equation (4.1). 16 The FPE describes a continuous random process (i.e.
the jumps disappear in the continuum limit, which is only possible if the original distribution
of jumps is su�ciently narrow). 17

Bibliography : This discussion is inspired by the book of van Kampen (chapter VIII) [49].

Pawula theorem : Can we truncate the Kramers-Moyal expansion (4.12) at any n ? The
Pawula theorem states that it can only be stopped at n = 1 or n = 2. The positivity of the
solution implies that if not stopped at n = 1 or n = 2, one should keep the infinite series (cf.
§ 4.3, [39]). This reminds us the Marcinkiewicz theorem about the generating function of
cumulants.

FPE describes large scale properties of the master equation.— Having in mind the
form w̃(x; ⌘) = �(x) w(x; ⌘) and assume that there exists a unique characteristic scale �. Addi-
tionnally we assume that jumps are characterised by a unique scale ✏ (width of w(·; ⌘)). In the
master equation, the time can be rescaled as t̃ = �t, so that it is equivalent considering large
time or high rate. We expect the scaling of the coe�cients an(x) ⇠ � ✏n. If we send �!1 and
✏ ! 0 such that a2(x) ⇠ �✏

2 ⇠ 1 is fixed (i.e. interesting physics occurs at the scale related to
a2), then higher coe�cients go to zero an(x) ⇠ ✏n�2 ! 0, hence we end with the Fokker-Planck
equation. In conclusion, provided that the Kramers Moyal expansion exists (or more precisely,
at least the two coe�cients a1(x) and a2(x) are finite), the large scale properties described
the master equation (for jump process) coincide with those given by the Fokker-Planck equation
(for continuous process).

b) Conclusion : jump process versus di↵usion

In general, the master equation can be written under the form

@tPt(x) = L Pt(x) (4.14)

where L is a linear operator.

• For a jump process, the linear operator is an integral operator, of the form (4.6) or (4.8).
For example, a simple jump process is the CPP studied above, for which

⇥
L'

⇤
(x) =

�
R

d⌘w(⌘)
�
'(x � ⌘) � '(x)

�
. In the general case, the distribution of the jump amplitude

depends on the initial position, Eq. (4.8).

• If the linear operator is a di↵erential operator, L = �@xF (x) + @
2
xD(x), one says that the

process is “a di↵usion”. From the Pawula theorem, the di↵erential operator can be at most
second order. Physically, a di↵usion is obtained as the limit of small jumps occuring with
high rate. This is the type of stochastic processes discussed in the previous chapter on SDE
and the present one on FPE.

• In general, a Markov process can combine a di↵usion and jumps.
16A proper justification of the truncation requires a neat rescaling of the jumps and the rate, like it was done

in the above Exercise 2.8. The argument follows the spirit of the central limit theorem.
17The condition ”distribution of jumps su�ciently narrow” should have been made clear in Exercise 2.8. It is

furhter discussed in Exercise ??.
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4.3 Spectral analysis of the Fokker Planck equation

In this section we discuss how the FPE can be solved by using spectral information, in principle
at least. For simplicity, we mostly study processes with additive noise

dx(t) = F (x(t)) dt +
p

2D dW (t) , (4.15)

i.e. Eq. (4.1) for D(x)! D (some properties will be extended to the general case in Exercise 4.4).
Because we only consider here additive noise, Itô and Stratonovich interpretations of the SDE
correspond to the same process. Furthermore, we restrict the discussion to the one-dimensional
case when the drift is such that there exists an equilibrium state, i.e. when the potential

V (x) = �
Z

x

dx
0
F (x0) (4.16)

is confining.

a) Generator of the di↵usion

The related FPE was obtained above, Eq. (3.5). This form is not unfamiliar and recalls the
Schrödinger equation in imaginary time �@tP = HFPP . The reader is most probably familiar
with spectral analysis in the quantum mechanical context. Here we have introduced HFP =
�D

@
2

@x2 + @

@x
F (x), where the notation means that the operator @

@x
F (x) = F

0(x) + F (x) @
@x

must

be understood as acting on a function �(x) as @

@x

⇥
F (x)�(x)

⇤
= F

0(x)�(x) + F (x)�0(x). The

operator HFP = �D
@
2

@x2 + @

@x
F (x) is therefore not self-adjoint in the presence of the drift, 18

HFP 6= H
†

FP
. Instead of the notation HFP used in [39], I will prefer the mathematicians’ notation

@tPt(x) = G †
Pt(x) where G † = D

@
2

@x2
� @

@x
F (x) (4.17)

is the “forward generator”. By convention, probabilists call the adjoint of this operator

G = D
@

2

@x2
+ F (x)

@

@x
(4.18)

the “generator of the di↵usion”. I will also call it the “backward generator” as we will see that

it governs the evolution of the density backward in time. We have used that
�
@

@x

�
†

= � @

@x
(like

in quantum mechanics).
It will be helpful for the following to rewrite the generator and its adjoint in the following

form

G † = D
@

@x
e�V (x)/D

@

@x
eV (x)/D and G = D eV (x)/D

@

@x
e�V (x)/D

@

@x
, (4.19)

where F (x) = �V
0(x). Several simple observations follow from this remark. For example, the

generator and its adjoint car be related through the transformation G † = e�V (x)/DG eV (x)/D.

Equilibrium.— It makes clear that a stationary solution of the FPE, i.e. a solution of
G †

P = 0, is
Peq(x) = C0 e�V (x)/D ) G †

Peq(x) = 0 (4.20)

where C0 is a normalisation constant. As a matter of factn we have identify the right vector
for eigenvalue �0 = 0, i.e. G †�R

0
(x) = 0. Similarly the left eigenvector such that G�L

0
(x) = 0 is

clearly a constant :

�R

0 (x) = Peq(x) and �L

0 (x) = 1 (4.21)
18Self-adjointness is not only broken by the drift term ; it can also be broken by the boundary conditions, if

they induce a drift at the boundaries.
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- Exercice 4.1 : Argue that the solution (4.20) is an equilibrium solution (hint : analyze the

related current). What is the condition on V (x) for such an equilibrium state ?

b) Solving the FPE

Let us apply the spectral method to solve the FPE @tPt(x) = G †
Pt(x). We look for a solution

of the ”separable” form

Pt(x) = �(x) e��t hence G †�(x) = ���(x) . (4.22)

Because the generator is not self adjoint, this last equation is an equation for a ”right eigenvector”
of G †. Its spectrum involves a bi-orthognoal set of right and left eigenvectors

G †�R

n (x) = ��n�R

n (x) and G�L

n(x) = ��n�L

n(x) (4.23)

with 19 Z
dx�L

n(x)�R

m(x) = �nm (4.24)

(see the discrete version in Subsection d) page 24). When there exists a stationary state, the
spectrum is real and the lowest eigenvalue �0 = 0 is isolated (there is a finite gap between �0

and the next eigenvalue). The next eigenvalue �1 corresponds to the relaxation rate toward
stationary state (or Re(�1) if �1 is complex). When there exists an equilibrium, for a confining
potential V (x), the spectrum is real.

Let us use this spectral information to solve the FPE for a given initial condition P0(x). We
first decompose this latter on the right eigenvectors

P0(x) =
X

n

cn�
R

n (x) where cn =

Z
dx�L

n(x)P0(x) (4.25)

Then, the solution at time t reads

Pt(x) =
X

n

cn�
R

n (x) e��nt . (4.26)

The conditional probability can be obtained along these lines : in this case, the initial
condition is P0(x) = �(x� x0), hence cn = �L

n(x0). Therefore the spectral decomposition of the
conditional probability is

Pt(x|x0) =
1X

n=0

�R

n (x)�L

n(x0) e��nt (4.27)

c) Supersymmetry

We already noticed that the generator has an interesting structure, which results in some im-
portant properties. In particular, G † has a negative spectrum : all its eigenvalues are negative

19Prove orthonormalisation : consider the di↵erence
Z

dx

h
�L

m(x)G †�R

n (x) � �R

n (x)G �L

m(x)
i

= (�n � �m)

Z
dx �L

n(x)�R

m(x)

The left hand side vanishes thanks to some integration by parts, since �L

n(x)�R

m(x) ! 0 for |x| ! 1 (this is
required by normalisation on R). Hence

R
dx �L

n(x)�R

m(x) / �nm.
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or zero (i.e. �n > 0). We can prove this by stressing some interesting connection to a quantum
mechanical operator H+. We first perform the non unitary transformation

H+ = �eV (x)/2D G † e�V (x)/2D = �e�V (x)/2D G eV (x)/2D

= �D eV (x)/2D
@

@x
e�V (x)/D

@

@x
eV (x)/2D (4.28)

which symmetrizes the structure of the operator. The transformation relates �G † to the self-
adjoint operator H+ (the two operators have the same spectrum of eigenvalues). 20 In other
terms we consider the transformation of the FPE

@tPt(x) = G †
Pt(x)

Pt(x)= 0(x)�t(x)�! �@t�t(x) = H+�t(x) (4.29)

where  0(x) = c0 e�V (x)/2D =
p

Peq(x). This Hamiltonian has a specific structure

H+ = Q†Q with Q
def

= �
p

De�V (x)/2D
@

@x
eV (x)/2D =

p
D

✓
� @

@x
+

F (x)

2D

◆
(4.30)

known as “supersymmetric” (it is possible to introduce the supersymmetric partner H� = QQ†,
the two operators having the same spectrum but the zero mode 21). The structure H+ = Q†Q
implies that the spectrum of the operator is strictly positive 22

Spec(H+) = Spec(�G †) ⇢ R+ . (4.31)

We have also

H+ = D

✓
@

@x
+

F (x)

2D

◆✓
� @

@x
+

F (x)

2D

◆
= �D

@
2

@x2
+

F (x)2

4D
+

F
0(x)

2
(4.32)

The drift is such that there exists an equilibrium state, hence the e↵ective potential U(x) =
F (x)

2

4D
+ F

0
(x)

2
is a confining potential and the Hamiltonian has a discrete spectrum :

H+ n(x) = �n  n(x) with �n > 0 . (4.33)

In particular, the equilibrium solution Peq(x) is related to the zero mode of H+ :

H+ 0(x) = 0 with  0(x) = c0 e�V (x)/2D =
q

Peq(x). (4.34)

where c0 is a normalisation.

- Exercice 4.2 Ornstein-Uhlenbeck process and the quantum harmonic oscillator :
Consider the case F (x) = �k x (i.e. V (x) = k

2
x

2). Check that H+ is the quantum Hamiltonian
for the harmonic oscillator. What are the two operators Q and Q† ?
Deduce the spectrum of eigenvalues {�n}n2N of H+ and �G †.

20A subtle remark : boundary conditions for the FPE may di↵er from boundary conditions relevant for quantum
mechanical problems. Although there is a mapping between the two di↵erential operators H+ and G †, there are
some situations where the boundary conditions of the FPE leads to break the self-adjointness of H+, which
explains how the spectrum may be complex (such a case appears in [11, 7]. For confining potential V (x), this
however does not happen : boundary conditions correspond to exponentially decaying wave functions of H+ and
right eigenvectors of G †, with real spectrum.

21Only one of the two hamiltonians H+ and H� may have a zero mode. If none of them possesses a normalizable
zero mode, the supersymmetry is said to be broken, cf. book [18].

22since H+| i = �| i implies � = h |Q†Q| i = ||Q| i||2 > 0.
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- Exercice 4.3 Linear confinment : Find the spectrum of G † when the particle is submitted
to the confining potential V (x) = v |x|.
Hint : discuss H+.

- Exercice 4.4 Generalized supersymmetry : Consider the case of the di↵usion for x-
dependent di↵usion constant

dx(t) = F (x) dt +
p

2D(x) dW (t) (Stratonovich) (4.35)

a) Give the generator G of this di↵usion and show that it can be written under a form analogous
to (4.19).

b) Deduce the expression of the equilibrium distribution Peq(x). What is the condition which
ensures that it exists ?

c) Now assuming the existence of a steady current J , give the related stationary distribution
Pst(x).

d) How the operators H+, Q and Q† are generalized ?

- Exercice 4.5 Solution for x-dependent di↵usion constant and no drift : We consider
the SDE (4.35) for F (x) = 0. Write the FPE for Pt(x). We introduce the change of variable

y =

Z
x dx̃p

2D(x̃)
(4.36)

Deduce the FPE for the distribution Qt(y). Solve it for the propagator and deduce Pt(x|x0).

d) Conditional probability (propagator)

An important object characterizing the di↵usion is the propagator of the di↵usion (the condi-
tional probability), solution of

@tPt(x|x0) = G †
Pt(x|x0) for initial condition P0(x|x0) = �(x� x0) . (4.37)

We recall that we assumed a confining drift F (x), such that there exists an equilibrium.
Then the spectrum of G † (and of H+) is discrete. Given the spectral information {�n, n(x)}
we can obtain a representation of the propagator.

Method n°1 : we can use the relation to supersymmetric quantum mechanics. The non
unitary transformation Pt(x) =  0(x) (x; t), where  0(x) / e�V (x)/2D, maps the PDE for the
conditional probability onto

�@t t(x|x0) = H+ t(x|x0) for initial condition  0(x|x0) = �(x� x0) . (4.38)

The solution can be decomposed over the eigenstates of H+ (this is the main motivation for
spectral analysis!). Starting from the initial condition  0(x|x0) =

P
1

n=0
 n(x) n(x0) we get at

time t,

 t(x|x0) =
1X

n=0

 n(x) n(x0) e��nt . (4.39)

We go back to the conditional probability. In order to satisfy the initial condition, we must
write Pt(x|x0) =  0(x) t(x|x0)/ 0(x0), thus

Pt(x|x0) =
 0(x)

 0(x0)

1X

n=0

 n(x) n(x0) e��nt (4.40)
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Method n°2 : It is more straightforward to manipulate operators : 23

Pt(x|x0) = hx |etG † |x0 i = hx |e�t 0(x̂)H+ 0(x̂)
�1 |x0 i = hx | 0(x̂)e�tH+ 0(x̂)�1|x0 i

=  0(x)hx |e�tH+ |x0 i
1

 0(x0)
(4.41)

where x̂ is the ”position operator” with x̂|x i = x|x i. The propagator of H+ can be decomposed
over its eigenstates and we recover (4.40).

- Exercice 4.6 : Check the normalisation
R

dx Pt(x|x0) = 1.
Argue that limt!1 Pt(x|x0) = Peq(x).

This structure makes clear the relation Pt(x|x0) 0(x0)2 = Pt(x0|x) 0(x)2 i.e.

Pt(x|x0)Peq(x0) = Pt(x0|x)Peq(x) (4.42)

which is reminiscent of the detailed balance condition, which was expected as we are dealing
with a situation where an equilibrium exists (V (x) is confining). Strictly speaking, detailed
balance involves the transition rates, i.e. the t ! 0 limit : Pt(x|x0) ' �(x � x0) + t W (x|x0),
then detailed balance is W (x|x0)Peq(x0) = W (x0|x)Peq(x).

Remark : This equation is the consequence of the identity between operators

Peq(x̂)�1 G †
Peq(x̂) = G . (4.43)

- Exercice 4.7 The Ornstein-Uhlenbeck process and the quantum oscillator : Using
the expression of the propagator for the quantum mechanical harmonic oscillator

hx |e�tH! |x0 i =

r
m!

2⇡ sinh!t
exp� m!

2 sinh!t

⇥
cosh!t (x2 + x

2

0)� 2xx0

⇤
(4.44)

for H! = � 1

2m

@
2

@x2 + 1

2
m!

2
x

2, recover the propagator (2.18) of the Ornstein-Uhlenbeck process

described by the SDE dx = �k x dt +
p

2D dW (t).
Check the condition (4.42).

e) Right/left eigenvectors and supersymmetry

It is instructive to make the connection between the right/left eigenfunctions introduced above
and the eigenfunctions of the supersymmetric Hamiltonian. Eq. (4.27) coincides with (4.40).
This shows that the right and left eigenvectors can be simply related to the eigenfunctions of
H+ as follows

�R

n (x) =  0(x) n(x) and �L

n(x) =
 n(x)

 0(x)
(4.45)

In particular, for �0 = 0,

�R

0 (x) =  0(x)2 = Peq(x) and �L

0 (x) = 1 . (4.46)
23The two operators are related by a non-uniatry transformation of the form G † = �UH+U�1. Exponentiating

the equality we find exp
⇥
t G †

⇤
= exp

⇥
� tUH+U�1

⇤
= U exp

⇥
� t H+

⇤
U�1.
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Example : We have discussed the relation between the Ornstein-Uhlenbeck process and the
QM oscillator, Exercise 4.7. As a result, in this case

�R

n (x) = cn Hn

 r
k

2D
x

!
e�

k

2D
x
2

and �L

n(x) = Hn

 r
k

2D
x

!
(4.47)

where Hn(x) is a Hermite polynomial and cn = 1

2nn!

q
k

2D
a normalisation [46]. Note that only

the right eigenvectors vanish at infinity, while the left eigenvectors grow at infinity, �L
n(x) ⇠ x

n.

f) Case of NESS

In this last paragraph of Section 4.3, let us forget the assumption that the potential is confining
and make a remark on the case of di↵usions with a NESS. In this case, the spectral analysis is
more tricky and the spectrum of eigenvalues is not necessary real : a simple example is discussed
in Exercise 4.8 (this exercise is the continuous version of Exercise 2.12).

- Exercice 4.8 Di↵usion for a uniform drift on a ring : The aim is to obtain the
propagator Pt(x|x0) of the di↵usion (3.5) for a uniform drift F (x) = F0 on a ring, i.e. on the
finite interval [0, L] with periodic boundary conditions.

a) Discuss the spectrum of the forward generator G † = D@
2
x �F0@x : eigenvalues, right and left

eigenvectors.

b) Write Pt(x|x0) by using the spectral information. Analyze the t ! 1 limit (identify a
characteristic time ⌧D).

c) In order to analyze the limit t⌧ ⌧D, get another representation of the conditional probability
from the Poisson formula (??). Discuss the L!1 limit.

- Exercice 4.9 FPE on R for a non confining potential : Consider the FPE @tPt(x) =
D@

2
xPt(x) + @x

⇥
V
0(x)Pt(x)

⇤
on R such that the drift F (x) = �V

0(x) drives the particle from
�1 to +1. This requires that V (x! ±1)! ⌥1.

1/ Give an example of V (x) and discuss the typical trajectories.

2/ Argue that G †
P = 0 has two independent solutions.

3/ Show that the equilibrium solution is not normalisable and find the expression of the second
solution (under the form of an integral).

4/ Condition for the NESS
a) If the stationary solution exists, using the expression found above, show that it presents the
asymptotic behaviour Pst(x) ' J/F (x) for x! +1.
b) Deduce the condition for existence of the stationary state for the non confining potential.
c) Give an example of non confining drift with allows for a stationary state, and an example
which does not.

5/ Compare with the results of Exercise 2.14 page 25.

4.4 Forward and backward FPE

We have solved above the forward FPE 24

@tPt(x|x0) = G †

xPt(x|x0) (4.48)

24This equation, formally @tPt = G †
Pt = PtG , is called the “Kolmogorov equation” by mathematicians.
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where the forward generator is a di↵erential operator acting on the final coordinate x. The
above discussion makes clear that the generator of the di↵usion is involved in the backward FPE
25

@tPt(x|x0) = Gx0
Pt(x|x0) (4.49)

where the operator acts on the initial coordinate x0. We will see some applications of this
equation below.

- Exercice 4.10 BFPE from FFPE : Deduce (4.49) from (4.48) by using (4.42).

4.5 Boundary conditions for the FPE

So far we have not discussed the situation where the FPE is solved on a bounded domain.
Let us discuss here the question of boundary conditions. For simplicity we consider the FPE
@tPt(x) =

⇥
D@

2
x � @xF (x)

⇤
Pt(x) = �@xJt(x) on R+ so that there is just one boundary at x = 0.

a) Reflecting boundary condition

The first natural boundary condition is the reflecting boundary condition, where the particle
coming to x > 0 is simply reflected at x = 0. This is expressed by the condition of a vanishing
current at the origin

Jt(0) = F (0)Pt(0)�DP
0

t(0) = 0 (4.50)

where 0 means here derivation with respect to x. In the usual terminology, this corresponds to
a ”mixed boundary condition”. 26

Remark : reflecting boundary conditions for the conditional probability.— For the
following we will have to impose the boundary conditions for the conditional probability Pt(x|x0).
The reflecting boundary condition is

⇥
D@x � F (x)

⇤
Pt(x|x0)

��
x=0

= 0 (4.51)

We could aslo ask about the condition with respect to the initial coordinate : Using the relation
(4.42), we have

✓
@x �

1

D
F (x)

◆
Pt(x|x0) =

✓
@x +

1

D
V
0(x)

◆
Peq(x)

Peq(x0)
Pt(x0|x)

�
=

Peq(x)

Peq(x0)
@xPt(x0|x) (4.52)

where I used that Peq(x) / exp[�V (x)/D]. As a consequence, the presence of the reflecting
boundary at x = 0 implies

@x0
Pt(x|x0)

��
x0=0

= 0 . (4.53)

The reflecting boundary condition is not symmetric for the two coordinates.

25I have used h |A� i = hA†
 |� i ; explicitly @tPt(x|x0) = hx |G †etG

†
|x0 i = G †

x hx |etG
†
|x0 i =

Gx0hx |etG
†
|x0 i.

26For a linear wave equation of second order for the wave  (x), like the Schrödinger equation � 00(x) +
V (x) (x) = E (x), the standard terminology is : (i) Dirichlet boundary condition :  (0) = 0 ; (ii) Neumann
boundary condition :  

0(0) = 0 ; (iii) mixed boundary condition :  (0) cos ✓ +  
0(0) sin ✓ = 0 (one recovers

Dirichlet and Neumann b.c. for ✓ = 0 and ✓ = ⇡/2, respectively).
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b) General boundary condition

Let us now consider a general (mixed) boundary condition

�̃Pt(0) = P
0

t(0) (4.54)

For �̃ = F (0)/D, this corresponds to the reflecting boundary condition. What is the meaning
of this condition for arbitrary real �̃ 6= F (0)/D ?

Consider

@t

Z
1

0

dx Pt(x) = �
Z
1

0

dx @xJt(x) = Jt(0) (4.55)

The current of probability through x = 0 makes the total probability decreases (for Jt(0) < 0).
Making use of the boundary condition, we get

Jt(0) =
h
F (0)�D�̃

i
Pt(0) ⌘ ��Pt(0) (4.56)

where we have found convenient to introduce � = D�̃ � F (0). For � > 0, the total probability
decreases

@t

Z
1

0

dx Pt(x) = ��Pt(0) . (4.57)

Hence � > 0 has roughly the meaning of the rate of escape, when the particle reaches the
boundary at x = 0. Then, the particle is absorbed or reflected with finite probabilities when it
reaches the boundary.

Figure 22: A random walker (the mouse) with an absorbing boundary condition at x = 0.

c) Absorbing boundary condition

Writing Pt(0) = �̃
�1

P
0
t(0) shows that the limit �̃ ! 1, or � ! 1, corresponds to a Dirichlet

boundary condition
Pt(0) = 0 (4.58)

corresponding physically to the situation where the particle reaching the boundary is absorbed
with probability one (Fig. 22).

4.6 First passage and exit problem (in 1D)

We now study the recurrence for general di↵usions in one-dimension (the restriction to dimension
one makes the calculations simple ; the method extends easily to dimensions d > 1).

a) Persistence of the free Brownian motion

Here, I come back to the problem studied in § ?? : we study (in Exercise 4.11) the question
of the first return of the free Brownian motion. In the previous paragraph, we considered the
same question for the discrete random walk ; here we reconsider the problem for a continuous
Brownian motion. This is the ”persistence” problem, as the first return probability at time t

corresponds to the probability that the process ”persists” to remain positive up to time t.
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- Exercice 4.11 Persistence, first passage time and maximum of the BM:
1/ Propagator on the half line.– We consider the free di↵usion on R+ with a Dirichlet
boundary condition at the origin. Construct the solution of the di↵usion equation

@tPt(x) = D@
2

xPt(x) for x > 0 with Pt(0) = 0 (4.59)

(use the image method). Apply the method to get the propagator of the di↵usion on R+, de-

noted P
(Dir)

t
(x|x0).

2/ Survival probability.– Dirichlet boundary condition describes absorption at x = 0. Com-
pute the survival probability for a particle starting from x0 :

Sx0
(t) =

Z
1

0

dx P
(Dir)

t
(x|x0) (4.60)

What would have been the result for P
(Neu)

t
(x|x0), the solution for a Neunmann boundary

condition, @xPt(x)
��
x=0

= 0 ?

3/ First passage time.– We denote by Tx0
the first time at which the process starting from

x0 > 0 reaches x = 0 (it is a random quantity depending on the process), and Px0
(T ) its

distribution. Deduce

Px0
(T ) =

x0p
4⇡D T 3/2

e�
x
2
0

4DT . (4.61)

Plot neatly the distribution and compare with the result obtained for the RW on the lattice.

4/ Maximum of a BM.– We now consider another property of the Brownian motion x(⌧) with
⌧ 2 [0, t] starting from x0 = 0 : we denote by M = Max

⌧2[0,t]

(x(⌧)) > 0 its maximum and Wt(m)

the distribution of M . Show that Wt(m) and Sx0
(t) are related and deduce the expression of

Wt(m). What does Wt(0) represent ? The exponent of the power law t
�✓ is called the persistence

exponent. Give ✓ for the Brownian motion.

Hint : use Appendix ?? with properties of the error function.

Remark : we have recovered the results obtained within the discrete model of random walk
(§ ??) : the probability to return to the starting point is Pt(0|0) ⇠ t

�1/2 and the probability for
the first return is Px0

(t) ⇠ t
�3/2 at large time.

Conclusion : Two important points :

• in order to study the first passage time at the origin, one should impose an absorbing boundary
condition at x = 0.

• The definition of the survival probability suggests that one should first find the conditional
probability, then integrate it to get the survival probability. In fact, the backward FPE
provides a shortcut and allows to find an equation directly for the survival probability, as we
will see.

b) First passage time for arbitrary drift

We consider the case of a di↵usion with drift and uniform di↵usion constant for simplicity

dx(t) = F (x) dt +
p

2D dW (t) (4.62)

The drift derives from a potential F (x) = �V
0(x) and W (t) is the Wiener process. Consider

that the di↵usion starts from the initial condition x(0) = x0.
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The determination of the propagator Pt(b|x0) allows to answer the question : what is the
probability that the process reaches the point x = b in a (fixed) time t (i.e. the final position is
the random variable). We now ask a dual question : what is the time Tx0

needed to reach
the point x = b for the first time ? x(0) = x0 and x(Tx0

) = b with x(t) < b for 0 < t < Tx0
.

Hence we now fix the final position (x = b) and study the statistical properties of the random
time Tx0

. We denote by Px0
(T ) its distribution.

The main idea is to introduce an absorbing boundary at x = b :

Pt(b|x0) = Pt(x|b) = 0 (4.63)

implying that the particle is absorbed when it reaches x = b. For simplicity for future calculations
and analysis, we impose a reflecting boundary condition at another point x = a, i.e. we impose
that the current vanishes

(F (x)�D@x) Pt(x|x0)
��
x=a

= @x0
Pt(x|x0)

��
x0=a

= 0 (4.64)

The boundary condition takes a di↵erent form with respect to the two arguments (this is expecetd
as Pt(x|x0) is not a symmetric function of its two arguments in general, cf. § 4.5 page 58).

We introduce the survival probability

Sx0
(t) =

Z
b

a

dx Pt(x|x0) , (4.65)

the probabilty that the particle has survived up to time t, i.e. has not reached the absorbing
boundary at x = b. Due to the absorbing boundary, Sx0

(t) 6 1. The survival probability is the
probability for the particle to be absorbed after time t

Sx0
(t) = Proba{Tx0

> t} =

Z
1

t

dT Px0
(T ) . (4.66)

Then Px0
(T ) = �@TSx0

(T ). Because we integrate over the final position x involved in the
propagator, we see that it is interesting to make use of the backward FPE (4.49) :

@tSx0
(t) =

Z
b

a

dx Gx0
Pt(x|x0) = Gx0

Sx0
(t) (4.67)

for the initial condition

Sx0
(0) =

(
1 for x0 2 [a, b[

0 for x0 > b
. (4.68)

Similarly the first passage time distribution obeys

@tPx0
(t) = Gx0

Px0
(t) (4.69)

At this point it is useful to introduce the n-th moment of the time :

Tn(x0)
def

=
⌦�

Tx0

�
n
↵

=

Z
1

0

dT T
n Px0

(T ) (4.70)

- Exercice 4.12 Moments of the first passage time :
a) Show that the moments obey the recurrence

Gx0
Tn(x0) = �n Tn�1(x0) and Gx0

T1(x0) = �1 . (4.71)

b) Justify that the boundary conditions are @x0
Tn(x0)

��
x0=a

= 0 and Tn(b) = 0.
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c) Deduce (calculation requires to solve a first order linear di↵erential equation: easy!)

Tn(x0) =
n

D

Z
b

x0

dx eV (x)/D

Z
x

a

dx
0 e�V (x

0
)/D

Tn�1(x
0) (4.72)

(with obviously T0(x0) = 1).

- Exercice 4.13 Trapping by a constant drift : We consider the trapping by a constant
drift F (x) = �µ. The particle starts from x0 2 [0, b[ with a reflection boundary at x = 0. The
boundary at b is absorbing.
a) Compute the mean first passage time T1(x0).
b) Discuss the result : consider limiting cases (i) µb/D ⌧ 1, (ii) µb/D � 1 for µ > 0, (iii)
|µ|b/D � 1 for µ < 0.

- Exercice 4.14 First passage time for D(x) : Generalize (4.72) for a x-dependent di↵u-
sion constant D ! D(x).

c) Arrhenius law

An important application of the above formalism is the analysis of the escape time for a particle
trapped in a potential well. This problem is relevant in chemistry where chemical reactions
are activated by overcoming some potential (activation) barriers in the configuration space of
the molecules. For simplicity we consider a one-dimensional problem of a particle initially in a
potential well (Fig. 23) : x0 is close to the local minimum at x1. We study the time needed to
escape the well, i.e. jump in the region x > x2.

x

V(x)

x

x

absorption

b1 2a

Figure 23: A particle escapes from a metastable state.

In a rather arbitrary manner, we introduce a reflecting boundary at x = a at the left of the
local minimum, and the absorbing boundary at x = b at the right of the potential barrier (not
too close from the top). As we have seen above the average time is given by

T1(x0) =
1

D

Z
b

x0

dx eV (x)/D

Z
x

a

dx
0 e�V (x

0
)/D

. (4.73)

The integral can be analysed by using the steepest descent method. For D ! 0, the integral over
x is dominated by the neighbourhood of x = x2, hence we can replace the upper bound of the
second integral

R
x

a
!
R
x2

a
, expand the potential in the exponential eV (x)/D ' exp

�
1

D
[V (x2) �

1

�
2

2

(x�x2)2]
 
, where �2 = 1/

p
�V 00(x2), and perform the remaining Gaussian integral. Similarly,

the integral over x
0 is dominated by the neighbourhood of x

0 = x1 ; expanding similarly the
integrand as e�V (x

0
)/D ' exp

�
1

D
[�V (x1)� 1

�
2

1

(x0� x1)2]
 
, where �1 = 1/

p
V 00(x1), we end with

hTx0
i ⌘ T1(x0) ' 2⇡ �1 �2 exp

V (x2)� V (x1)

D
(4.74)
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The main result is that the average time is exponentially large in the height of the potential
barrier �V = V (x2) � V (x1). It is pretty independent of x0 (provided that it remains in the
well) : for x0 in the well, the particle is rapidly driven at the bottom of the well, where it is
submitted to the fluctuations (the time scale is controlled by the curvature at x1, like for the
Ornstein-Uhlenbeck process) ; then it takes a long time to escape the well, thanks to large (and
thus rare) thermal fluctuation.

Figure 24: The swedish chemist Svante August Arrhenius (1859-1927), Nobel prize in chemistry
in 1903.

- Exercice 4.15 : How far from the top of the barrier (at x2) must be the absorbing boundary
b so that the previous analysis is justified ? And how far the reflecting boundary at a should be
from the bottom of the well (at x1) ?

- Exercice 4.16 Time needed to fall at the bottom of a harmonic well : We discuss
the situation where the initial point x0 is far from the minimum of the well at x = x1 and
clarify a point of the previous discussion. We consider the Ornstein-Uhlenbeck process d

dt
x(t) =

�� (x � x1) +
p

2D ⌘(t). What is the typical time needed by a particle initially far from the
minimum, x(0)�x1 = � ”large”, to fall in the potential well ? Compare to the Arrhenius time.

We can also analyze higher moments : applying the same arguments to (4.72) we get

Tn(x0) ' n Tn�1(x1) T1(x0) (4.75)

for D ! 0. Using the independence in the initial position, we conclude that the moments are

Tn(x0) ' n! [T1(x0)]
n (4.76)

i.e. those of a Poisson distribution.

Px0
(T ) ' 1

hTx0
i exp� T

hTx0
i (4.77)

The exponential distribution was expected as in the D ! 0 limit, the particle is trapped a long
time in the well, hence has time to decorrelate : the picture is that, starting from the initial
position x0, the particle falls after a short time in the vicinity of the minimum of the potential
well x(t) ⇠ x1. There, fluctuations are �x ⇠

p
D/�1. As long as the process remains in the

well, it is approximatively described by the Langevin equation d

dt
x(t) ⇡ � 1

�
2

1

(x�x1)+
p

2D ⌘(t),

where we have linearized F (x) = �V
0(x) near x1. The correlation function is hx(t)x(t0)ic '

(D/�
2

1
) exp

⇥
� |t� t

0|/�2
1

⇤
(cf. chapter 1 on Langevin equation). Indeed, the decorrelation time

is ⇠ �
2

1
, which is exponentially smaller than the typical time to escape the well. This shows

that the escape process can be approximatively considered Markovian, hence the exponential
distribution (4.77).
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Remark: this discussion is inspired by the book of Gardiner [12] and by the appendix of my
paper [44], where an application for the statistics of energy levels in a quantum (Anderson)
localisation 27 problem is discussed.

- Exercice 4.17 Lifetimes of metastable states : We have obtained above the following
formula for the average lifetime of a metastabel state corresponding to the well of Fig. 23 :
hTx0
i ' 2⇡p

�V 00(x1)V
00(x2)

exp
�
V (x2)�V (x1)

D

 
, valid in the D ! 0 limit.

Derive some analogous formulae for the two potentials of Fig. 25.

(a)
x

x x

V(x)

absorption

b1 2a (b) x x

V(x)

x

absorption

b1 2a

Figure 25: Two other types of trapping potentials.

- Exercice 4.18 Escape from the two boundaries : We now consider the problem where
a particle starts at x(0) = x0 2]a, b[ and can escape the interval at one of the two boundaries.
In this case one must solve the di↵erential equation (4.71), i.e.

Gx0
Tn(x0) = �n Tn�1(x0) i.e.

✓
D

d

dx0

� V
0(x0)

◆
dTn(x0)

dx0

= �n Tn�1(x0) (4.78)

for two Dirichlet boundary conditions Tn(a) = Tn(b) = 0. For simplicity, we consider only the
first moment.

1/ Denoting by  (x) = exp[�V (x)/D] (this is the equilibrium distribution, if normalisable),
study the action of the generator Gx on

�(x) =

Z
x

a

dy

 (y)

Z
b

x

dx
0

 (x0)

Z
x

0

a

dz  (z)�
Z

b

x

dy

 (y)

Z
x

a

dx
0

 (x0)

Z
x

0

a

dz  (z) (4.79)

2/ Deduce T1(x0).

3/ Study the limit D ! 0 for the potential of Fig. 26, when the initial condition is in the well.
Introduce 1/�

2

0
= V

00(x0) and 1/�
2

1,2
= �V

00(x1,2). Distinguish the general case V (x1) 6= V (x2)
and the case V (x1) = V (x2).

xx x

V(x)

x

0

absorption

absorption

b1 2a

Figure 26: Two absorbing boundaries.

27Anderson localisation is the problem of localisation of a wave in a (static) random medium.
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- Exercice 4.19 First passage time in dimension d : We consider the problem of first
passage time in dimension d > 1 : a di↵usive particle submitted to a centro-symmetric drift
~F (~r) = �V

0(r) ~ur where ~ur is the radial unit vector. The forward generator of the di↵usion in
Rd is G † = D� � ~r · ~F . The particle starts from ~r0 and we ask the question : when does it
reachs a sphere of radius b < r0 = ||~r0|| for the first time ?

a) Show that the moments of the first passage time obey the di↵erential equation


D

✓
d2

dr2
+

d� 1

r

d

dr

◆
� V

0(r)
d

dr

�
Tn(r) = �n Tn�1(r) (4.80)

Find an integral representation for T1(r0).

b) When the dimension is increased, does the first passage time increases or decreases ?

, Important points

• Have in mind the meaning of the two terms in the FPE (drift and di↵usion).
• Conservation equation @tP = �@xJ and expression of the current.
• You should have in mind the solution of the FPE in the free case, @tP = D�P (in dimension
d), or be able to recover it in two lines by Fourier tranform in space :
Pt(~r|~r0) = (4⇡Dt)�d/2 exp

�
� (~r � ~r0)2/(4Dt)

 

• Existence of the BFPE
• Be familiar with the di↵erent types of boundary conditions (reflecting, absorbing)
• The problem of first passage time (relation between survival probability and the distribution
of the first passage time) ; the use of the BFPE.
• Study of the first passage through point x = b requires to consider an absorbing boundary at
this place.
• The Arrhenius law.

5 Linear response theory

Previously, we have been mostly interested to present some tools allowing to analyze the proper-
ties of stochastic processes, i.e. to follow a more phenomenological approach (with the exception
of § f)). In this last paragraph of this first part of the lectures, we are going to follow a more mi-
croscopic approach : we will however restrict ourselves to the study of small disturbances on
the top of equilibrium, i.e. to the “linear regime”. Our purpose is to describe the situation
represented schematicall in Fig. 27.

Excitation �! System �! Measure of the response

A B

system
f(t)

correlation

Figure 27: Schematical representation of the situation under consideration : an excitation (ex-
ternal perturbation) acts on the system. A force f(t) is coupled to an observable A of the system
and another observable B is measured. The two observables are in general coupled by the time
dynamics.

65



A practical motivation could be to describe a bit more precisely the process of the mea-
surement of an equilibrium property : the standard scheme to perform a measurement on a
system at equilibrium consist in the introduction of a ”small” perturbation (excitation) and the
measurement of the response of the system (ex: an atomic vapor on which light is sent and
which re-emit light by fluoresence).

First (§ 5.2), we start with a semi-phenomenological description based on thermdynamic
properties (§ 5.1). In a second step (§ 5.3 to 5.5), we will develope the linear response theory.

5.1 Theory of thermodynamic fluctuations

This § was not discussed in the lectures due to lack of time.

Before entering into the (microscopic) approach of the linear response theory, it is useful to
start with the more phenomenological approach of the thermodynamics of irreversible processes.
We first start with the theory of thermodynamic fluctuations, which was developed by Einstein
in 1910, among others [37]. In equilibrium thermodynamics, a fundamental function encoding
all thermodynamic properties of a system is the entropy, which is an extensive function of a set
of extensive variables (energy, number of particles, etc) characterizing the thermal state of the
system :

S({Xi}) (5.1)

If the system is isolated, these extensive variables are fixed, however, if one considers exten-
sive quantities characterizing a subpart of the system, there exist exchanges among di↵erent
subparts : e.g. exchanges of energies, while the total energy of the isolated system is kept
constant.

Conjugate thermodynamic forces : To each extensive variable Xi, we can associate an
intensive conjugate force :

Fi = � @S

@Xi

(5.2)

Examples :

Obervable Xi force Fi

Energy E �1/T

Volume V �p/T

Number Na µa/T

In particular, for a simple fluid made of a mixture of s species we have

dS(E, V, {Na}) =
1

T
dE +

p

T
dV �

sX

a=1

µa

T
dNa (5.3)

Note that extensivity S({�Xi}) = �S({Xi}) implies

S({Xi}) = �
X

j

Xj Fj({Xi}) (5.4)
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a) Preliminary – the thermal contact :

As a preliminary, let us recall the analysis of the thermal contact between two subparts of an
isolated system [48]. Denote by S(E) the entropy of the part of interest and Sext(Etot � E)
the entropy of the remaining of the system. Stot(E) = S(E) + Sext(Etot � E) is the entropy of
the isolated system for a fixed value E (here Stot(E) is the reduced entropy). The fundamental
postulate of statistical physics provide the distribution of the energy E as

w(E) / eStot(E) (5.5)

(for clarity I set kB = 1). We introduce the “a�nity”

�(E)
def

= �@Stot(E)

@E
= � 1

T (E)
+

1

Text(Etot � E)
(5.6)

which is the di↵erence of the two ”forces”, involving here the microcanonical temperatures T

and Text are characterizing the two sub-systems. The equation giving the maximum of the
distribution correspond to the vanishing of the a�nity

�(E) = 0 ) E = E (5.7)

and is also interpreted as the condition for thermal equilibrium T = Text.
Consider a thermal fluctuation

�E = E � E (5.8)

then we can linearize the a�nity �(E + �E) '  �E hence the probability of a fluctuation is

w / e�Stot with �Stot ' �
1

2
 �E

2 (5.9)

Here the coe�cient  has a clear interpretation

 = �
0(E) =

1

T (E)2

 
1

CV (E)
+

1

C
ext

V
(Etot � E)

!
' 1

T (E)2CV (E)
(5.10)

where the second term can be necglected if the subsystem is much smaller than the external
part. With this assumption, we can write the probability in terms of a function characterizing
the subsytem alone

w / e��F with F = E � TS(E) (5.11)

where T is here the temperature of the external and F the free energy of the subpart of interest.
Since there is a bijection between the energy and the temperature, �E ' CV �T , we can as

well express the fluctuation of energy in terms of the temperature

w / e�Stot with �Stot ' �
1

2
�T

2 = � CV

2T 2
�T

2 (5.12)

thus the temperature fluctuations are

⌦
�T

2
↵

=
kB

CV

T
2 (5.13)

where I have reintroduced the Boltzmann constant. I recall that CV is here the heat capacity
of the subpart in which the temperature fluctuations take place.
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b) A�nities :

We now generalize these ideas to a set of extensive observables Xi. We consider a spontaneous
thermal fluctuation

xi = Xi �Xi (5.14)

and introduce the a�nities corresponding to these observables

�i
def

= �@Stot

@Xi

= Fi � F
ext

i (5.15)

Equilibrium state is characterised by the vanishing of all a�nities �i = 0.
In general we can write the entropy variation around its maximum (corresponding to the

equilibrium state) as

�Stot ' �
1

2

X

i,j

ijxixj (5.16)

where the coe�cients ij are encoded in the entropy function, the fundamental function char-
acterizing the thermodynamic properties of the system, which is assumed known. Hence ther-
modynamic fluctuations are characterised by the Gaussian measure

w / e�Stot = e�
1

2

P
i,j
ijxixj (5.17)

The a�nities take the form
�i =

X

j

ijxj (5.18)

As a result of general properties of the Gaussian measure we have

hxixji = (�1)ij (5.19)

(see appendix below). Using the linear relation between a�nities and thermal fluctuations of
observables, we get the correlator

hxi�ji = �ij (5.20)

and
h�i�ji = ij . (5.21)

Simple consequence : Eq. (5.20) shows that variables thermodynamically conjugated are
uncorrelated. For example h�T �V i = 0.

It is also interesting to split the variation of entropy in two parts

�Stot = �S + �Sexch = �S +
X

i

F
ext

i �Xi (5.22)

where the second term is the entropy exchanged between the system and the external. Note
that in [37], the variation of entropy �Stot is denoted �Sint as it is the entropy variation relative
to the changes internal to the system (energy fluctuation of the system, etc).
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Application : For example, if we consider the entropy as a function of the energy and the
volume, S(E, V ), this gives the form

w / exp��E � T �S + p�V

T
= e���G , (5.23)

where G is the free enthalpy. Expansion leads to

w / exp

⇢
�CV �T

2

2T 2
� �V

2

2TV T

�
(5.24)

where T
def

= � 1

V

�
@V

@p

�
T

is the isothermal compressibility, which controls the volume fluctuations

h�V 2i = TV T .

Appendix : Gaussian integrals in RN and Wick theorem

Consider the integral

N�1 =

Z

RN

dN
X e�

1

2
X

T
AX (5.25)

where A is a real symmetric matrix. One can perform a rotation X = OY which diagonalizes
the matrix, A = ODOT with D = diag(�1, · · · ,�N ). Jacobian of the transformation equals
unity J = |DX/DY | = | det(O)| = 1. This makes clear that the integral exists if the matrix
is positive A > 0 (meaning �i > 0 8 i). After diagonalization, the integral is separable, thus
N�1 =

Q
i

p
2⇡/�i = (2⇡)N/2

/
p

det A.
Introduce the vector B 2 RN and the function

G(B) = N
Z

RN

dN
X e�

1

2
X

T
AX+B

T
X = heBT

Xi (5.26)

which is interpreted as the generating function of the Gaussian variables Xi as derivations
produce the correlation functions @i1 · · · @imG(B)|B=0 = hXi1

· · ·Ximi. A simple manipula-
tion is

X
T
AX � 2B

T
X = (X �A

�1
B)TA(X �A

�1
B)�B

T
A
�1

B (5.27)

leading to

G(B) = e
1

2
B

T
A

�1
B (5.28)

In particular we deduce the relation for the two point correlations hXiXji = @
2
G(B)

@Bi@Bj

��
B=0

:

hXiXji = (A�1)ij (5.29)

We conclude that the correlations of the Gaussian variable is already almost
readable on the Gaussian measure itself P (X) / exp{�1

2
X

T
AX}. This is a very

general and important result.
We can deduce the Wick theorem

hX1 · · ·X2ni =
X

contractions

hXi1
Xj1
i · · · hXinXjni (5.30)

where the sum runs over the (2n� 1)!! pair contractions. Example : for 2n = 4, one needs
to consider the (4� 1)!! = 3 contractions

hX1X2X3X4i = hX1X2i hX3X4i+ hX1X3i hX2X4i+ hX1X4i hX2X3i (5.31)
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The Wick theorem has many occurences and applications : in probability, in statistical
physics, in statistical or quantum field theory.

5.2 Thermodynamics of irreversible processes

This § was not discussed in the lectures due to lack of time.

We now discuss the dynamics of observables when the system is driven slightly out-of-
equilibrium (for example when inducing a current through a conductor by imposing a voltage
drop). The main assumption is that the time scale which characterizes the dynamics is much
longer than the time scale for relaxation towards equilibrium

⌧dyn � ⌧relax (5.32)

which ensures that the system follows equilibrium states described by equilibrium thermody-
namic (in particular by the fundamental entropy function).

a) Fluxes

We introduce the flux related to the extensive variable Xi

Ji =
dXi

dt
. (5.33)

Denoting by xi(t) = Xi(t) � Xi the deviation from equilibrium, we have also Ji = dxi

dt
. It is

important to stress that although I use the same notation as the one used above for spontaneous
thermal fluctuations, xi(t) designates here the change of the observable as a result of imposing
a non zero a�nity. The use of the same notation follows “Onsager’s regression hypothesis”
(1930), assuming that the relaxation of non equilibrium disturbance is governed by the same laws
as the regression of spontaneous microscopic fluctuations [6].

If the system remains close to the equilibrium, it is natural to assume that the fluxes are
linear in the deviations to equilibrium, i.e.

dxi

dt
= �

X

j

�ijxj . (5.34)

It is important to keep in mind that at this level, contrary to coe�cients ij introduced above,
which are encoded in the entropy function and can be deduced in terms of (equilibrium) ther-
modynamic properties, as it was illustrated above, the new phenomenological coe�cients �ij
characterize the dynamic and require further information. Using the linear relation with the
a�nities, it is conventional to write

Ji =
dxi

dt
=
X

j

�ij�j (5.35)

where �ij are the so-called “kinetic coe�cients”. The main object of the theory of irreversible
processes is to find the relation between a�nities and fluxes (this is similar to finding the relation
between the voltage drop imposed by the external and the induced current, i.e. a formula for
the conductance in terms of the microscopic parameter and the geometry of the conductor). At
this stage, the description remains phenomenological. The sets of coe�cients are clearly related
by

�ij = �
X

k

�ik (�1)kj (5.36)
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Figure 28: Lars Onsager (1903-1976), Nobel prize in chemistry 1968.

Example : the discussion is a bit formal. Let us give a concrete example : consider a conductor
with charge Q (the “observable” X). The electrostatic energy is H = QV so that the potential
V is the “conjugated force �”). The “flux J” is the electric current I = dQ

dt
and thus the kinetic

coe�cient is simply the conductance (inverse of resistance)

� �! G (5.37)

as we usually writes I = GV ).

b) Onsager symmetry relation

We now state the Onsager principle (1931) of the symmetry of kinetic coe�cients

�ij = �ji (5.38)

which relies on the time reversal symmetry, at equilibrium, as we now show.

Proof : We introduce the correlation function

Cij(t) = hxi(t)xj(0)i (5.39)

Assuming time reversal symmetry we have

hxi(t)xj(0)i = hxi(0)xj(�t)i TRS
= hxi(0)xj(t)i ) Cij(t) = Cji(t) . (5.40)

Now we di↵erentiate the relation

hdxi(t)

dt
xj(0)i = hdxj(t)

dt
xi(0)i (5.41)

and we use Onsager’s regression hypothesis, which allows to make use of the kinetic coe�cients

X

k

�ik h�k(t)xj(0)i =
X

k

�jk h�k(t)xi(0)i (5.42)

Because the relation holds 8 t we can write
X

k

�ik h�k(0)xj(0)i
| {z }

=�jk

=
X

k

�jk h�k(0)xi(0)i| {z }
=�ik

(5.43)

leading to (5.38).

71



Remarks :

• A standard illustration is the symmetry between transport of particles and transport of energy.
Transport of particles can be induced by a modulation of the electrochemical potential µ̄ =
µ + V (~r), where V (~r) is the potential (in the presence of an external potential, the ”force”
conjuguated to the local density is µ̄). Transport of energy can be induced by an imbalance
of temperature (Fick’s law). The local version gives the current of particles and the current
of energy

~JN = �NN
~r
⇣

µ̄

T

⌘
+ �NE

~r
✓
� 1

T

◆
(5.44)

~JE = �EN
~r
⇣

µ̄

T

⌘
+ �EE

~r
✓
� 1

T

◆
(5.45)

The coe�cient �NN is proportional to the di↵usion constant (or the conductivity for charged
particles) and the coe�cient �EE to the thermal conductivity. The Onsager symmetry relation
is �NE = �EN . Its existence is related to the duality of two e↵ects : the Seebeck and the
Peltier e↵ects [37, 24].

• The Onsager symmetry relations (5.38) was given here for observables invariant under time
reversal symmetry. In general the observables can have a specific symmetry under TRS :

xi(�t) = ✏i xi(t) with ✏i = ±1 . (5.46)

In the more general case, the Onsager symmetry relations take the form

�ij( ~B, ~⌦) = ✏i✏j �ji(� ~B,�~⌦) (5.47)

where ~B is the magnetic field and ~⌦ the angular velocity of rotation.

• Equilibrium versus out-of-equilibrium.— We will make clear below that, although they
characterize how the system responds when put slightly out-of-equilibrium, the kinetic coef-
ficients are properties of the equilibrium state. Thermal equilibrium is a crucial assumption
for the Onsager symmetry relations to hold. In the out-of-equilibrium situation, Onsager
symmetry can be broken.

• Linear response versus non linear response.— Another formulation of the previous
remark : the fluxes are non zero because finite a�nities are imposed from the external, hence
the fluxes are functions of the a�nities : Ji({�j}). We have written above the fluxes as
Ji({�j}) =

P
j
�ij �j . Assuming that the response is linear is equivalent to say that the

kinetic coe�cients are properties of the system for �i = 0 8 i, �ij = O(�0

k
), i.e. that they are

properties of the system at equilibrium (this is the essence of Onsager’s regression hypothesis).
Onsager symmetry relation holds for the linear response, however it has no reason to hold for
the non-linear response, i.e. far from equilibrium.

An example was discussed in [40, 43] (and further in [47]) : whereas it is well known that the
linear conductance of a conductor with two contacts is a symmetric function of the magnetic
field, the interaction between electrons was shown to induce an asymmetry of the nonlinear
response under magnetic field reversal. This was observed experimentally in [51, 2].

c) Entropy production

The entropy production corresponds to dissipation

dStot

dt
=
X

i

@Stot

@Xi

dXi

dt
=
X

i

�i Ji (5.48)
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Hence the entropy production is a quadratic form

dStot

dt
=
X

ij

�ij �i�j (5.49)

As a consequence of the 2nd ”principle” of thermodynamic (demonstrated within the frame of
statistical physics), dStot/dt > 0, we have

�ii > 0 (5.50)

and �ii�jj > 1

4
(�ij + �ji)2. More generally �ij is a positive matrix.

Bibliography:

• The chapter 12 of the Landau & Lifshitz [20] (the unpleasant notation Rmin is used for the
free energy or the free enthalpy).

• The chapter 2 of the book by Pottier [37] is well written (although the notations can be a
bit confusing). The local version is developed. The chapter 2 of Livi and Politi’s book [24]
discusses this matter but is less detailed.

• The chapter 6 of Le Bellac et al’s book [22].

5.3 Correlation functions and response functions

Let us now enter into the heart of linear response theory. Being a microscopic approach, it
should be based on a description as microscopic as possible : we adopt the frame of classical
mechanics and consider the distribution function in phase space.

• Phase space : we denote by ~� a point (the “microstate”) in the D-dimensional phase space.
For example, for a gas of N atoms, it is the vector ~� ⌘ (~r1, · · · ,~rN , ~p1, · · · , ~pN ) with D = 6N

components.
• The dynamics of the system is controlled by the Hamiltonian H(~�).
• We adopt a probabilistic description and consider the distribution in phase space, denoted
⇢t(~�), which is the probability density in phase space at time t. It follows from the Hamiltonian
equations of motion that it obeys the Liouville equation (see for example appendix of chapter
3 of [48])

@

@t
⇢t = {H , ⇢t} (5.51)

where

{A , B} def

=
X

i

✓
@A

@qi

@B

@pi
� @B

@qi

@A

@pi

◆
(5.52)

is a Poisson bracket.
• Finally, considering an observable A(~�) (for example the kinetic energy Hkin = 1

2m

P
i
~pi

2),
the average at time t is given by

hAi
t
=

Z
dD~� ⇢t(~�) A(~�) . (5.53)

Here, the evolution is carried by the density. Below, it will be conceptually more simple to
write the average di↵erently, with the evolution carried by the observable :

hAi
t
=

Z
dD~�0 ⇢0(~�0) A(~�(t)) (5.54)

where ~�(t) is the trajectory such that ~�(0) = ~�0. The distinction between (5.53) and (5.54) is
similar to the di↵erence between Schrödinger and Heisenberg pictures in quantum mechanics.
Below I will rather use the notation hAi

t
⌘ hA(t)i (a more consistent notation should be

hA(~�(t))i but it is too heavy).
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a) Equilibrium and static response

Consider a modification of the Hamilonian

H0(~�) �! Hf (~�) = H0(~�)� f A(~�) (5.55)

where A is a certain “observable” and f the conjugate force (here in the sense of classical
mechanics). I.e. the observable can be obtained by di↵erentiation with respect to this parameter
A(~�) = � @

@f
H0(~�). Assume canonical equilibrium

⇢
f (~�) =

1

Zf

e��Hf (~�) with Zf =

Z
dD~� e��Hf (~�)

. (5.56)

Consider the average of another observable

hBi
f

=

Z
dD~� ⇢f (~�) B(~�) (5.57)

Question : given hBi
0

=
R

dD~� ⇢0(~�) B(~�), can we study the variation of the average due to the
introduction of the force f ? As a preliminary, let us expand the partition Zf in powers of f :

Zf '
Z

dD~� e��H0(
~�)

⇣
1 + �fA(~�) + · · ·

⌘
= Z0 (1 + �f hAi

0
+ · · · ) . (5.58)

Similarly, we can expand the average

hBi
f
'
Z

dD~�B(~�)
e��H0

Z0

1 + �fA(~�) + · · ·
1 + �f hAi

0
+ · · · (5.59)

Finally we can write
hBi

f
= hBi

0
+ f �

stat

BA + O(f2) (5.60)

where
�

stat

BA = � (hBAi
0
� hBi

0
hAi

0
) (5.61)

is the “static response function”. At lowest order in f , the properties of observables in the
presence of the force are controlled by a correlator characterizing the equilibrium state ⇢0.

Example: consider a magnetic system with magnetic energy Hmagn = �BM where M is
the magnetization. The magnetic susceptibility is the response of the magnetization to the
magnetic field hMi

0
' �B for B ! 0. Application of the formula shows that the susceptibility

is related to the fluctuations of magnetization :

� =
h�M2i0

kBT
(5.62)

(cf. chap. 10 of [48]).

b) Relaxation

Let us now consider the problem of relaxation, i.e. a specific protocol to study the out-of-
equilibrium situation where the system is submitted to a time dependent perturbation. We
consider the dynamics induced by

H(~�, t) = H0(~�)� fR ✓H(�t) A(~�) , (5.63)
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i.e. a situation where a static perturbation �Hpert = �fR A is switched o↵ at time t = 0. Up to
time t = 0, we can write hBi

fR
' hBi

0
+ fR �

stat

BA
. For time t > 0, the dynamics is controlled by

the Hamiltonian H0, we write

hB(t)i
f

=

Z
dD~�0 ⇢

fR(~�0) B(~�(t)) (5.64)

where ~�(0) = ~�0, with ~�(t) solving the equation of motions for H0. Here, it is indeed
convenient that the time dependence is carried by the observable B, which allows us to expand
the distribution ⇢fR at time t = 0 in the same way as above :

hB(t)i
f
'
Z

dD~�0

e��H0(
~�0)

Z0

1 + �fRA(~�0) + · · ·
1 + �fR hAi0 + · · · B(~�(t)) (5.65)

We get

hB(t)i
f
' hBi

0
+ fR RBA(t) for t > 0 , where RBA(t) = � (hB(t) A(0)i

0
� hBi

0
hAi

0
)

(5.66)
is the relaxation function. 28 We have used that the averages are time independent at equilibrium,
hB(t)i

0
= hBi

0
. The relaxation is characterised by a correlation function of the model in the

absence of the force. I stress that both the time evolution of observable B and the average refer
to the ”free” Hamiltonian H0.

c) Dynamical response

Consider now a general perturbation

H(~�, t) = H0(~�)� f(t) A(~�) (5.67)

where f is an arbitrary function. In general, at lowest order in the force, the average must be a
convolution of the force

hB(t)i
f

= hBi
0
+

Z
dt
0
�BA(t� t

0) f(t0) + O(f2) (5.68)

where �BA(t) is by definition the “response function”. The question is now to determine this
function. First of all, causality imposes

�BA(t) / ✓H(t) (5.69)

Next, we relate this function to the relaxation function. The case of relaxation corresponds
to f(t) = fR ✓H(�t), thus

RBA(t) =

Z
dt
0

/✓H(t�t
0
)

z }| {
�BA(t� t

0) ✓H(�t
0) =

Z
min(t,0)

�1

dt
0
�BA(t� t

0) (5.70)

=

Z
1

t

dt
00
�BA(t00) for t > 0 (5.71)

thus �BA(t) = � d

dt
RBA(t) for t > 0. Finally

�BA(t) = �� ✓H(t)
d

dt
hB(t) A(0)i

0
(5.72)

Once again, rephrasing Onsager : the response of the system put out-of-equilibrium by the in-
troduction of the force f(t), is controlled by a correlation function characterizing the equilibrium
state. However, it is not an “hypothesis”, this is perturbation theory!

28Once more, the notation for the correlation function refers to hB(t) A(0)i
0

=
R

dD~�0 ⇢
0(~�0) B(~�(t)) A(~�0)

where ~�(t) is the trajectory starting from ~�0 and ⇢0(~�) / e��H0(
~�).
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Important (but academic) example : the harmonic oscillator.— Consider

H0(q, p) =
p
2

2m
+

1

2
m!

2
q
2 (5.73)

and introduce the perturbation �H(t) = �f(t) q. We apply the formula to compute �qq(t).
Given q(0) = q0 and p(0) = p0 we have

q(t) = q0 cos!t +
p0

m!
sin!t (5.74)

Thus the correlation function is

Cqq(t) = hq(t)q(0)i =
⌦
q
2

0

↵
cos!t +

hq0p0i
m!

sin!t (5.75)

Given that the equilibrium distribution is ⇢ / e��H0 we have
⌦
q
2

0

↵
= kBT/(m!2) and hq0p0i = 0

hence

Cqq(t) =
kBT

m!2
cos!t (5.76)

from which we deduce

Rqq(t) =
1

m!2
cos!t and �qq(t) =

✓H(t)

m!
sin!t (5.77)

Remark: it is relatively easy to understand why the response function is independent of
the temperature (and in fact independent of the distribution function). This can be explained
by the fact that the system is linear.

- Exercice 5.1 Anharmonic oscillator : The response function �(t)for a harmonic (linear)
oscillator, ẍ(t)�!2

0
x(t) = f(t) is the Green’s function of the equation, i.e. solves the di↵erential

equation �̈(t)� !2

0
�(t) = �(t).

We consider now the classical anharmonic oscillator forced by an external force f(t) : ẍ(t) �
F (x(t)) = f(t), where F (x) derives from a confining potential (e.g. V (x) = 1

2
!

2
x

2 + 1

4
�x

4).
Deduce the di↵erential equation satisfied by the response function. Discuss the di↵erences with
the harmonic case.

Example 2: conductivity.— consider now a particle submitted to an electric field E(t)

H(t) = H0 � q x E(t) (5.78)

The current density is

hj(t)i
E

= nq hv(t)i
E

= nq
2

Z
dt
0
�(t� t

0) E(t0) + O(E2) (5.79)

where n is the carrier density and �(t � t
0) characterizes the response of the velocity to the

electric field (coupled here to the position). From the general formula derived above we have

�(t� t
0) = � ✓H(t� t

0)�
d

dt

⌦
v(t)x(t0)

↵
= ✓H(t� t

0)�
⌦
v(t)v(t0)

↵
(5.80)

(I have used time translation invariance hv(t)x(t0)i = hv(0)x(t0 � t)i). In Fourier

⌦
j̃!

↵
= nq

2e�(!) eE! ⌘ �̃(!) eE! (5.81)
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So that the condutivity is the Fourier transform of the velocity-velocity correlator

�̃(!) = nq
2e�(!) (5.82)

The study of the phenomenological Langevin equation has led to

hv(t)v(0)i =
D

⌧
e�|t|/⌧ (5.83)

where D = kBT/� = kBT ⌧/m is the di↵usion constant (cf. § 1). Then

�̃(!) =
nq

2
⌧

m

1

1� i!⌧
(5.84)

we have recovered the Drude formula �0 = nq
2
⌧

m
.

5.4 Once more the fluctuation-dissipation theorem

We write the perturbation added to the free Hamiltonian under the form Hpert(t) = �f(t) A(t).
Hence, A(t) plays the same role as a “coordonate”, coupled to an external “force” f(t) (cf. the
example of the Harmonic oscillator). The dissipative power is given by the product of the force
and the velocity

Pdiss(t) = f(t)

⌧
dA(t)

dt

�

f

. (5.85)

Consider an harmonic excitation f(t) = f! cos!t = Re[f!e�i!t]. The linear response of observ-
able A reads

hA(t)i
f
' Re

⇥
e�AA(!) f!e�i!t

⇤
= f!

�
e�0AA(!) cos!t + e�00AA(!) sin!t

�
(5.86)

where e�AA = e�0
AA

+ ie�00
AA

.
Dissipated power is given by : Pdiss(t) = f

2
! ! cos!t (�e�0

AA
sin!t + e�00

AA
cos!t). Averaging

over time, one gets :

Pdiss =
1

2
!f!

2 e�00AA(!) . (5.87)

The imaginary part Im e�AA(!) of the response function controls the dissipation.

- Exercice 5.2 : On considère un oscillateur harmonique classique amorti décrit par l’équation
ẍ+ 2

⌧
ẋ+!

2

0
x = 1

m
f(t). Déduire la fonction de réponse fréquentielle e�xx(!). Analyser ses pôles ;

on distinguera les régimes fortement (1/⌧ > !0) et faiblement (1/⌧ < !0) amortis. Dans ce sec-
ond cas, montrer que e�xx(!) possède la même structure que dans le cas non amorti à condition
de remplacer 0+ par 1/⌧ .

- Exercice 5.3 : The response function of the damped harmonic oscillator takes the form
(exercice 5.2) : e�xx(!) = 1

m

1

!̃
2

0
�(!+

i

⌧
)2

where !̃0 = !
2

0
� 1

⌧2
. Plot real and imaginary parts. Plot

the dissipative power Pdiss / ! Im e�xx(!).

Admittance : The dissipative power Pdiss(t) = f(t)hȦ(t)i involves the response of the “velocity”
Ȧ to the perturbation Hpert(t) = �f(t) A(t). The corresponding reponse function is known as

the complex admittance : Y (!)
def

= e�
ȦA

(!) = �i! e�AA(!). It is also related to the impedance
Z(!) = 1/Y (!).

Pdiss =
1

2
!f!

2 Im e�AA(!) =
1

2
f!

2 Re Y (!) (5.88)

Examples :
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• Conductance.– If A! Q is the electric charge, the conjugated ”force” is the electric potential :
�E = V �Q. The admittance characterizes the response of the current : I(!) = Q̇(!) =
Y (!)V (!) (this is the conductance, usually denoted G). The dissipative power is proportional
to Re Y (!) = Re Z(!)/|Z(!)|2.

• Conductivity.– The conductance G of a wire of length L of cross section S is related to the
conductivity as G = S�/L. The Drude model gives : �(!) = ne

2
⌧

m

1

1�i!⌧
where ⌧ is the

collision time for electrons. As it is well known the real part of the conductivity characterizes
the dissipation. Note that the imaginary part of the conductivity is proportional to the real
part of the dielectric function (hence to the refraction phenomenon).

5.5 Causality and Kramers-Kronig relations

Causality of response functions is at the heart of a deep relation between the reactive (Re e�AA(!))
and dissipative (Im e�AA(!)) parts of the response function. As a consequence, in an experiment,
it is su�cient to measure one of the two to get the full response function. For example, if one
considers the complex refraction index in optics, ⌫(!) = n(!)+i(!), the real part characterizes
the refraction, i.e. the change of direction of a radius at the interface, whereas the imaginary
part characterizes the absorption of the light by the medium.

C

z

Re z
ω

Im

Figure 29: Contour of integration considered to get Eq. (5.90). Crosses represent the poles of
the function e�(z), and the lines the branch cut.

The response function is causal :

�(t) = 0 for t < 0 (5.89)

Let us assume for simplicity that its Fourier transform is square integrable [29] :
R

+1

�1
d! |e�(!)|2 <

1. Because �(t) =
R

+1

�1

d!

2⇡
e�(!) e�i!t, all poles and branch cut of e�(!) must belong to the lower

half complex place. 29 Write the integral
H
C
dz

e�(z)

z�!
over the contour represented in figure 29, and

consider the limit where radius of external and internal semi-circles go to1 and 0, respectively.
We get :

e�(!) =
1

i⇡
�
Z

+1

�1

d!0
e�(!0)

!0 � ! (5.90)

29Démonstration : montrons que e�(z) =
R

1

0
dt�(t) e+izt est analytique dans le plan complexe supérieur. Pour

cela nous souhaitons vérifier que @e�(z)/@z
⇤ = 0. La permutation entre dérivation et intégrale n’est permise que

si l’intégrand et sa dérivée partielle sont bornés par une fonction sommable indépendante de z (théorème de
convergence dominée). Or |�(t)e+izt| = |�(t)|e�t Im(z) 6 |�(t)| pour Im(z) > 0. La permutation de @/@z

⇤ et
R

dt

n’est donc autorisée que si Im(z) > 0 ; dans ce cas @e�(z)/@z
⇤ =

R
1

0
dt�(t) @e+izt

/@z
⇤ = 0 puisque la fonction

exponentielle est analytique. Qed.
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This shows that real and imaginary parts are related through Hilbert transforms :

Re e�(!) =
1

⇡
�
Z

+1

�1

d!0
Im e�(!0)

!0 � ! (5.91)

Im e�(!) = � 1

⇡
�
Z

+1

�1

d!0
Re e�(!0)

!0 � ! (5.92)

These dispersion relations are known as Kramers-Kronig relations (or Plemelj formulae) :

Figure 30: Hendrik Anthony Kramers (1894-1952) & Ralph de Laer Kronig (1904-1995).

Remarks :

• Substractions.– The function e�(!) might not be square integrable. In this case, given Im e�(!),
causality is not su�cient to fully determine Re e�(!). However, dispersions relations can be
obtained by performing “substractions” [29]. For example, consider e�(!) bounded at infinity
|e�(1)| <1, a single substraction is su�cient. One applies the procedure described above to

the function e�(!)�e�(!0)

!�!0
(which is square integrable). One gets :

e�(!) = e�(!0) +
! � !0

i⇡
�
Z

+1

�1

d!0
e�(!0)� e�(!0)

!0 � !0

1

!0 � ! (5.93)

where !0 is chosen at will (for example !0 =1 can simplify the relation).

• In optics causality should be stated as follows : “the e↵ect of a perturbation propagates slower
that the light velocity c”, i.e. the causal response is non zero inside the light cone.

• The two previous remarks should be applied to the celebrated case of the refraction index of a
medium ⌫(!) = n(!)+i(!). Because the medium becomes transparent at high frequency, the
index has the property ⌫(! ! 1) = 1. Introduce the notation (!) = c�(!)/2!. Kramers-

Kronig relation reads n(!)� 1 = c

⇡
r
R

+1

0
d!0 �(!

0
)

!02�!2 (R. de L. Kronig, 1926 & H. A. Kramers,
1927). This relation between the refraction index and the extinction coe�cient is the first
known dispersion relation [29]. For this reason, the Plemelj relations are called Kramers-
Kronig relations by physicists.

- Exercice 5.4 : One gives Im e�(!) = �1

1+!2 , show that e�(!) = 1

!+i
by using the Kramers-

Kronig relations.
Similarly, given Im e�(!) = 1

1/⌧2+(!�!0)
2 , find e�(!).

- Exercice 5.5 Analytic structure of the response function :
1/ Harmonic oscillator.– We consider the harmonic oscillator described by the equation of
motion ẍ + !

2

0
x = 1

m
f(t). Show that the response function �(t) characterising the response of

x(t) to the force f(t) coupled to x is the Green’s function of the di↵erential equation. Check
that the causal Green’s function is �(t) = ✓H(t) sin!0t

m!0
. Compute its Fourier transform e�(!) (for

this purpose it is necessary to introduce a regulator e�✏t with ✏ ! 0+ in the integral). Plot
neatly e�(!).
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2/ Damped harmonic oscillator.– We consider now a damped harmonic oscillator submitted to
the external force :

ẍ +
2

⌧
ẋ + !

2

0x =
1

m
f(t) (5.94)

Compute the Fourier transform of the response function e�(!). Analyse the poles of this function :
study how the poles move in the complex plane as the damping rate 1/⌧ varies from +1 to 0+.
Plot neatly Re e�(!) and Im e�(!) in the weak damping limit (to be defined). Come back to the
first question and interpret physically the regulator ✏! 0+.

, Important points

• The ”response-correlation relation” (main idea of linear response theory) : for small external
perturbations, the response of the system is controlled by an equilibrium correlation function.
• Be familiar with the expression of the response function.
• Fluctuation-dissipation ; Im e�AA(!) is the dissipative part.
• Consequence of causality on the analytic structure of the response function (Kramers-Kronig).
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PART 2 : Introduction to phase transitions
and critical phenomena

This second part of the lecture notes is devoted to the study of phase transitions, which
is probably the most di�cult part of a course on equilibrium statistical physics. The reason
is that phase transitions arise from the competition between thermal fluctuations (entropy)
and local interactions (energy), which can lead to di↵erent phases of matter. 30 The study of
problems with interactions is always a di�cult task. Phase transitions usually manifest through
a order/disorder transition, between a low-T ordered phase (when energy dominates) and a
high-T disordered phase (when entropy dominates). The remarkable point is that a microscopic
range interaction can mediate cooperative e↵ects responsible for ordering at a macroscopic scale.

The study of phase transitions is interesting and important for di↵erent reasons. The first is
that it concerns the understanding of the di↵erent organisations of matter. The second is that
certain types of phase transitions, of ”second order”, exhibit critical phenomena (scale invariance
and scaling laws) with a universal character : some properties are completely insensitive to
the microscopic details and moreover can be the same for di↵erent physical problems : such
properties are called ”universal”.

6 Mean field

6.1 Introduction : the liquid-gas transition

Let us start with a concrete (and important) example of phase transition, which will allow to
introduce several important ideas. The study of the liquid phase within the frame of statistical
physics, i.e. based on a microscopic model, is the most di�cul to study :

(i) in the gaseous phase, the atoms (or the molecules) can be considered as independent
particles. This is due to the fact that collisions between atoms are su�ciently rare so that
the interaction energy of the atoms in the gas can be considered negligible compared to
the kinetic energy : Ekin � Eint.

(ii) In a solid, this is exactly the opposite, atoms are attached to sites of the crystalline lattice
and vibrate around their equilibrium positions. Interaction energy dominates (in the sense
that the atoms cannot overcome the potential barriers) : Ekin ⌧ Eint. It is however still
possible to identify independent degrees of freedom (collective vibration modes, phonon
modes), which makes the analysis simple.

(iii) The liquid state is the most di�cult to study : in this case kinetic energy and interaction
energy are of the same order Ekin ⇠ Eint.

a) Description of the phenomenon

A standard protocol is to perform a decompression of the fluid at fixed temperature : Fig 31.
Increasing the volume, the pressure of the liquid rapidly decreases (compressibility of the liquid
is usually extremely small). For some value VL, part of the liquid evaporates and two phases
coexist. The pressure is then constant, which correspond to the “liquefaction plateau” (flat part
of the isotherm). When all the liquid has been converted into vapour, the volume reaches the
value VG. If the volume is further increased, the pressure again diminishes slowly (compressibility
of the gas is very high). This is represented schematically in Fig. 32 for di↵erent temperatures.

30Phase transition can also occur at zero temperature, and can be driven by a parameter. An example is
the Anderson transition in disordered metals, between a metallic phase (with finite conductivity) and Anderson
insulating phase, when the disorder strength (or the electron density) is varied.
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The two volumes VL(T ) and VG(T ) and the pressure of the plateau ps(T ) are functions of the
temperature. The figure 33 shows real data for carbon dioxyde.

T

liquid

gas

gas

Figure 31: Decompression (at constant temperature) of a fluid initially in the liquid phase.

The volume V (or the density n = N/V ) is the observable allowing to distinguish the two
phases, it plays the role of the “order parameter”. Because it makes a jump when the fluid goes
from the liquid to the gaseous phase, one says that the liquid-gas transition is a discontinuous
phase transition. A di↵erent representation is shown on the right parts of the figures 6.15 and
33 : in the plane (p, T ), the coexistence between liquid and gas takes place on the line p = ps(T ).
This emphasizes that the Gibbs free energy 31

G(T, p, N) presents a singular behaviour on this
line : the volume being the derivative of the Gibbs free energy, V = @G

@p
, we have @G

@p

��
L
6= @G

@p

��
G
.

Hence, the transition is also said to be a first order phase transition, according to the
Erhenfest classification (a phase transition is said to be of order n if the nth-derivatives of the
thermodynamic potentials present discontinuities or singular behaviours).
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Figure 32: Sketch of isotherms in the Clapeyron diagram. The isotherm at temperature Tc is
the critical isotherm and C the critical point. Above the critical isotherm, the state is know as
a supercritical fluid. Right : In the (p, T ) representation, liquid and gas coexist on a line.

If temperature is increased, the width of the liquefaction plateau diminishes and eventually
vanishes at a temperature Tc called the ”critical temperature” (Fig. 32 and Fig. 33 for experi-
mental data) : VG(T ) � VL(T ) ! 0 as T ! T

�
c . The point C where the liquefaction plateau

shrinks is called the “critical point”. Hence @G

@p
is continuous for T = Tc (and discontinuous

for T < Tc). The critical isotherm being flat at the critical point, @p

@V

��
C

= 0, the isothermal

compressibility �T = � 1

V

@
2
G

@p2

��
C

=1 is infinite at the critical point. It is now the second deriva-
tive of G which exhibits an ”accident”, hence according to the Ehrenfest classification, one says
that the transition at C is a second order phase transition. Because the order parameter is
continuous at Tc, the phenomenon is also called a continuous phase transition.

31Reminder of theory of thermodynamic potentials : F (T, V, N) is the Helmholtz free energy (or simply
the ”free energy”) and G(T, p, N) is the Gibbs free energy (or the ”free enthalpy”). They are related through
Legendre transforms G(T, p, N) = min

V

�
F (T, V, N) + pV

 
.
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EXAMPLE #2: CO2

5Matthew Schwartz

Constant pressure upon
changing the volume

Figure 33: Phase diagram of carbon-dioxyde (right figure from wikipedia: the red zone corre-
sponds to the solid phase. The point B is the critical point and the point A the ”triple point”).

Above Tc, there is no more distinction between liquid and gas and one says that the fluid
is supercritical. This occurs at Tc = 374 oC in water (with pc = 220 atm) or at Tc = 31.1 oC in
CO2 (with pc = 73 atm, cf. Fig. 33). Critical temperatures and pressures for other fluids can be
found at https://en.wikipedia.org/wiki/Critical_point_(thermodynamics).

b) The van der Waals model

We now introduce a microscopic model which describes the transition (this paragraph is a brief
presentation of the first part of chap. 10 of [48]) We consider N atoms, or molecules, assumed
to interact only through pair interactions :

H =
X

i

~pi
2

2m
+

1

2

X

i, j ( 6=)

uLJ(||~ri � ~rj ||) = Hkin + U . (6.1)

The potential Lennard-Jones uLJ(r) = u0

⇥
( r0
r
)12�2( r0

r
)6
⇤
correctly describes interaction between

two atoms, with strong repulsion at short distance and weak attraction at large distance. It
involves two microscopic parameters : the range r0 of the potential (position of the minimum),
and its depth uLJ(r0) = �u0. For example, interaction between Argon atoms is well described
by the Lennard-Jones potential for u0 ' 2.5 meV ($ 30 K) and r0 ' 3.35 Å.

In order to simplify the analysis, we replace the Lennard-Jones potential by a potential
uLJ(r) �! u(r) with u(r) =1 for r < r0 (hard sphere repulsion) and u(r) = uLJ(r) for r > r0.
This defines an excluded volume v = 4⇡

3
r
3

0
around each atom.

Our aim is now to compute the partition function of the gas

ZN =
1

N !h3N

Z
d3
~p1 · · ·

Z
d3
~pN

Z

V

d3
~r1 · · ·

Z

V

d3
~rN e��H =

1

N !�3N

T

QN (6.2)

where �T =
p

2⇡~2/(mkBT ) is the thermal length and

QN =

Z

V

d3
~r1 · · ·

Z

V

d3
~rN e��U (6.3)

is the “configurational integral”.
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Hard sphere repulsion.– In order to estimate QN , we first consider the hard sphere repulsion
and forget the attractive part of the potential (this is similar to do u(r) �! uHS(r) = 1 for
r < r0 and uHS(r) = 0 for r > r0). QN is given by an integral over the available space : Q1 = V .
Fixing ~r1, the avalaible space for ~r2 is V �v, where v is the excluded volume, then Q2 = V (V �v)
(see Fig. 34). For three atoms, Q3 ' V (V � v) (V � 2v) is an approximation as it results from
the exclusion of atoms taken by pairs, and ignore the three body e↵ect. Neverthelees, we can
proceed and get 32

QN '
N�1Y

n=0

(V � n v) . (6.4)

Assuming V � Nv, we have

QN ' (V �Nb)N for V > Nb (6.5)

with

b
def

=
v

2
=

2⇡

3
r
3

0 (6.6)

which is the first parameter of the van der Waals equation. The first conclusion is that we can
account for the hard sphere repulsion by replacing the volume by V �! V �Nb.

Figure 34: Configuration integral : the first particle can move in a volum V , thus Q1 = V ,
the second in a volume V � v, thus Q2 = V (V � v), the third in a volume V � 2v, hence
Q3 ' V (V � v)(V � 2v), etc.

- Exercice 6.1 : The mean field approximation predicts that the fluid of hard spheres has a
maximum density n

mf
c = 1/b = 3/(2⇡r

3

0
) in d = 3.

a) In d = 2, a similar argument gives n
mf
c = 1/b = 2/(⇡r

2

0
). Compare with the (exact) density

for the dense packed phase.
b) Same question in d = 3.

Weak attraction.– Because the integral over positions is uniform, we can interpret the con-
figurational integral (6.3) as

QN ' (V �Nb)N he��U iavailable
volume

, (6.7)

what we approximate by

QN ' (V �Nb)N exp
⇥
� �hUiavailable

volume

⇤
. (6.8)

Let us now estimate hUi : one atom, say atom 1, ”sees” the averaged potential' n
R
⇢>r0

d3
~⇢u(||~⇢||),

where n = N/V is the mean density. Hence

hUiavailable
volume

' N

2
n

Z

⇢>r0

d3
~⇢u(||~⇢||) = �N na , (6.9)

32write ln QN =
P

N�1

n=0
ln(V � n v) ' N ln(V � N v/2).
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where the 1/2 avoid double counting. We have introduced the second parameter of the van der
Waals equation :

a
def

= �2⇡

Z
1

r0

d⇢ ⇢2
u(⇢) (6.10)

Note that, in terms of the two microscopic parameters, we have a ⇠ u0 r
3

0
.

Conclusion : VdW partition function.— We conclude that

Z
(VdW)

N
' 1

N !

✓
V �Nb

�
3

T

◆
N

e�N
2
a/V (6.11)

Although the approximations leading to Z
(VdW)

N
seem a bit crude and out of control, we will see

that the model qualitatively describes all the phenomena introduced above.

Thermodynamic properties.— The corresponding free energy is

F (T, V,N) = �NkBT

⇢
1 + ln

✓
V �Nb

N�
3

T

◆�
� N

2
a

V
(6.12)

In the VdW model, the energy is only sensitive to the attraction (but not to the e↵ect of the
excluded volume)

E
c

=
3NkBT

2| {z }
=E

c

kin

�N
2
a

V| {z }
=U

c

, (6.13)

while the entropy is only sensitive to the excluded volume e↵ect, but not to the weak attraction

S
c = NkB

⇢
5

2
+ ln

✓
V �Nb

N�
3

T

◆�
. (6.14)

The equation of state is the well-known van der Waals equation

p =
nkBT

1� nb
� n

2
a (6.15)

In the limit of low density, we recover pressure for the ideal gas, p ' nkBT , as it should. The
first term of (6.15) is monotonously increasing with n, from 0 for n = 0, to 1 for n ! 1/b,
while the second is monotonously decreasing. Writing the expansion in powers of the density
(virial expansion)

p ' nkBT

⇣
1 + (b� �a)| {z }

=B2(T )

n + (b n)2 + O(n3)
⌘

(6.16)

reveals that the curvature changes in sign at kBT = a/b ⇠ u0 (Bn(T ) = b
n�1 � �a �n,2 are the

virial coe�cients). Because the weight of the first term is the temperature, we expect that it is
dominant at high T , while the second term is important at low T and the isotherm may become
a non monotonic function of the density n. This is indeed what we observe by plotting the
isotherms for di↵erent temperatures, Fig. 35.

- Exercice 6.2 : Find the coordinates (Vc, pc, Tc) of the critical point, defined as the point

where @p

@V

��
C

= 0 and @
2
p

@V 2

��
C

= 0. Deduce the value of pcVc/NkBTc. Compare to the values
obtained experimentally for Helium (0.30) and dioxygen (0.29).
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Figure 35: VdW isotherms (6.15) for kBT = 0.5a/b, 8a/27b and 0.225a/b.

The main problem revealed by the figure is the non-monotoneous behaviour observed for low
temperatures, say T < Tc. Indeed, for stability reasons, the isothermal compressibility of the
fluid must be positive

�T

def

= � 1

V

✓
@V

@p

◆

T

=
1

n

✓
@n

@p

◆

T

> 0 (6.17)

Remember the study of the relaxation of a piston between two gases exchanging volume, cf. [48] :
stability demands @2

F/@V
2 = �@p/@V > 0. This is a very general property of thermodynamic

potentials, which are convex functions of their arguments (more precisely : it can be convex or
concave, depending on the potential and the parameter, but the convexity cannot change).

Therefore, the van der Waals model predicts that, in certain parameter range, the isotherms
(6.15) may present a non-monotonic behaviour, which is non physical (this corresponds to an
unstable state, which is incompatible with equilibrium statistical physics).

Phase separation.— This apparent di�culty of the van der Waals model is related to an
interesting physical phenomenon. To circumvent the di�culty, we should relax the assumption,
implicitly made above, of a homogeneous fluid. Let us explain this. At this stage, it is helpful to
study the evolution of the free energy. Since p = � @F

@V
, integration of p(V ) gives the free energy

F (T, V ) up to a function of T (Fig. 36).
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Figure 36: Integration of the VdW isotherm gives the free energy (hatched part between points
D1 and D2 is the forbidden part, which would describe an unstable fluid). Figures from chapter
10 of [48].

Remember that each point corresponds to a specific thermodynamic state of the fluid. The
figure makes clear that the existence of a (unphysical) concave part allows us to find a path
with lower free energy (remember the principle of minimization of the free energy). For V 2
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[VL, VG], a mixing of the two states L and G is characterized by a volume fraction of liquid
x = (V � VL)/(VG � VL) 2 [0, 1] and 1 � x = (VG � V )/(VG � VL) of gas. Denoting by
FL ⌘ F (T, VL) the free energy of the liquid phase and FG ⌘ F (T, VG) the free energy of the gas
phase, we conclude that the free energy of the mixed state is F = x FL+(1�x) FG for x 2 [0, 1],
or more explicitly :

F (T, V ) =
F (T, VL) (VG � V ) + F (T, VG) (V � VL)

VG � VL

for V 2 [VL, VG] (6.18)

This corresponds to a plateau

p = �@F

@V
= �FG � FL

VG � VL

⌘ ps(T ) for V 2 [VL, VG] (6.19)

(remember that VL and VG also depend on T ). We interpret the two points as the liquid state
(point L) and the gaseous state (point G). Hence, the branch of the isotherm ending at L

corresponds to the liquid phase, while the branch starting at G is the gaseous phase. In between
is the liquefaction plateau at the ”saturation vapor pressure” ps(T ).

Maxwell’s construction.— Next question is to find (in practice) the two points L and G.
We first turn the van der Waals isotherm by ⇡/2 and then integrate the curve V (p) over p

(Fig. 37). We get the Gibbs free energy G(T, p, N), up to a function  (T, N). The Gibbs
free energy is a concave function of p. In this representation, the mixed state (the liquefaction
plateau) is just a point where GG = GL. We can give a geometrical interpretation : the plateau
is obtained by writing Z

G!L

dp V (p) = 0 (6.20)

i.e. the two areas between the isotherm and the plateau must be equal : this is the “Maxwell’s
construction”, see Fig. 38.
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Figure 37: Construction of the Gibbs free energy G(T, p, N) from the rotated isotherm.

We can also give a thermodynamic interpretation to the construction. Because G(T, p, N) =
N µ(T, p) (from extensivity) the plateau corresponds to

µL = µG , (6.21)

which is the usual equilibrium condition for coexistence of two phases exchanging particles.
We can also write the Maxwell construction

Z

L!G

dV

h
pVdW(V )� ps

i
= 0 or in short

I
dV pVdW(V ) = 0 (6.22)

where pVdW(V ) is the van der Waals isotherm (including the non physical increasing part) ; in
the second expression, the intergration is performed along the closed circuit from L to G through
the VdW isotherm and backward through the liquefaction plateau. This equation provides VL,
VG and ps (which are all functions of T ).
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Figure 38: Maxwell construction ; figure from [48].

Discontinuities.— We have stressed that the liquid-gas transition is a discontinuous (1st
order) phase transition as the density of the fluid presents a discontinuity nL > nG. Another
discontinuity with important consequence is the jump of entropy, which can be written with the
help of the above expression

�S = S(T, VG)� S(T, VL) = NkB ln

✓
VG �Nb

VL �Nb

◆
> 0 . (6.23)

The positive jump of entropy corresponds to a transition between an ”ordered” phase to a
”disordered” one. We introduce the latent heat

Lvap = T �S = NkBT ln

✓
VG �Nb

VL �Nb

◆
(6.24)

which quantifies the heat required to convert all the liquid into gas (with a reversible transfor-
mation). The existence of a latent heat is a general property of first order phase transitions.

- Exercice 6.3 : We consider a reversible transformation from L to G (on the isotherm).
The fluid receives the heat Lvap. What is the work received ? Study the limit close to the critical
point (i.e. for VG � VL = �V ”small”).

Figure 39: Binodal, spinodal and metastability region.

Metastability.— Before the Maxwell construction, we have stressed that the part of the
VdW isotherm corresponding to a negative compressibility corresponds to an unstable fluid
(unphysical). However, the two branches out of the liquefaction plateau (arcs L-D1 and D2-
G in Fig. 38) are not forbidden as �T > 0. Nevertheless, the Figs. 36 and 37 show that the
two arcs correspond to states with a larger free energy than in the mixed state (liquid+gas).
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Hence, these states correspond to metastable states where the fluid is in a local minimum of the
free energy which is less favorable energetically, but not forbidden : the system can leave the
metastable state due to a thermal fluctuation and fall into the two-phase state (L+G) with a
lower free energy. The curve delimiting the coexistence zone in the Clapeyron diagram is called
the binodal (dashed line on the left part of Fig. 32 or red curve in Fig. 39). The set of points
D1 and D2 define another curve inside, called the spinodal. The zone between the two curves
is the metastability region (where metastability is possible) : cf. Fig. 39.

- Exercice 6.4 Binodal and spinodal : We introduce the reduced variables v
def
= (V �Vc)/Vc,

⇡
def
= (p� pc)/pc and t

def
= (T � Tc)/Tc.

a) Show that, in the vicinity of the critical point, the VdW isotherm takes the simple form

⇡ ' 4t� 6vt� 3

2
v

3 (6.25)

(justifiy that we can stop at order v
3 and neglect the term v

2
t and higher).

b) For t < 0 (i.e. T < Tc), discuss explicitly the Maxwell construction with the simplified
isotherm. What are the values of the volume of the liquid vL and of gas vG, defining the two
ends of the liquefaction plateau ? What is the value of the saturation pressure ⇡s(t) ?

c) In the Clapeyron diagram (⇡, v), the region where liquid and gas coexist is delimited by the
”binodal” curve (i.e. the two values vL(t) and vG(t) as a function of ⇡ = ⇡s(t)). Give the
expression of the binodal curve.

d) The spinodal is the curve corresponding to the end of metastability (i.e. the set of points
where @⇡

@v
= 0 in the Clapeyron diagram). Deduce the expression of the spinodal curve.

e) Plot neatly the phase diagram in the Clapeyron representation and indicate the region of
metastability.

c) Criticality in the liquid-gas transition

We have emphasized above that the liquefaction plateau disappears at a “critical temperature”
Tc : cf. Figs. 32, 33 and 35. The critical point C is the place of a second order phase transition.
The term “critical” refers to the fact that, approching the point C, the correlation length of the
fluid diverges (we will discuss this later) and that the vicinity of the point is characterised by
power laws, i.e. scale invariance, and universality. A stricking manifestation of the divergence
of the correlation length in the fluid is the phenomenon of “critical opalescence”. As the point
C is approached, the interface between liquid and gas broadens and the fluid becomes cloudy,
due to the fact that fluctuations take place at increasing large scale, eventually exceeding the
wave length of light.

In 1945, Guggenheim has collected the data for eight di↵erent fluids (noble gases –Ne, Ag,
Xe, Kr– and also molecular gases –N2, O2, CO and CH4) : he has studied the width of the
liquefaction plateau, starting at the gas density nG(T ) = N/VG(T ) and ending at the liquid
density nL(T ) = N/VL(T ), as a function of the temperature. To make comparison between
the fluids of di↵erent natures possible, he plotted the ratios nG/nc and nL/nc, where nc is the
density at the critical point, as a function of the ratio T/Tc. Although nc and Tc are di↵erent
for each fluid, after this proper rescaling, it is remarkable that all data fall onto a universal
curve, which is shown in Fig. 40. “Universality” means that we have obtain a property which
is common to many systems (here di↵erent fluids).

A careful study of the data shows that, close to C, the di↵erence of densities �n = nL � nG

presents a power law behaviour with temperature

�n / (Tc � T )� (6.26)
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FIG. 2. 

these formulae should be used for computing 
values of pg. There are however occasions when 
one requires relatively accurate values not of pg 
itself but of (Pl- pg) / pc; on such occasions formula 
(6.4) . in view of its extreme simplicity and 
surprisingly high accuracy has much to recom-
mend it. An example of its use will occur in 
Section 16. 

7. VAPOR PRESSURE 

At temperatures considerably below the critical 
temperature, say T<0.65Tc, when formula (6.2) 
for Pu becomes inaccurate it is convenient to con-
sider the equilibrium vapor pressure Prather 
than pg. According to the principle of corre-
sponding states one should expect P fPc to be a 
universal function of T /Tc• In particular the 
temperatures T8 at which the equilibrium pres-

sure P is one-fiftieth of the critical pressure 
should be corresponding temperatures for differ-
ent substances and the ratio of T. to Tc should 
have a universal value. On the other hand Tb the 
boiling points at a pressure of one atmosphere are 
not corresponding temperatures for different 
substances. In rows 9 and 10 of Table I are given 
Tb the boiling point at a pressure of one atmos-
phere, and T. the boiling point at a pressure one-
fiftieth the critical pressure. In rows 11 and 12 
are given the ratios To/Te and T./Tc. It will be 
seen that the values of the latter are, as expected, 
more nearly the same than the values of the 
former. 

8. ENTROPY OF EVAPORATION 

According to Trouton's rule the molar entropies 
of evaporation for different substances have 
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Figure 40: For di↵erent fluids, the ratios nG(T )/nc and nL(T )/nc are plotted as a function of
T/Tc. For all eight fluids, the data fall on a universal curve. Figure from : E. A. Guggenheim,
“The principles of corresponding states”, J. Chem. Phys. 13(7), p. 253 (1945).

where � is known as the “critical exponent for the order parameter”. Analysing the experimental
data, Guggenheim gave � ' 1/3 ; more recent measurements in CO2 have given � ' 0.324. This
power law is not the only one :

• Close to the critical point, the heat capacity presents the behaviour

CV / |T � Tc|�↵ (6.27)

Experiments on CO2 gives ↵ ' 0.111.
• The critical isotherm : we have seen on the figures above that the critical point is an inflexion

point of the isotherm, which has a flat slope. It presents the behaviour

p� pc / |n� nc|� sign(n� nc) (6.28)

I have not found a direct measurement of the exponent �, however, as we will see later, it is
related to other exponents by the Widom relation � = 1 + �/� (see below § 7.4). Using the
value � ' 0.324 and � ' 1.246 obtained for CO2 and Xe, respectively, we get � ' 4.846.

• Approaching the critical temperature from above, the slope of the isotherm eventually vanishes
at Tc, corresponding to a divergence of the isothermal compressibility (inverse of the slope of
the isotherm). A careful study shows that

�T / |T � Tc|�� (6.29)

Experiments in xenon gives � ' 1.246. Other experimental data can be found in [33, 14].

The notations for the four critical exponents are standard.

- Exercice 6.5 Critical exponents of the VdW equation : Expanding the VdW isotherms
around the critical point, show that the van der Waals model predicts the following set of critical
exponents � = 1/2, � = 3 and � = 1.

6.2 The phenomenological Landau’s approach

The study of the critical point within the van der Waals model is possible, however, instead of
considering a specific microscopic model, we prefer to follow the phenomenological Landau’s ap-
proach which provides a very simple description of the vicinity of second order phase transitions.
The Landau’s approach is a “mean field approximation”, as will be clarified later.
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We expose below the main ideas of Landau’s approach in the context of the Ising model for
the paramagnetic/ferromagnetic transition.

a) Ising model

The Ising model is of fundamental importance in statistical physics and has applications in many
problems involving binary variables :

• The Ising model for the Para/Ferro transition, where dynamical variables are “Ising spins”
�i = ±1 attached to the sites of a lattice.

• The lattice gas : space is divided into elementary cells, which are either empty, ni = 0 or
occupied by one atom at most, ni = 1. The fact that ni = 1 at most mimmic hard core
repulsion between atoms.

• Binary alloys : crystalline structure with two species of atoms which can migrate from site to
site.

• etc, etc.

The Ising Hamiltonian is

HIsing = �1

2

NX

i, j=1

Jij �i�j �B

NX

i=1

�i (6.30)

where Jij is the interaction between the two spins on sites i and j. A natural choice is

Jij =

(
J for i and j neighbours

0 otherwise
(6.31)

Here J > 0 is a ferromagnetic interaction and the magnetic field B is expressed in appropriate
(energy) unit.

Figure 41: Ernst Ising (1900-1998).

- Exercice 6.6 Mapping Ising—Lattice gas : We consider the lattice gas model defined
above, with N cells (i.e. N plays the role of the volume). We denote by N =

P
N

i=1
ni the

number of particles. Atoms cannot be two in the same cell (hard core repulsion). They also
attract themselves with a short range interaction : when two atoms occupy two adjacent cells,
they have an energy E2atoms = �" < 0 (the energy is zero when the two atoms are more
distant). Write HLG � µN in terms of the occupation numbers ni, where µ is the chemical
potential. Discuss precisely the mapping between the Ising model for N spins in a magnetic
field, and the lattice gas.
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Weiss local field and mean field solution.— In the absence of interaction, J = 0, the
solution follows from independence of spins : partition function of a spin is zspin = 2 cosh(�B)
from which one gets the magnetization

m
def

= �i = tanh(�B) . (6.32)

The mean field solution is obtained by replacing the field B in this equation by the mean
field seen by a spin. The local field at site i is by definition the variable conjugated to the spin

B
(loc)

i

def

= �@HIsing

@�i
= B +

X

j

Jij �j (6.33)

Assuming that the magnetization is uniform in the lattice, the averaged field is

B
(loc)

= B + zJm (6.34)

where z is the coordination number of the lattice, i.e. the number of neighbours of a given spin.

As a result, we obtain the self consistent equation m = tanh(�B
(loc)

), explicitly

m = tanh�(B + zJm) . (6.35)

One can expect that this approximation is correct if the number of neighbours z is very large,
i.e. when the fluctuations of the local field are small compare to the mean value (central limit
theorem).

- Exercice 6.7 An exact relation : In the Ising Hamiltonian, you can isolate the terms
which depend on a given spin �i from all other terms : HIsing({�j}) = �Be↵(�0)�i + H

0(�0)
where ”�0” is a notation for all �j ’s with j 6= i. Write explicitly h�ii (with the Gibbs measure).
Deduce the exact relation

h�ii =

⌧
tanh�

⇣
B + J

X

j2v(i)

�j

⌘�
(6.36)

where v(i) is the set of z neighbours of the spin �i.

- Exercice 6.8 Mean field solution of the Ising model and critical exponents :

a) Show that the nature of the solution(s) of the self consistent equation (6.35) for B = 0 changes
at the temperature Tc = zJ (set kB = 1).

b) Deduce the behaviour m(T, 0) / (Tc � T )1/2 for T ! T
�
c .

c) Study the critical isotherm and show that m(Tc, B) / sign(B) |B|1/3 for B ! 0.

d) Using a perturbative method, solve (6.35) for B ! 0 and deduce the magnetic susceptibility
(i.e. write m⇤(T, B) = m⇤(T, 0) + �m with �m ' �B).

e) Compare these behaviours with the van der Waals theory for the liquid-gas transition (exer-
cise 6.5).

- Exercice 6.9 Free energy of the Ising model (mean field) : Write �i = m + ��i in
(6.30), where m = h�ii. Neglecting fluctuations, deduce the partition function. Show that the

free energy per spin is f(T, B) = 1

2
Tcm

2
⇤ � 1

2
T ln

�
1�m

2
⇤

4

�
, where m⇤ solves (6.35).

b) Origin of the Landau’s approach : mean field approximation

Consider in this paragraph the case B = 0 for simplicity. The Graal would be to compute the
Ising partition function

ZIsing =
X

{�i}

e��HIsing({�i}) (6.37)
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where the sum runs over the 2N configurations (each spin is �i = ±1). Due to the interaction,
this is however not possible in general. The known results are

• In dimension d = 1, the partition is rather easy to compute, either by recursion or using a
transfer matrix method (possibly for finite B). The solution was obtained by Ising in 1925.

• In d = 2, the calculation of ZIsing was achieved in 1944 by Lars Onsager (Nobel prize in
Chemistry in 1968) at B = 0. It is considered as a ”tour de force”.

• In d > 3, only numerical results are available.

Incomplete partition function.— As the aim is here to provide a general presentation of
Landau theory, from now on, I will denote by � the order parameter and h the conjugate
field [for the Para/Ferro transition, (�, h) ! (m, B)]. � = 0 in the disordered (paramagnetic)
phase, while � 6= 0 in the ordered (ferromagnetic) phase. Let us introduce the incomplete (or
“reduced”) partition function (I drop the index ”Ising” everywhere)

ZL(�; T, N) =
X

{�i} with
P

i
�i=N �

e��H({�i}) (6.38)

where the sum is constrained only to (micro)states with a given magnetization � = 1

N

P
i
�i.

The partition function is obviously

Z(T, N) =
X

�

ZL(�; T, N) (6.39)

In principle � takes value from +1 to �1 with steps 2/N , thus, in the thermodynamic limit
N ! 1, we can rewrite the sum as an integral

P
�
' N

2

R
+1

�1
d�. The incomplete partition

function provides the distribution of the magnetization

P (�) =
ZL(�; T, N)

Z(T, N)
(6.40)

being the motivation of the concept [48].
For short range interaction, the system exhibits the extensivity property

lim
N!1

ln Z(T, N)

N
= �� f(T ) (6.41)

where f is the free energy per spin. This is also true for the incomplete partition function so
that we can write 33

ZL(�; T, N) ' e�N�fL(�;T ) and P (�) / e�N�fL(�;T ) (6.42)

Thus

Z(T, N) ' N

2

Z
+1

�1

d� e�N�fL(�;T ) (6.43)

In the thermodynamic limit, the summation is dominated by the minimum of the function
fL(�; T ) (steepest descent method)

Z(T, N) '
s

⇡N

2�f
00

L
(�⇤; T )

e�N�fL(�⇤;T ) (6.44)

33I do not account for possible sub-exponential prefactor, cf. exercise 6.11.
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where
@

@�
fL(�; T )

���
�⇤

= 0 (6.45)

(here I assume the existence of a unique minimum). We stress that (6.42) in the thermodynamic
limit N ! 1 implies that P (�) is sharply peaked at �⇤ so that it has also the meaning of the
mean magnetization

�i = �⇤(T ) . (6.46)

Finally we deduce the free energy

F (T, N) = � 1

�
ln Z(T, N) ' N fL(�⇤; T ) +

1

2
kBT ln

✓
2�f

00

L
(�⇤; T )

⇡N

◆
(6.47)

hence, in the thermodynamic limit, the free energy per spin is

f(T ) = fL(�⇤(T ); T ) (6.48)

This is the fundamental function encoding the thermodynamic properties.

- Exercice 6.10 : In the presence of a magnetic field, fL(�; T, h) contains a term �h� and
the saddle point solution �⇤(T, h) carries the field dependence. A general property in statistical
physics is that the mean value of an observable can be obtained by derivating the thermodynamic
potential with respect to the conjugate variable. Check that �i = � @

@h
f(T, h) coincides with �⇤.

Idea of the Landau theory.— The main idea of Landau is to propose a form for the function
fL(�; T ), based on general principles, rather than derive it from a microscopic model. The
incomplete free energy fL(�; T ) is called the “Landau free energy”. Given this function, the
problem reduces to finding its minimum. Before following this strategy, which is the conventional
Landau’s approach, we examine a model where fL(�; T ) can be derived. This analysis will bring
some ideas on the origin of the general principles allowing to construct fL(�; T ) in general.

c) The fully connected Ising model

Consider the case where all spins interact with each other, Jij = J/N 8i, j (the 1/N is introduced
in order to deal with an extensive energy E ⇠ N). In this case the energy takes the form

H({�i}) = � J

2N

X

i,j

�i�j = �NJ

2
�

2 with � =
1

N

X

i

�i . (6.49)

This model is also known as the “Curie-Weiss model”. We write can write H = N"(�) where

"(�)
def

= �J�
2
/2 is an energy per spin. Thanks to the fact that the energy depends only on �,

the incomplete partition function can be obtained explicitly :

ZL(�; T, N) =
X

{�i}

� 1

N

P
i
�i,�

e��H({�i}) = e�N�"(�)
X

{�i}

� 1

N

P
i
�i,�

= ⌦(�) e�N�"(�) (6.50)

where

⌦(�) =
N !

n+!n�!
(6.51)

is the number of configurations for fixed magnetization (n± is the number of spins up/down).
The related entropy (per spin) is the well-known expression

s(�) = lim
N!1

1

N
ln⌦(�) = �1 + �

2
ln

✓
1 + �

2

◆
� 1� �

2
ln

✓
1� �

2

◆
(6.52)
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thus
ZL(�; T, N) ⇠ e�N�fL(�;T ) (6.53)

with
fL(�; T ) = "(�)� T s(�) (6.54)

or more explicitly

fL(�; T ) = �T ln 2� J

2
�

2 +
T

2
[(1 + �) ln(1 + �) + (1� �) ln(1� �)] . (6.55)

The most important feature appears more clearly on the expansion for �! 0

fL(�; T ) ' �T ln 2 +
T � J

2
�

2 +
T

12
�

4 + O(�6) . (6.56)

It shows that at the temperature Tc = J , the nature of the solutions of (6.45) changes : Fig. 42.

Figure 42: Landau free energy.

• For T > Tc, the Landau free energy has a unique minimum �⇤ = 0. This corresponds to the
paramagnetic phase (no spontaneous magnetization).

• For T < Tc, the Landau free energy has a double well shape (Fig. 42) and eq. (6.45) has two
solutions �⇤ 6= 0, interpreted as a finite spontaneous magnetization (”spontaneous” means ”in
the absence of an external magnetic field”). This corresponds to the ferromagnetic phase,
where interactions between spins dominate thermal fluctuations.

It is straightforward to derive the order parameter for the fully connected model :

�⇤(T )

(
= 0 for T > Tc

' ±
p

3(Tc � T )/Tc for T < Tc

(6.57)

showing that the fully connected model predicts the value � = 1/2 for the order parameter
critical exponent, see Eq. (6.26).

- Exercice 6.11 : The aim is here to determine the subleading term (pre-exponential factor)
of ZL(�; T, N) for the fully connected model. ⌦(�) is the number of available microstates for
magnetization �.
a) What is the value of

P
�
⌦(�) ? Show that ⌦(�) ' AN eNs(�), where s(�) is the entropy per

spin.
Indication : two possible methods : (1) use Stirling formula ln N ! ' N ln N �N + 1

2
ln(2⇡N) or (2) use

the expansion s(�) ' ln 2� �2
/2 and the sum rule for ⌦(�).

b) Deduce the pre-exponential term in ZL(�; T, N) ' BN e�N�fL(�;T ).
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Spontaneous symmetry breaking.— A generic feature of second order phase transitions
is “spontaneous symmetry breaking” : although the problem (the model) is symmetric with
respect to � ! ��, the so-called Z2 symmetry, the system ”chooses” a state that breaks this
symmetry below Tc : in the ferromagnetic phase, the magnetization is either �⇤ > 0 or �⇤ < 0
(think at every day life magnets, which have a well defined magnetization). The state breaks
the symmetry, although the model and the set of all possible states is symmetric.

Ergodicity breaking.— For T < Tc, the distribution P (�) / exp{�N�fL(�; T )} presents
two symmetric peaks and the partition function in principle involves a sum over the two minima
±|�⇤|. However, if the system is in the minimum �⇤ > 0, going to the minimum �⇤ < 0 would
require to overcome a very high free energy barrier �FN = N

⇥
fL(0; T ) � fL(�⇤; T )

⇤
, which

cannot occur if kBT ⌧ �FN (extensivity prevents the system from jumping the barrier). Hence,
spontaneous symmetry breaking is accompanied by ergodicity breaking : in practice, the system
cannot explore all the available phase space, but is stuck in a region of phase space due to high
free energy barrier(s).

- Exercice 6.12 Incomplete partition function for the Ising model (mean field) :
The aim of the exercise is to propose a mean field treatment for the calculation of ZIsing, in

the same spirit as the calculation of Z
(VdW)

N
in § b) page 83. We consider the Ising model with

nearest neighbour couplings on a lattice of N sites : H = �J
P
hi,ji

�i�j where the sum runs
over all the bonds. We denote z the coordination number of the lattice (number of neighbours
of a site) : the number of bonds is thus Nbonds = zN/2.
In the analysis of the VdW model, we have considered a fixed volume, which plays the role of
the order parameter. Here, the equivalent calculation for the Ising model requires to compute
the partition function for fixed magnetization, i.e. the incomplete partition function, denoted
above ZL(�). Here, � is the magnetization per spin.

a) Give the number n± of spins in state |± i, as a function of �. Deduce the probability P± for
a spin to be in state |± i.
b) ⌦(�) is the number of available microstates for fixed magnetization. Compute it and deduce
the entropy per spin s(�) in the thermodynamic limit.

c) We denote by N++, N+� and N��, the number of bonds (++), (+�) and (��), respectively.
Justify that their averaged values are N++ = P

2
+zN/2, N+� = P+P�zN and N++ = P

2
�zN/2.

Deduce the average energy E of the lattice, as a function of �. Introduce "(�)
def
= E/N .

d) We can interpret the incomplete partition function as

ZL(�) = ⌦(�)
⌦
e��H

↵
available states

(6.58)

The mean field approximation corresponds to write
⌦
e��H

↵
⇡ e��hHi, i.e.

Z
mf

L (�) = ⌦(�) e��E (6.59)

This is equivalent to (6.8). Deduce fL(�).

d) Principles of the Landau’s approach

Landau’s approach aims at studying the vicinity of second order phase transitions (although it
is sometimes used out of this range). The general scheme is the following
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Low temperature High temperature
T < Tc T > Tc

ordered phase disordered phase
� 6= 0 � = 0

broken symmetry symmetric state

Because Landau’s approach focuses on a regime where the order parameter is ”small” �! 0
(”close” to Tc), the idea is to propose the Landau free energy fL(�; T ) under the form of an
expansion, constrained by several points :

• Order parameter : one must first determine the nature of the order parameter (scalar, vector,..)

• Stability : fL should have a minimum.

• Symmetry : use the symmetries of the problem.

• Analyticity : fL(�; T ) is expected to be an analytic function of �.

Given the expansion, the Landau free energy is minimized

@

@�
fL(�; T )

���
�⇤

= 0 (6.60)

which provides, in an extremely simple manner, the order parameter as a function of temperature
and other parameters. The free energy of the problem is then f(T ) = fL(�⇤(T ); T ), which
contains all thermodynamic properties.

Order parameter.— The order parameter is the observable allowing to distinguish the two
phases (� = 0 for the high T disordered phase and � 6= 0 for the low T ordered phase). The
first step of the Landau’s approach is the determination of the nature of the order parameter,
which can be a di�cult question : think at the case of antiferromagnet, where magnetization is
zero in the presence of Néel order (alternate spins), or the case of supraconductivity, where the
identification of the nature of the order parameter has taken a long time.

• The Ising model has provided a situation where the order parameter is a real scalar, � 2
[�1, +1].

• The metal/supraconducting transition is an example of phase transition with complex order
parameter � 2 C (the wave function for the condensate of Cooper pairs).

• Magnetization is due to local moments which are vectors. Hence the paramagnetic/ferromagnetic
transition should rather involves a vectorial order parameter ~M . This is important when cou-
plings are isotropic.

• Isotropic-nematic transition in liquid crystal : orientational order is characterised by a tenso-
rial order parameter.

Symmetry.— The discussion of the symmetries is another crucial aspect of the Landau’s ap-
proach, in the same way as particle physicists build e↵ective models constrained by fundamental
symmetries of nature. It is important to have in mind the “symmetry breaking scheme”.

• For the Ising universality class discussed so far, it is pretty simple : the theory has the Z2

symmetry, which is fully broken in the ferromagnetic state :

Para �! Ferro

Z2 �! ? .
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• Let us now consider the case of the Heisenberg model for vectorial spins

HHeisenberg = �J

X

hi,ji

~Si · ~Sj (6.61)

where
P
hi,ji

is a sum over all pairs of neartest neighbout sites of the lattice (i.e. a sum over

the links). ~Si is a three components vector with fixed modulus (the model where the spin
is a two-dimensional vector on the circle is called the XY-model). The model is symmetric
under spin rotation, i.e. under the transformations of the group SO(3) (careful : the lattice
partly breaks the rotational symmetry in space, however the interaction ~Si · ~Sj is invariant

under rotation of spins). The paramagnetic state is characterized by h~Sii = 0, thus it is
also symmetric under the group SO(3). If the system enters the ferromagnetic phase, with
h~Sii = ~M 6= 0, the symmetry is partly broken : there remains a rotational symmetry in the
plane perpendicular to the vector ~M . The symmetry breaking scheme is in this case

Para �! Ferro

SO(3) �! SO(2) .

e) Landau theory for the Ising universality class

We construct the Landau free energy for the Ising problem (we have in mind a magnet with
local ferromagnetic interaction) : The order parameter is a real scalar in this case, �⇤(T, h) = �i.
It is a function of the temperature and the magnetic field h. In the absence of the magnetic
field, the Z2 symmetry holds, thus fL(��; T, 0) = fL(�; T, 0) and we should retain only terms of
a series with even powers in � : fL(�; T, 0) =

P
1

k=0
a2k(T )�2k. The coupling to the conjugate

field h is linear, hence we add a term �h� :

fL(�; T, h) ' f0(T )� h�+
a(T )

2
�

2 +
b

4
�

4 (6.62)

The study of the fully connected model has shown that a change in sign of a(T ) induces a change
in the nature of the solution. We write

a(T ) = ã (T � Tc) , (6.63)

with ã > 0. We have chosen the coe�cient b > 0 and independent of T for simplicity : we can
stop the expansion at order four. Although the starting point is extremely simple, we will see
that the outcome are not trivial.

- Exercice 6.13 : What are the parameters f0, a and b corresponding to the fully connected
model discussed above ?

Field equation .— The equation for the order parameter, Eq. (6.60), takes the explicit form

b�
3 + a(T )� = h . (6.64)

We denote �⇤(T, h) the solution of the equation.

Solution at h = 0.— For h = 0, Eq. (6.64), (b�2 + a)� = 0 has di↵erent types of solutions,
depending on the sign of a.

• a > 0 (i.e. T > Tc) : �⇤(T, 0) = 0. This is the paramagnetic phase.

• a < 0 (i.e. T < Tc) : �⇤(T, 0) = ±
p
�a/b (the system chooses one solution). This is the

ferromagnetic phase.
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We write

�⇤(T, 0) =

(
0 for T > Tc

±
q

ã

b
(Tc � T ) for T < Tc

(6.65)

This shows that the mean field critical exponent for the order parameter is

�mf = 1/2 (6.66)

We can now derive the free energy. For T > Tc we find f(T, 0) = fL(�⇤; T, 0) = f0(T ) while for
T < Tc we get f(T, 0) = f0(T ) + 1

2
a�

2
⇤ + 1

4
b�

4
⇤ = f0(T )� a

2
/(4b) thus

f(T, 0) = f0(T )�
(

0 for T > Tc

ã
2

4b
(T � Tc)2 for T < Tc

(6.67)

The free energy is lower in the ferromagnetic phase. With this in hand, we can deduce the heat

capacity c(T ) = �T
@
2
f

@T 2 :

c(T ) = �T
@

2
f0(T )

@T 2
+

(
0 for T > Tc

ã
2
T

2b
for T < Tc

(6.68)

thus the heat capacity makes a jump at the transition

�cmf

def

= c(T�c )� c(T+

c ) =
ã

2
Tc

2b
(6.69)

The discontinuity is interpreted in terms of the heat capacity critical exponent, defined by
c(T ) ⇠ |T � Tc|�↵, by writing ↵mf = 0 .

Solution at h 6= 0 : isotherm.— The isotherm (the curve of the magnetization �⇤ as a
function of the field h) is easy to analyze : we can simply plot the field as a function of �,
which is the elementary function Eq. (6.64), and perform a rotation. For T > Tc, this gives
the monotoneous function (Fig. 43). For T < Tc, this would give the ”multivalued” function ;
with our experience of the van der Waals theory, we understand however that the branch with
positive magnetisation for negative field is metastable (Fig. 43). Let us now study few properties
of the isotherms.

Figure 43: Ising isotherms.

It is pretty easy to study the critical isotherms, for T = Tc, i.e. a = 0 :

�⇤(Tc, h) = sign(h) |h/b|1/3 (6.70)

corresponding to the generic behaviour � ⇠ h
1/�. We identify the mean field prediction for the

critical exponent �mf = 3 .
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We can also derive the magnetic susceptibility �, which controls the linear response of the
magnetization to an external field. We write

�⇤(T, h) = �⇤(T, 0) + �� with �� ' �h (6.71)

We can obtain �� by a perturbative method. Denote �⇤0 = �⇤(T, 0). Injecting the form in (6.64)
and keeping only linear order terms in h we have

(3b�
2

⇤0 + a) �� ' h (6.72)

so that

� =
1

3b�
2

⇤0
+ a

=

(
1

a
= 1

ã (T�Tc)
for T > Tc

1

�2a
= 1

2ã (Tc�T )
for T < Tc

(6.73)

thus we have the behaviour �(T ) ' A± |T � Tc|�� where the (universal) critical exponent is
�mf = 1 and the non universal constant A± di↵ers above and below the transition : A�/A+ =

1/2.

Remark : transition between low field to high field regimes.— we have just analysed
the low field regime, for which �⇤(T, h) ' �⇤(T, 0) + �h for h ! 0. The study the high
field regime corresponds to neglect the second term in b�

3 + a� = h ! b�
3 ' h, leading to

�⇤(T, h) ' (h/b)1/3 for h!1. The crossover field separating the two regimes is clearly

hc =
|a|3/2p

b
/ |T � Tc|3/2 . (6.74)

h . hc is the ”small field regime” and h & hc is the ”high field regime”.

Figure 44: Evolution of the Landau free energy for T < Tc as a function of h.

2nd order and 1st order phase transitions in the Ising universality class.– Our
presentation of the Landau theory of phase transition is adapted to problems in the “Ising
universality class”. Setting h = 0, the temperature T drives a second order phase transition,
i.e. �⇤(T, 0) is continuous. If now we consider a di↵erent protocol and consider T < Tc fixed
and vary the field, i.e. study �⇤(T, h) as a function of h, Fig. 43 shows that the magnetization is
discontinuous at h = 0, i.e. the phase transition is now first order. The di↵erence is extremely
easy to understand by studying the Landau free energy : in the first case, we have the scenario
represented in Fig. 42, which makes clear that �⇤ is continuous when the concavity of fL at � = 0
changes in sign. In the second situation, the evolution of the free energy as the conjugated field
changes from negative to positive is represented in Fig. 44 : this makes clear that the order
parameter is discontinuous around h = 0 (cf. Fig. 43).

It is insteresting to plot the free energy as a function of the conjugated field (Fig . 45). The
existence of the spontaneous magnetization corresponds to the singular behaviour of the free
energy around h = 0 for T < Tc.
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Figure 45: Magnetization and free energy for t = 0.5, t = 0 and t = �0.5 (where t = (T�Tc)/Tc).

- Exercice 6.14 Non analyticity of f(T, h) : Consider the Landau free energy fL(�) =
f0(T ) � h� + a

2
�

2 + b

4
�

4. Deduce the behaviour of the free energy f(T, h) and analyze its
analyticity for T ! Tc and h! 0.
Hint: use the limiting behaviours of �⇤(T, h).

- Exercice 6.15 Helium-4 / helium-3 : Liquid helium-4 presents a second order phase
transition between a normal fluid phase and a superfluid phase. The situation is more com-
plicated if helium-3 is added. For a small concentration of helium-3, the second order phase
transition is weakly a↵ected. However, a high concentration of helium-3 makes possible the
coexistence between a superfluid phase, rich in helium-4, and a normal fluid, rich in helium-3,
hence the transition becomes first order.
A simple model is to consider the Landau free energy

fL(�) ' f0 +
a

2
�

2 +
b

4
�

4 +
c

6
�

6 (6.75)

with c > 0. Compare the situation when a changes in sign with b > 0 and the one where b

changes in sign with a > 0. Argue that the transition is first order in one case and second order
in the other case. Find the first order line in the plane (a, b).

Two remarks :

⇤ In the plane (a, b), the point (0, 0) is the intersection of three transition lines : it is called a tri-critical

point.

⇤ Blume-Emery-Gri�ths have proposed a microscopic model within which it is possible to justify the

form (6.75). The coe�cients a and b are controlled by the temperature T and the concentration x in

helium-3, hence there is a mapping from (a, b) to (T, x).

Ising model and VdW model : the discussions made clear the perfect analogy between the
liquid/gas and para/ferro transitions. If the isotherms �⇤(T, h) of Fig. 43 are rotated by 90 o,
we recover exactly the same behaviour as the VdW isotherms : compare the Figs. 32 and 43.

liquid/gas para/ferro
order parameter � : �n = nL � nG $ m (magnetization)
conjugated field h: p (pressure) $ B (magnetic field)

6.3 The case of inhomogeneous systems : Ginzburg-Landau’s approach

The situation where the order parameter is inhomogeneous is relevant in several physical situa-
tions :

• it is possible to act on the order parameter by imposing a non-uniform conjugate field h(~r),
which will induces a spatial dependence �(~r).
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• In a finite size system, boundary conditions can act as a constraint on the value of the field.
For example, studying a piece of superconductor in contact with a normal metal imposes that
the order parameter of superconductivity vanishing at the interface.

Developping a more elaborate theory for spatial-dependent order parameter will be important
for the following and the discussion of fluctuations.

Figure 46: Lev Davidovich Landau (1908-1968), Nobel prize 1962, and Vitaly Lazarevitch
Ginzburg (1916-2009), Nobel prize 2003.

a) Landau-Ginzburg functional

Coarse-graining.— Our starting point is again the Ising model for nearest neighbour inter-
action, Eqs. (6.30,6.31). We divide the lattice of N sites into blocks of n` = `

d spins, with `� 1
(many spins in each block) and N/n` � 1 (many blocks), cf. Fig 47.

c
e
ll

s

zoom

out
r r’

ε

Figure 47: We consider blocks, each of n` = `
d lattice sites.

The size of the block is chosen such that we can assume that the order parameter is almost
uniform in each block, say �r in the block around r (I omit the arrow on the vector). We
introduce an incomplete partition function, constrained by the value of the order parameter in
each block :

ZL({�r}) =
X

{�i}

e��H({�i})
Y

r

�
�r,

1

n
`

P
i2block r

�i
(6.76)

and

Z(T, N) '
⇣

n`

2

⌘
N/n`

Z Y

r

d�r ZL({�r}) (6.77)

(in a block, the magnetization varies by step 2/n`). We can split the Ising Hamiltonian as

H = �J

X

hi,ji

�i�j =
X

block r

Hr +
X

hr,r0i

Hr,r0 (6.78)
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where Hr is the Ising Hamiltonian for block r (i.e. gathers all the interaction terms corresponding
to links inside the block) and Hr,r0 the interface energy between two adjacent blocks (links joining
the two blocks), cf. Fig 47. All spins belong to one block, therefore

ZL({�r}) =
Y

r

✓ X

{�i2block r}

e��Hr�
�r,

1

n
`

P
i2block r

�i

◆ Y

hr,r0i

e��Hr,r0 (6.79)

In the parenthesis, we recognize the incomplete partition function for the homogeneous problem
associated with a block of n` spins, ZL(�r; T, n`) ⇠ e�n`�fL(�r). The product over the blocks is

⇣
· · ·
⌘

= ZL(�r; T, n`) ⇠ exp

⇢
� �`dfL(�r)

�
(6.80)

We can treat the two products in (6.79) only if we neglect the dependency of the Hr,r0 terms in
the spin variables, i.e. if we replace in the terms in Hr,r0 the spins by their averaged �i ! �i = �r.
We justify this by the fact that Hr contains a larger number of terms, `d (volume), compared
to Hr,r0 which contains `d�1 terms (surface). Thus we write

Hr,r0 = +
J

2

X

hi, ji between

blocks r & r
0

(�i � �j)2 + cste ' J`
d�1

2
(�r � �r0)2 + cste (6.81)

where `d�1 is the number of links between the two blocks. Finally

ZL({�r}) ⇠ exp

⇢
� �J`

d�1

2

X

hr,r0i

(�r � �r0)2 � �`d
X

r

fL(�r)

�
. (6.82)

After summation over all the pairs of neighbouring blocks, for a smooth order parameter, we
have

X

hr,r0i

(�r � �r0)2 =
1

2

X

r

X

r02v(r)

(�r � �r0)2 ' (`✏)2
Z

dd
r

(`✏)d
(r�r)2 (6.83)

where ✏ is the lattice spacing and `✏ is the block size. v(r) the set of 2d neighbouring blocks.
Thus

ZL({�r}) ⇠ exp

⇢
��J`✏

2�d

2

Z
dd

r (r�r)2 � �✏�d
Z

dd
r fL(�r)

�
(6.84)

We now adopt notations for a continuous field �(r). The incomplete partition function becomes
a functional ZL[�]. Setting g = J`✏

2�d
/2 and absorbing the factor ✏�d in a redefinition of the

coe�cients of the Landau free energy, we conclude that

ZL[�] ⇠ e��FL[�] where FL[�] =

Z
dd

r
⇥
g (r�(r))2 + fL(�(r))

⇤
(6.85)

is the Ginzburg-Landau functional.
The partition function is given by a ”path integral”, i.e. a summation in the space of functions

�(r) defined inside the volume V of the system,

Z(T ) =

Z
D� e��FL[�] (6.86)

where D� should be understood as the limit of
Q

r
d�r. The exponential controls the canonical

weight of a field configuration :

P [�] =
1

Z
e��FL[�]

. (6.87)
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Another point of view on the Ginzburg-Landau functional : here, I have made an
attempt to justify the Landau functional from the microscopic model. There is another point
of view, more phenomenological : assuming the existence of such a functional, we propose an
expansion (assume analyticity) and use the symmetries. For h = 0 it must be symmetric under
�! ��. The simplest assumption is to assume locality and expand in powers of gradients :

FL[�] =

Z
dd

r

⇢
1

2
a�

2 +
1

4
b�

4 + · · · + g
1

ij @i�@j�+ g
2

ij �
2
@i�@j�+ g

3

ijkl
@i�@j�@k�@l�+ · · ·

�

Isotropy constrains the gradient terms, g
1

ij
= g �ij , etc. As for the Landau free energy, the

expansion is stopped as soon as possible. Here we will only keep the first term involving the
gradient, g(r�)2, which already describes interesting e↵ects as we will see.

- Exercice 6.16 : Consider the functional FL[�] =
R

dd
r
⇥
g1(r�)2 + g2(r2

�)2 + fL(�)
⇤
with

fL(�) = 1

2
a�

2 + 1

4
b�

4, g2 > 0 and b > 0. Argue that the optimal configuration may present
spatial modulations for g1 < 0.
Hint: compare the free energy of a flat configuration �f (x) = �0 with those of a modulated configuration �m(x) =

�q cos(qx+'0) (in this second case, both q and �q should be understood as variational parameters to be determined).

We now have to minimize the functional FL[�] in order to find the configuration of the field
which minimizes the free energy and dominates the calculation of the partition function, i.e.
with maximal probability weight :

Z(T ) ⇠ e��FL[�⇤]
. (6.88)

In order to determine �⇤, we study a variation of the functional due to a variation of the field
�! �+ �� :

FL[�+ ��] ' FL[�] +

Z
dd

r
⇥
2gr�r��+ f

0

L(�) ��
⇤
+ O(��2) (6.89)

= FL[�] +

Z
dd

r
⇥
� 2g��(r) + f

0

L(�(r))
⇤
��(r) = FL[�] +

Z
dd

r
�FL[�]

��(r)
��(r)

where we have introduced the ”functional derivative”

�FL[�]

��(r)
= �2g��(r) + f

0

L(�(r)) . (6.90)

Functional derivation.— Consider a function F of a vector ~� = (· · ·�r · · · ). We write the
Taylor expansion :

F (~�+ �~�) = F (~�) +
X

r

@F (~�)

@�r
��r +

1

2

X

r,r0

@
2
F (~�)

@�r@�r0
��r ��r0 + · · ·

Note the relation @�x/@�y = �x,y, useful to perform derivations.
Consider now a functional F [�(r)] (an application from a space of functions to R or C). Consid-

ering �(r) as the ”component” of the ”vector” �, we write the expansion

F [�+ ��] = F [�] +

Z
dd

r
�F [�]

��(r)
��(r) +

1

2

Z
dd

rdd
r

0
�
2
F [�]

��(r)��(r0)
��(r)��(r0) + · · · (6.91)

A useful formula is
��(r)

��(r0)
= �(r � r

0) (6.92)

This relation with the usual rules for derivation allows to compute any functional derivative.

Examples : �

��(r)

R
dd

x�(x)n = n�(r)n�1, �

��(r)

R
dd

x e��(x) = � e��(r), etc.
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The equation for the optimal configuration �⇤ of the order parameter is now

�FL[�]

��(r)

����
�⇤(r)

= 0 (6.93)

or more explicitely
�2g��⇤(r) + f

0

L(�⇤(r)) = 0 . (6.94)

Let us now consider the case introduced above, with fL(�) = �h� + a

2
�

2 + b

4
�

4. We can also
consider a non uniform conjugated field : in this case FL[�] contains a term �

R
dd

r h(r)�(r).
We obtain finally the equation for the optimal field configuration :

�2g��⇤(r) + a�⇤(r) + b�⇤(r)
3 = h(r) (6.95)

This is a non linear partial di↵erential equation : such equations are in general extremely di�cult
to solve. Still, two situations can be analyzed :

• The case of a problem e↵ectively one-dimensional, for example invariant by translation in
two directions : �⇤(~r) ! �⇤(x) and the field equation is an ordinary (nonlinear) di↵erential
equation �2g �

00
⇤(x)+f

0

L
(�⇤(x)) = 0 which can be solved. We can study the interface problem

and answer to the interesting question of the related energy cost.

• Assuming a small field, we can look for solutions which are small perturbations around the
uniform solution : �⇤(r) = �0 +'(r) where f

0

L
(�0) = 0 and '! 0 (�0 was denoted �⇤ above).

Then we can linearize the di↵erential equation and apply standard techniques.

b) Perturbation on the top of a uniform solution

We study solutions of (6.95) of the form

�⇤(r) = �0 +

”small” modulationz}|{
'(r) (6.96)

where �0 = 0 for T > Tc and �0 =
p
�a/b for T < Tc is the uniform solution (6.65). Lineariza-

tion of the field equation (6.94) gives the linear di↵erential equation

�2g�'(r) + f
00

L(�0)'(r) ' h(r) (6.97)

Correlation length.— We identify an important length scale ⇠

1

⇠2

def

=
f
00

L
(�0)

2g
=

a + 3b�
2

0

2g
=

(
a

2g
for T > Tc

�a

g
for T < Tc

(6.98)

Clearly the new length scale is a direct consequence of the introduction of the elastic term in the
Landau functional. Dimensional analysis indeed that the dimensions of the various parameters
are

[h] =
E

Ld[�]
[a] =

E

Ld[�]2
, [b] =

E

Ld[�]4
, [g] =

E

Ld�2[�]2
, (6.99)

where I used that fL has dimension of an energy density. With the introduction of g, we can
now introduce the length scale

p
g/|a|. Being the unique length scale involved in the di↵erential

equation for ', it coincides with the typical length over which the field varies, hence it can
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be interpreted as the correlation length (this will become more clear when we will analyze the
correlation of the field, below). Explicitly it presents the temperature dependence

⇠(T ) =

8
<

:

q
2g

ã(T�Tc)
for T > Tcq

g

ã(Tc�T )
for T < Tc

(6.100)

The most important feature is its divergence for T ! Tc : correlations manifest at larger and
larger scales as the critical point is reached. In general we write

⇠(T ) / |T � Tc|�⌫ (6.101)

in terms of a new critical exponent. The mean field (Landau-Ginzburg) theory thus gives

⌫mf = 1/2 .

Green’s function and response function.— We now come back to the di↵erential equation

(��+ ⇠
�2)'(r) ' 1

2g
h(r) . (6.102)

Such equation is conveniently solved by introducing the Green’s function G of the equation, i.e.
the solution of

(��+ ⇠
�2) G(r) = �(r) . (6.103)

Given G, we can write the solution as a convolution

'(r) =

Z
dd

r
0
G(r � r

0)
h(r0)

2g
. (6.104)

This shows that the Green’s function coincides here with the “response function” which charac-
terizes the linear response due to the introduction of the field

�⇤(r) = �0 +

Z
dd

r
0
�(r � r

0) h(r0) + O(h2) (6.105)

with

�(r) =
1

2g
G(r) (6.106)

in the same spirit as in the first part of the course, with now some additional spatial dependence.

Calculation of the Green’s function.— Let us start with the d = 1 case : �G
00(x) +

⇠
�2

G(x) = �(x) is pretty easy to solve. The solution decaying at infinity is G(x) = A±e⌥x/⇠

for x 2 R±. The solution must be continuous at the origin, A+ = A� and should satisfy the
matching condition �G

0(0+) + G
0(0�) = 1. Hence

G(x) =
⇠

2
e�|x|/⇠ in d = 1 . (6.107)

This makes clear that the value of the order parameter at x, '(x) = ⇠

4g

R
dx
0 e�|x�x

0
|/⇠

h(x0)

involves only the field at distance |x0 � x| . ⇠, hence the interpretation of ⇠ as a correlation
length.

In order to derive the general expression for G (in any dimension), it is more convenient to
use Fourier transform, leading to :

G(~r) =

Z
dd
~q

(2⇡)d
ei~q·~r

~q 2 + ⇠�2
(6.108)

106



The multiple integral can be made separable with the following trick : introduce

1

~q 2 + ⇠�2
=

Z
1

0

dy e�y(~q
2
+⇠

�2
) (6.109)

then the integral over ~q is a simple Gaussian multiple integral and we are left with the integral
representation

G(~r) =
1

(4⇡)d/2

Z
1

0

dy

yd/2
e�y/⇠

2
�~r

2
/(4y)

. (6.110)

This representation is convenient to analyze the limiting behaviours.

- Exercice 6.17 : Deduce the limiting behaviours of the Green’s function (for r ⌧ ⇠ and
r � ⇠) from asymptotic analysis on the integral representation (6.110).

However a little knowledge on special functions shows that the integral corresponds to the
MacDonald function K⌫ for ⌫ = (d� 2)/2 (modified Bessel function of third kind) :

G(~r) =
1

(2⇡)d/2(r⇠)
d

2
�1

K d

2
�1

(r/⇠) (6.111)

where r = ||~r||. Using the limiting behaviours [15, 1]

K⌫(z) ' �(⌫)

2

⇣
z

2

⌘
�⌫

for z ! 0 with ⌫ 6= 0 (6.112)

K⌫(z) '
r

⇡

2z
e�z for z !1 (6.113)

K0(z) ' ln(2/z)�C for z ! 0 (6.114)

where C = 0.577... is the Euler-Mascheroni constant, we conclude that

G(~r) ⇠
r!0

8
><

>:

⇠ for d = 1

ln(⇠/r) for d = 2

r
�d+2 for d > 2

(6.115)

and

G(~r) ⇠
r!1

1

r
d�2

2

e�r/⇠ . (6.116)

Using the limiting behaviour of the MacDonald function, we get the behaviour of the Green’s
function at the critical point (i.e. for ⇠ !1) :

G(~r) =
�(d

2
� 1)

4⇡d/2
1

rd�2
for T = Tc . (6.117)

In d = 2 we obtain 34
G(~r) = � 1

2⇡
ln r.

c) Summary of critical exponents in the mean field approximation

We summarize in all the critical exponents introduced above. Introducing the rescaled temper-
ature, t = (T � Tc)/Tc, the scaling behaviour with mean field exponents are given in table 1
below (page 117).

34The 2D result can be deduced from (6.117) by dimensional regularization : write d = 2+ ✏ and let ✏! 0 in in
the expression (use �(z) ' 1/z for z ! 0. The infinite term is a constant and can be disregarded as the Green’s
function is defined up to a constant.
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7 Beyond mean field

The development of the Ginzburg-Landau theory has led to the representation of the partition
function in terms of a path integral over the order parameter :

Z =

Z
D� e��FL[�] with FL[�] =

Z
dd

r
⇥
g (r�(r))2 + fL(�(r); h(r))

⇤
, (7.1)

where fL(�; h) = f0 � h� + 1

2
a�

2 + 1

4
b�

4 is the Landau free energy. Correspondingly, the
(canonical) weight of a field configuration is

P [�] =
ZL[�]

Z
/ e��FL[�]

. (7.2)

This representation of Z was deduced from the coarse graining procedure, by assuming that the
field �(r) is smooth (at the scale of the lattice). In a more precise presentation, the passage
from the original Ising partition function (6.37) to (7.1) means that we have “integrated over
the short scale fluctuations” to get a representation of Z involving only large scale fluctuations.

7.1 Fluctuation-response relation

In this paragraph, we first discuss how we can characterize, in practice, the fluctuations/correlations.
The continuous formulation is quite interesting : the partition function Z is a functional of the
conjugated field configuration h(r), which allows to obtain a formula for the mean value of the
field. The field h(r) is conjugated to the order parameter, hence FL[�] contains the term �

R
h�

and thus :
�FL[�]

�h(r)
= ��(r) . (7.3)

Using this relation, we find

�

�h(r)
ln Z =

1

Z

�

�h(r)

Z
D� e��FL[�] =

�

Z

Z
D� �(r) e��FL[�] (7.4)

i.e. the canonical average of the field is

h�(r)i =
1

�

�

�h(r)
ln Z = � �F

�h(r)
, (7.5)

which is the local version of the well known formula M
c

= �@F

@B
. In the same way we can write

the correlation function as
⌦
�(r)�(r0)

↵
=

1

�2Z

�
2
Z

�h(r)�h(r0)
(7.6)

etc. One can easily check that the connex correlation function is

Ch(r, r
0) =

⌦
�(r)�(r0)

↵
c

def

=
⌦
�(r)�(r0)

↵
� h�(r)i h�(r0)i =

1

�2

�
2

�h(r)�h(r0)
ln Z (7.7)

This relation shows that the correlator can be written as a derivative of the averaged value

Ch(r, r
0) =

1

�

�

�h(r0)
h�(r)i (7.8)

The mean value of the field h�(r)i can be expanded in powers of the conjugated field as follows

h�(r)i
��
h

= h�(r)i
��
0
+

Z
dd

r
0
�(r � r

0) h(r0) + O(h2) (7.9)
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where �(r) is the (linear) response function introduced above. This follows from the fact that
the measure P [�] is strongly concentrated around �⇤(r) (assumption of the Ginzburg-Landau
approach), hence h�(r)i = �⇤(r) where �⇤(r) solves (6.93). The above equation is nothing else
but the expansion (6.105). This shows that

� h�(r)i
��
h

�h(r0)
= �(r � r

0) + O(h) (7.10)

and thus we obtain the important ”fluctuation-response” relation

�(r � r
0) = � C(r � r

0) (7.11)

where C(r � r
0) = Ch=0(r, r0) is the correlator for h = 0. 35 This relation is a ”fluctuation-

response” relation, as it relates the response function, controlling how the field ”responds” to
the introduction of an external field, and the fluctuations. This is also called the “fluctuation-
dissipation theorem” (although dissipative phenomena in principle involve the dynamic response
function, and not the static one, as we have seen in the first part of the lectures).

Note that (7.11) is the local version of the relation � = �@
2
F

@B2

��
B=0

= h�M2i/(kBT ) [48].
We have analyzed in great detail the Green’s function above. All functions can thus be

related :

�(r) = � C(r) =
1

2g
G(r) (7.12)

where G is given by (6.111). The Green’s function decay exponentially as C(r) ⇠ G(r) ⇠
exp{�||r||/⇠}, hence the field is only correlated over length scales smaller than ⇠, which provides
a more direct definition of ⇠ as a correlation length.

A last critical exponent : The result obtained above for the Green’s function characterizes
the correlations of the field C(r) = h��(r)��(0)i, where ��(r) = �(r) � h�(r)i. Away from the
critical point, the correlations are short range and decay over the scale ⇠. Exactly at the critical
point (T = Tc and h = 0), we rather obtain the power law behaviour

C(~r) ⇠ 1

rd�2+⌘
for T = Tc (7.13)

with a critical exponent ⌘. The mean field approximation (behaviour C(r) = Tc

2g
G(r) ⇠ ||r||�d+2

at T = Tc given above) thus predicts ⌘mf = 0 .

7.2 The Gaussian approximation and the ”one-loop” correction

Preliminary (technical) : steepest descent approximation : We have used above the
formula Z

d� e�kf(�) '
k!1

s
2⇡

kf 00(�⇤)
e�k f(�⇤) (7.14)

where �⇤ is the minimum of f(�) (assumed to have a unique minimum).
The generalization to an integral over RD is not di�cult (still assuming the existence of a

unique minimum). It requires a Gaussian integration in RD

Z
dD~� e�k f(~�) '

k!1

(2⇡/k)D/2

q
det(@i@jf |~�⇤

)
e�k f(~�⇤) with

@f

@�i

����
~�⇤

= 0 8 i . (7.15)

35In the presence of the conjugated field h(r), the correlator Ch(r, r0) is not translation invariant. However
when h(r) ! 0 (or uniform in space), translation invariance is restored, as shown by the calculation of �(r � r

0).

109



Denoting by �i > 0 the eigenvalue of the D ⇥D Hessian matrix Hij = @i@jf |~�⇤
, we can rewrite

the formula as
Z

dD~� e�k f(~�) '
k!1

1qQ
D

i=1

k �i

2⇡

e�k f(~�⇤) =
1q

det
⇥

k

2⇡
H
⇤ e�k f(~�⇤)

. (7.16)

a) E↵ect of fluctuations on the thermodynamic properties

Start first with the formulation developped in § 6.2 : Eq. (6.47) can be rewritten as

F (T, N)

N
' fL(�⇤; T )| {z }

mean field

+
1

N

T

2
ln

✓
2�f

00

L
(�⇤; T )

⇡N

◆

| {z }
uniform fluctuations

(7.17)

where the second contribution originates from the Gaussian integration around �⇤, i.e. the e↵ect
of the fluctuations of � around its average in the calculation of (6.43). Of course, this fluctuation
term disappears in the thermodynamic limit N !1. This approach is however very schematic :
the system is not characterized by a single degree of freedom (the spatial average of the local
magnetization � = 1

N

P
i
�i), but by a macroscopic number of degrees of freedom Ndf . Hence,

we expect rather the structure

F (T, N)

N
' fL(�⇤; T )| {z }

mean field

+
Ndf

N

T

2
ln (· · · )

| {z }
fluctuations of Ndf modes

(7.18)

Because Ndf ⇠ N , the contribution of fluctuations has no reason to vanish in the thermodynamic
limit.

b) Calculation of the “one-loop” correction

The path integral formulation provides a simple way to formulate the calculation of the con-
tribution of fluctuations. Let us expand the free energy functional around the optimal solution
as

FL[�⇤ + ⌘] ' FL[�⇤] + g

Z
dd

r ⌘(r)(��+ ⇠
�2)⌘(r) (7.19)

where ⌘(r) is a fluctuation. The calculation of the partition function is reduced to a Gaussian
path integral

Z =

Z
D� e��FL[�] ' e��FL[�⇤]

Z
D⌘ e��g

R
d
d
r ⌘(r)(��+⇠

�2
)⌘(r) (7.20)

(Jacobian is one, D� = D⌘ since � = �⇤ + ⌘ is a translation). Remembering that the original
problem was defined on a lattice, we extend the formula for Gaussian integration in RD to the
path integration and write

Z ' 1q
det[�g

⇡
(��+ ⇠�2)]

| {z }
fluctuations

e��FL[�⇤]

| {z }
mean field

(7.21)

where the only remaining di�culty is to give a precise meaning to the determinant of the
operator. This provides the first correction to the mean field solution :

F = FL[�⇤] +
1

2�
ln det


�g

⇡
(��+ ⇠

�2)

�
⌘ FL[�⇤] + �F1 loop . (7.22)
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This correction is known as the “one-loop correction” (this terminology comes from the dia-
grammatic methods).

The determinant can be expressed as a product over the eigenvalues of the operator : here
the spectrum of eigenvalues of the Laplace operator � is simply �~q 2 :

�F1 loop =
T

2
ln

0

@
Y

~q

h
g

⇡T
(~q 2 + ⇠

�2)
i
1

A (7.23)

We have obtained a simple formula, however the problem comes from the infinite product

Y

~q

h
g

⇡T
(~q 2 + ⇠

�2)
i

=1 (7.24)

as the spectrum of �� is not bounded from above. Let us now see how one can solve this
problem.

Cuto↵s.— We should remember that the original model is a lattice model for a finite volume
(finite number of spins). The continuous Laplace operator arises here only due to the contin-
uous description. Coming back to the lattice model would have mostly produced a ”discrete
Laplacian”.

• Large scale (”infrared”) cuto↵ : the existence of a finite volume V = L
d implies that sum-

mation over ~q is discrete (wave vectors are quantized) and the smaller allowed wave length is
q ⇠ 1/L.

• Small scale (”UV”) cuto↵ : the existence of a lattice with lattice spacing ✏ implies that the
largest wave length is q ⇠ 1/✏ (in principle wave vectors belong to the Brillouin zone, of size
⇠ 1/✏).

In conclusion
1

V

X

~q

!
Z

1/L<q<1/✏

dd
~q

(2⇡)d
(7.25)

We now consider the correction to the free energy per unit volume, �f1 loop

def

= �F1 loop/V ,

�f1 loop =
T

2

Z

q<1/✏

dd
~q

(2⇡)d
ln
h

g

⇡T
(~q 2 + ⇠

�2)
i

(7.26)

where we have forgotten the IR cuto↵, which is now played by the correlation length ⇠, as we
will see clearly. As anticipated, we have obtained that the fluctuations give a finite contribution
to the free energy in the thermodynamic limit, as the number of degree of freedom is extensive.

- Exercice 7.1 Regularization : lattice of blocks : The original model is a lattice model.
Starting from (6.82) we can come back to the discrete formulation and replace the Ginzburg-
Landau function by

FL({�r}) =
J`

d�1

2

X

hr,r0i

(�r � �r0)2 + `
d
X

block r

fL(�r) (7.27)

where (�r is the field in block r. The blocks form a square lattice with lattice spacing `✏.
Assuming a finite size (a finite number of spins), derive a formula for �f1 loop = �F1 loop/V , the
correction to the free energy per unit volume due to field fluctuations. Compare with (7.26).

111



The most interesting property is the heat capacity. Because the correlation length diverges as
T ! Tc, we anticipate that the most important temperature dependency is those of ⇠. Hence, we
simplify the calculation by doing T ! Tc for the temperature in factor in (7.26). We introduce
the rescaled temperature

t
def

=
T � Tc

Tc

(7.28)

thus the one-loop correction to the heat capacity is

�c1 loop(t) = �T
@

2
�f1 loop

@T 2
' � 1

Tc

@
2
�f1 loop

@t2
(7.29)

leading to

�c1 loop(t) '
1

2

✓
@⇠
�2

@t

◆2 Z

q<1/✏

dd
~q

(2⇡)d
1

(~q 2 + ⇠�2)2
(7.30)

If we want to study the case ⇠ =1, then we have to reintroduce the IR cuto↵ ⇠ ! L.
We write Eq. (6.98) as

1

⇠2
=

ãTc

2g

(
t for T > Tc

�2t for T < Tc

(7.31)

leading to

@⇠(t)�2

@t
= ⇠(1)�2

(
1 for T > Tc

�2 for T < Tc

(7.32)

where ⇠(1) =
p

2g/ãTc. Performing the integration as

Z

q<1/✏

dd
~q

(2⇡)d
1

(~q 2 + ⇠�2)2
⇠
Z

1/✏

0

dq
q
d�1

(q2 + ⇠�2)2
'
Z

1/✏

1/⇠

dq q
d�5 (7.33)

we conclude that

�c1 loop(t) ⇠
✓
@⇠
�2

@t

◆2

⇥
(

1

4�d

�
⇠
4�d � ✏4�d

�
for d 6= 4

ln(⇠/✏) for d = 4
(7.34)

The most interesting feature is the dependency in the dimension, which we discuss below.

- Exercice 7.2 : Show that the derivation of (7.30) has neglected a contribution to �c1 loop(t)

�c
forgotten

1 loop
= �

✓
@⇠
�2

@t

◆Z

q<1/✏

dd
~q

(2⇡)d
1

~q 2 + ⇠�2
(7.35)

Argue that it is negligible.

Case d > 4 : above dimension four the integral is dominated by the UV cuto↵, thus the
correction

�c1 loop(t) ⇠ ⇠(1)�4
✏
4�d ⇥

(
1 for T > Tc

4 for T < Tc

(7.36)

where I have reintroduced the factor (@⇠
�2

@t
)2. Hence the correction is independent of the tem-

perature (apart for the jump around Tc).

Case d = 4 : this is called the “marginal” case. In general logarithmic corrections appear.
Here we have obtained

�c1 loop(t) ⇠ �⇠(1)�4 ln |t| . (7.37)
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Case d < 4 : In this case the correction is dominated by the large scales and we get a
temperature dependence

�c1 loop(t) ⇠
✓
@⇠
�2

@t

◆2

⇠(t)4�d (7.38)

The mean field correlation length diverges at Tc, as ⇠(t) = ⇠(1)|t|�1/2 (for t > 0), thus we get a
diverging correction

�c1 loop(t) ⇠ ⇠(1)�d |t|�
4�d

2 ⇥
(

1 for T > Tc

4 for T < Tc

(7.39)

The critical exponent of the heat capacity, c(t) ⇠ A±|t|�↵, has thus changed from ↵mf = 0
(mean field) to

↵1 loop =
4� d

2
. (7.40)

We have also : A+/A� = 1/4.

Figure 48: The specific heat with the one-loop correction. The shaded region corresponds to the
region where mean field breaks down.

7.3 The Ginzburg criterion

a) From the one-loop correction

We have just analysed a first correction �f1 loop to the mean field solution fmf(t) = FL[�⇤]/V

which arises from the fluctuations of the field around �⇤ in the path integral (7.21). The
justification for such an expansion is therefore that fluctuations should remain ”small” and
therefore corrections to thermodynamic property should remain small as well :

fmf(t)� �f1 loop(t) (7.41)

For the heat capacity, we should compare �c1 loop to the jump of the heat capacity obtained
above, �cmf , thus, using the expression for d < 4, we conclude that the validity of the mean
field treatment requires

|t|
4�d

2 � 1

⇠(1)d�cmf

(7.42)

This condition is called the “Ginzburg criterion”. It is fulfilled as t ! 0 for d > 4, which
means that the mean field approximation correctly describes the vicinity of the second order
phase transition only when d > 4 (for the Ising universality class). For d < 4, the condition get
violated as one gets closer to the critical point. The dimension where the transition occur is
called the upper critical dimension : for the Ising university class we have

du = 4 . (7.43)
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b) The Ginzburg estimate

A more direct derivation of the Ginzburg criterion is provided by comparing the field fluctuations
and the averaged field. We introduce the Ginzburg estimate

EG

def

=

R
V

dd
r
R
V

dd
r
0 h��(r)��(r0)i

h R
V

ddr h�(r)i
i
2

(7.44)

where ��(r) = �(r) � h�(r)i. We recognize the connex correlation C(r � r
0) in the numerator.

In the denominator we can write h�(r)i = �⇤, thus, using translation invariance

EG '
R
V

dd
r C(r)

V �2
⇤

(7.45)

We have to consider the situation with largest fluctuations, hence we choose the volume to be
V = ⇠

d : Using that �⇤ =
p

ãTc(�t)/b for t < 0, we see that the denominator is

⇠
d
�

2

⇤ = ⇠
d

ãTc

b
(�t) . (7.46)

The numerator is estimated by using (7.12) and the expression of the Green’s function (6.115,6.116) :
Z

V

dd
r C(r) ⇠ T

g

Z
⇠

0

dr r
d�1

rd�2
⇠ Tc

g
⇠
2 (7.47)

Finally the Ginzburg estimate is

EG ⇠
b ⇠(t)2�d

ã g (�t)
(7.48)

Using the expression (6.69), we get ã g/b = �cmf ⇠(1)2. Finally the Ginzburg criterion takes the
form

EG ⇠
|t|(d�4)/2

�cmf ⇠(1)d
⌧ 1 (7.49)

This is equivalent to (7.42) (however we did not have to assume that d < 4).

c) The upper critical dimension du

Let us summarize the situation :

• In d > 4 = du, the Ginzburg estimate gets smaller as t! 0, thus the singular behaviours close
to Tc, predicted by the mean field picture, are not modified by accounting for the fluctuations.
As mentioned above, the justification for the mean field approximation is that each particle is
surrounded by many neighbours, so that the e↵ect of neighbouring interactions is dominated
by the average rather than the fluctuations. As a result, it would have been natural that the
mean field approximation hold for high dimension, being only asymptotically exact for d!1.
This is indeed what physicists thought until the seventies. At this point, it is important to
distinguish ”universal properties” (like the critical exponents) and ”non universal properties”
(like the expression of Tc as a function of microscopic parameters). What shows the analysis
is that universal properties are correctly predicted by the mean field approximation above
du = 4, while the non universal properties are quantitavely predicted by the mean field only
asymptotically for d ! 1. Still, the existence of the upper critical dimension du = 4 is
remarkable.
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• In d < 4, we expect that the fluctuations are not dominant away from the critical point, as
the correlation length is ”small”, thus the mean field approximation is correct su�ciently far
from Tc, however it does not correctly describe the vicinity of the critical point. There exists
a domain in temperature [Tc � �T⇤, Tc + �T⇤], where (7.42) is violated, however mean field
approximation provides a correct picture out of this region. The window has width

�t⇤ = �T⇤/Tc =
h
�cmf ⇠(1)d

i
�

2

4�d

. (7.50)

The breakdown of the mean field approximation for t! 0 shows that the correct critical ex-
ponents are not those given by the mean field approximation, although the system is expected
to remain critical (because ⇠ !1 as T ! Tc).

• In d = 4, the mean field results are corrected by logarithmic corrections.

In practice, mean field is however still broadly used in many situations as it provides a good
description, although sometimes only qualitative.

It might also be that the region where mean field breaks down is small in practice, i.e. that
�T⇤ is so small that the breakdown of mean field is irrelevant from a practical point of view.
This is for example the case in the theory of superconductivity (BCS theory).

d) The Ginzburg estimate in the general case

The upper critical dimension depends on the nature of the problem (nature of order parameter,
etc). However we can formulate the calculation of the Ginzburg estimate in a more general case.
Using (7.12), we write the numerator of the Ginzburg estimate as

R
dd

r C(r) = T
R

dd
r �(r) =

T � ⇠ |t|�� [the susceptibility � introduced at first is the response coe�cient for a uniform field,
hence it is the integral of the response function �(r)]. The denominator is ⇠d �2

⇤ ⇠ |t|�d⌫+2� .
We get

EG ⇠ |t|��+d⌫�2� (7.51)

The upper critical dimension is the dimension for which the exponent changes in signs, thus

du =
2� + �

⌫
(7.52)

where the three critical exponents are calculated in the mean field approximation.

e) The lower critical dimension dl

In the lectures, we are discussing systems in the ”Ising universality class”, i.e. for a real scalar
order parameter. In d = 2, it was demonstrated by Onsager in 1940 that the model presents
a PARA/FERRO transition. However it is well known that the Ising model for short range
interaction does not exhibit a phase transition in d = 1 : the exact calculation of the free
energy is performed in Exercise 8.1 where it is shown that the free energy is a perfectly regular
function, cf. Eq. (A.156). The reason is that the e↵ect of thermal fluctuations is stronger in
low dimensions and, as dimension diminishes, it eventually prevents the existence of a stable
ordered (ferromagnetic) phase. This occurs when the dimension is lower that the “lower critical
dimension dl”, which is this dl = 1 for the Ising universality class.

7.4 Scaling laws

We have seen that although it is often a good starting point, the mean field approximation
does not provide the accurate description for T ! Tc (for d < du). However, despite it is
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dimension
521 3 4

d
l

du

qualitatively
m.f. qualitatively

correct
quantitatively

wrong

m.f. quantitatively
correct

incorrect

m.f.

Figure 49: Below the lower critical dimension dl, the fluctuations do not allow the existence of
an ordered phase. Between dl and the upper critical dimension du, the mean field provides the
qualitative picture, although it fails to predict the critical exponents. Above du, the mean field
provide the critical exponents (universal properties).

quantitatively wrong, the mean field provides the good qualitative description when d > dl. In
particular it predicts that

⇠ !1 for T ! Tc ,

i.e. the system is critical close to Tc. Leaving to a later discussion the question of the deter-
mination of the critical exponents, we want now to discuss here the consequence of the critical
behaviour (existence of scaling laws). The aim of the paragraph is to show that despite we have
introduced several (six) critical exponents, these exponents are constrained by ”super-universal”
relations. This has a very practical consequence : it is su�cient to measure few of them to get
all exponents, characterizing all scaling properties. The question is thus : what is the minimal
number of exponents which fully characterize the universal properties of a system ?

a) Scaling in the free energy

At this step, it is interesting to come back on the mean field free energy for the Ising model.
The result is f = 1

2
Tc �

2
⇤+

1

2
T ln((1��2

⇤)/4) where the order parameter solves the self-consitent
equation �⇤ = tanh((Tc�⇤+B)/T ) (cf. Exercise 6.9). Introducing h = B/Tc and t = (T�Tc)/Tc,
we get

f(t, h) =
1

2
Tc

�
�(1 + t) ln 4 + �

2

⇤ + (1 + t) ln(1� �2

⇤)
 

where �⇤ = tanh

✓
�⇤ + h

1 + t

◆
(7.53)

is the self-consistent equation for the order parameter. Its expansion for h! 0 near the critical
point takes the form :

1

Tc

f(t, h) '
h!0

8
>><

>>:

�(1 + t) ln 2� 3t
2

4
+ · · ·� |h|

p
�3t

�
1 + 2t

5
+ · · ·

�
+ h

2 1

4t

�
1 + 9t

5
+ · · ·

�
for t < 0

� ln 2� 1

4
(3|h|)4/3 + · · · for t = 0

�(1 + t) ln 2� h
2 1

2t
+ · · · for t > 0

(see Fig. 45). Although the problem (the calculation of the partition function) is controlled by
three dimensional parameters, T , J and B, there exists a point (T = Tc, B = 0) around which
the free energy exhibits power law behaviours, in both arguments h and t.

Numerical results (Table 1) and experiments show that we expect in general the following
behaviours

f(t, h) '
h!0

freg(t, h)�

8
>><

>>:

a� (�t)2�↵ + b|h| (�t)� + c�h
2 (�t)�� for t < 0

d |h|1+1/� for t = 0

a+ t
2�↵ + c+h

2
t
�� for t > 0
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where a±, b, c± and d are non universal constants and ↵, �, � and � a set of four universal
critical exponents. The aim of the paragraph is to show that there exists super-universal relations
between the critical exponents.

exponent quantity behaviour Ising 2D Ising 3D mean field
↵ specific heat c(t) ⇠ |t|�↵ 0 0.110 ± 0.001 0

(log.) (discont.)

� order parameter �(t, 0) ⇠ (�t)� 1/8 0.3265 ± 0.0003 1/2

� susceptibility �(t) ⇠ |t|�� 7/4 1.2372 ± 0.0005 1

� critical isotherm �(0, h) ⇠ h
1/� 15 4.789 ± 0.002 3

⌫ correlation length ⇠(t) ⇠ |t|�⌫ 1 0.6301 ± 0.0004 1/2

⌘ GF at Tc G(r) ⇠ r
�d+2�⌘ 1/4 0.0364 ± 0.0005 0

Table 1: Critical exponents of the Ising university class. Exponents for Ising 3D are given in
the review by Pelissetto & Vicari [34].

b) Anomalous dimensions

Many scaling laws simply follow from dimensional analysis : a rather simple example is the
Kepler’s law. 36 Hence, let us start with a bit of dimensionless analysis. We base again the
discussion on the Ising universality class. The Ginzburg-Landau’s approach, is based on the
continuous formulation with the functional

FL[�] =

Z
dd

r


g (r�)2 � h�+

1

2
a�

2 +
1

4
b�

4

�
. (7.54)

For convenience, we now rescale the various quantities as follows :

� =
'p
� g

, h = h̃

p
g/� , a = g A , b = � g

2
B (7.55)

we obtain the dimensionless functional

eF [']
def

= �FL[�] =

Z
dd

r


(r')2 � h̃'+

1

2
A'

2 +
1

4
B '

2

�
(7.56)

where all dimensions are express in terms of length

['] = L
1�d/2

, [h̃] = L
�1�d/2

, [A] = L
�2

, [B] = L
d�4

. (7.57)

The canonical weight of a field configuration '(r) is now e�
eF [']. The partition function seems

a function of the three parameters

Z(A, B, h̃) =

Z
D' e�

eF [']
, (7.58)

hence all properties extracted from it should combine the three parameters. Let us construct
several quantities with the three parameters :

36Since the gravitational constant G has dimension [G] = M
�1

L
3
T

�2, given a mass M , an orbit radius R and
a period T , the three quantities should obey a scaling law R

3
/T

2 = ↵GM , where ↵ is dimensionless. Of course,
this requires an additional assumption of scaling, which is natural as the Newton’s force is a power law.
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(i) At h = 0, we construct a characteristic length scale from the parameters A and B : the
only possibility is ⇠ ⇠ |A|�1/2 / |t|�1/2, hence we recover ⌫ = 1/2.

(ii) At h = 0, we construct a characteristic scale for the field : ' ⇠
p
|A|/B, corresponding

to � = 1/2.
(iii) At A = 0 (T = Tc), we construct another scale for the field : obviously ' ⇠ (|h̃|/B)1/3,

hence � = 3.
(iv) Finally, assuming the scaling form C(r) = h'(r)'(0)i / r

�d+2�⌘ at T = Tc, dimensional
analysis imposes ⌘ = 0.

With simple dimensional arguments and without any calculation, we have recovered the mean
field exponents, which could lead us to the (incorrect) conclusion that these values are con-
strained by dimensional analysis. Indeed, we have mentioned that the mean field values of the
critical exponents are not correct for d < 4 : cf. table 1 ! This raises the interesting question : if
scaling laws are expected, and they are indeed observed in experiments, how can we understand
that the values of the critical exponents deviate from their mean field values ? The answer
lies in the existence of a length scale which is ”hidden” in the continuous formulation. The
Ginzburg-Landau theory suggests that the only relevant length scale is the correlation length
⇠, however this is deeply wrong : close to the critical point, fluctuations are important at
all length scales, down to the microscopic cuto↵ (lattice spacing ✏). This implies that the
correct scaling functions should also involve the UV cuto↵. In other terms, the formulation
(7.58) is misleading : being purely continuous, whatever means the path integral, it disregards
the importance of the UV cuto↵ when T ! Tc. 37

With this observation in mind, tet us now discuss a plausible scenario to explain the deviation
of the critical exponents from the mean field exponents. For example, consider the correlation
length, which could thus be constructed from the two characteristic lengths ✏ and 1/

p
|A| :

⇠(t) = |A|�1/2
f(|A|✏2) with A / t , (7.59)

where f is a scaling dimensionless function. The scaling assumption then authorizes a correlation
length exponent di↵erent from 1/2 : imagine that f(x) ⇠ x

�✓ for x ! 0, then we have ⇠ /
|t|�✓�1/2, i.e.

⌫ = 1/2 + ✓ . (7.60)

This gives a plausible explanation for the deviation from the mean field exponent. The di↵erence
✓ between the mean field exponent and the ”real” exponent is called the “anomalous dimension”.

c) Scale invariance

Now that we have identified a plausible origin for the non trivial critical exponents, let us
examine the consequence of the scaling assumption. Scale invariance implies the absence of a
characteristic length scale, so that properties are the same at all scales. A standard example
is a fractal object. Let us consider a quantity function of a parameter f(x). Scale invariance
requires that the property at scales x and �x are similar :

f(�x) = g(�) f(x) 8 � > 0 , (7.61)

where g is a given function of the dilatation factor. This condition is extremely restrictive : it
requires that the function is a power law

f(x) = f(±1) |x|a± , (7.62)

where the exponents are a± = ±f
0(±1)/f(±1).

37We could also write the path integral as an integration over the Fourier modes '̃q of the field
R
D'!

R Q
q
d'̃q.

In this case it is more clear how to encode the presence of the cuto↵ : integration should only runs over Fourier
modes with ||q|| < 1/✏.
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Proof : get rid of the function g(�) by considering

d

dx
ln [f(�x)/f(x)] = 0 ) �

f
0(�x)

f(�x)
=

f
0(x)

f(x)
(7.63)

• For x > 0, set � = 1/x and integrate : get f(x) = f(1) x
a+ with a+ = f

0(1)/f(1).

• For x < 0, set � = 1/(�x) and integrate : get f(x) = f(�1) (�x)a� with a� = �f
0(�1)/f(�1).

Remark : the result shows that g(�) = �
a± , i.e. we should introduce two functions g±(�).

- Exercice 7.3 : Check that another form of scale invariance is f(x)/f(y) =  (x/y) 8 x, y.

The property f(�x) = �
a
f(x), 8� > 0, defines a homogeneous function of degree a.

The generalization to functions of several arguments is convenient if we start from the form
f(�1/a

x) = � f(x), which leads to introduce generalized homogeneous function of n arguments
as f(�1/a1x1, · · · ,�

1/anxn) = � f(x1, · · · , xn).

d) Scaling relations

We now consider the fundamental function encoding thermodynamic properties : the free energy
per unit volume. We expect that it is splitted as the sum of a regular part and a singular part,

f(t, h) = freg(t, h) + fs(t, h) , (7.64)

where the latter exhibits scaling properties (remember that a phase transition manifests math-
ematically through non analyticity in f). For the function with two arguments, the scaling
property introduced above should be generalized as fs(�1/a

t,�
1/b

h) = � fs(t, h). In the follow-
ing, we prefer to write this property under the form

fs(t, h) = `
�d

fs(`
yt t, `

yh h) (7.65)

where ` is a factor of dilatation of space ; the factor `�d is related to the fact that f is the
free energy per unit volume. Eq. (7.65) is called the scaling assumption. At this stage,
it is su�cient to accept the existence of such a scaling relation, which expresses that fs is a
generalized homogeneous function, written in a convenient form for the following. The relation
defines the exponents yt and yh, which characterize the rescaling of the temperature and the
conjugated field, respectively, against dilatation of space with factor `. In the following, we will
see that the two fundamental exponents yt and yh have a precise meaning in the renormalization
group analysis :

⇤t = `
yt and ⇤h = `

yh (7.66)

(or the exponents yt and yh) are called ”eigenvalues of the renormalization group”. To the two
arguments of the free energy, we have associated two exponents, hence we expect that the six
exponents ↵, �, �, �, ⌫ and ⌘ introduced above are not independent from each other.

Let us examine the consequences of assuming the scaling form (7.65). Choosing the scaling
factor as ` = |t|�1/yt we have

fs(t, h) = |t|d/yt fs(±1, |t|�yh/yt h) ⌘ |t|d/yt F±(|t|�yh/yt h) (7.67)

where ± = sign(t). The two functions F±(x) should be symmetric. Similarly, we could set
` = |h|�1/yh , leading to the form

fs(t, h) = |h|d/yh fs(|h|�yt/yh t,±1) ⌘ |h|d/yh G(|h|�yt/yh t) (7.68)

there is only one scaling function G(x) as f(t, h) is a symmetric function of h. However G(x)
has no reason to be a symmetric function.
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• Heat capacity : we di↵erentiate (7.67) with respect to t :

c(t) ⇠ �@
2
f(t, 0)

@t2
⇠ |t|

d

yt
�2

(7.69)

This assumes that F±(0) is finite, with F+(0) 6= F�(0) a priori. This shows that

↵ = 2� d

yt
(7.70)

• Order parameter : using (7.67) we write

� ⇠ � @f

@h

����
h=0+

= �|t|
d�y

h

yt F
0

±(0+) . (7.71)

Because the order parameter is non zero below Tc and vanishes above Tc, we expect F
0
+(0+) = 0

and F
0
�(0+) finite. Inspection of the power law gives

� =
d� yh

yt
(7.72)

• Magnetic susceptibility : we di↵erentiate once more

� ⇠ � @
2
f

@h2

����
h=0

= �|t|
d�2y

h

yt F
00

±(0+) (7.73)

i.e., assuming F
00
±(0+) finite, with F

00
+(0+) 6= F

00
�(0+) a priori, we get

� =
2yh � d

yt
(7.74)

• Critical isotherm : we now start from (7.68). Setting t = 0 we have fs(0, h) = |h|d/yh G(0).
Assuming G(0) finite and di↵erentiating, we deduce

� =
yh

d� yh
(7.75)

• Similar arguments on the Green’s function give

⌫ =
1

yt
(7.76)

and
⌘ = d + 2� 2yh (7.77)

The six relations show that the six exponents are controlled by the two independent exponents
yt and yh. These constraints between the exponents can be written under the form of four
relations, which are now easy to prove :

↵+ 2� + � = 2 (Rushbrooke relation) (7.78)

�� = � + � (Widom) (7.79)

2� ↵ = d ⌫ (Josephson) (7.80)

� = ⌫ (2� ⌘) (Fisher) . (7.81)

Of course, the determination of the two exponents yt and yh is still open at this stage.
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- Exercice 7.4 : Check the four scaling relations (7.78,7.79,7.80,7.81).

These four relations are very important and useful in practice. For example : if one measures
the specific heat critical exponent ↵, one gets immediatly yt and thus also ⌫, the correlation
length critical exponent. This is a beautiful surprise : a thermodynamic property at h = 0, the
behaviour c(t) ⇠ |t|�↵, provides some information about the divergence of the correlation length,
i.e. a property of the correlations between spins h�i�ji ⇠ h�(r)�(0)i where r is the distance
between spins i and j, which would be much more di�cult to obtain by a direct measurement
in experiments.

- Exercice 7.5 Proof of (7.76) : In general the correlation length is a function of both t

and h. Hence, rescaling by a factor ` leads to 38

⇠(t, h) = ` ⇠(`yt t, `
yh h) (7.82)

Deduce (7.76).

- Exercice 7.6 Critical exponents of the 2D Ising model : In 1944, Lars Onsager has
found an alytically expression for the free energy of the 2D Ising model on the square lattice for
zero magnetic field [31]

f(t, 0) = � 1

�̂
ln 2� 1

2�̂

Z
+⇡

�⇡

dkxdky

(2⇡)2
ln
h
cosh2(2�̂J)� sinh(2�̂J) (cos kx + cos ky)

i
(7.83)

where �̂ = 1/T (note that f can be related to an elliptic integral). The critical temperature
solves sinh(2�̂cJ) = 1, i.e. Tc = 2J/ ln(1 +

p
2). The analysis of the t! 0 behaviour shows that

the specific heat exhibits a logarithmic divergence c(t) ⇠ � ln |t|, i.e. ↵ = 0. Few years later, in
a conference, he announced an expression for the spontaneous magnetization [32],

m(t, 0) =
h
1� 1/ sinh4(2�̂J)

i
1/8

(7.84)

without giving the details of the proof. The expression was eventually proved by C. N. Yang [50]
(the case of the triangular lattice was studied by Potts [38] the same year). Argue that this
behaviour corresponds to the critical exponent � = 1/8.
Deduce all other critical exponents (including yt and yh).

- Exercice 7.7 Divergence of the correlation length : Study the correlation length at
T = Tc and small field. Give the critical exponent controlling the divergence for h! 0. Apply
the formula to the 2D Ising model.

8 Introduction to the renormalization group

The previous chapters have left unanswered several questions :

• Is there a method to determine the critical exponents ?

• Scaling leads to the behaviour (7.62), hence, in the three following cases, one could expect the
behaviour : c(t) ⇠ |t|�↵± (with ↵+ for t > 0 and ↵� for t < 0), �(t) ⇠ |t|��± and ⇠(t) ⇠ |t|�⌫± .
However it is observed that exponents coincide ↵+ = ↵�, �+ = �� and ⌫+ = ⌫�.

• Can we understand the origin of universality ? (and maybe of universality classes)

38Although it is not essential at this stage, let us point out that this relation corresponds to a RG transformation,
introduced later, Eqs.(8.19,8.27,8.76,)
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The answer to these questions lies in the renormalization group (RG) method.
The renormalization group first appeared in quantum electrodynamics with the work of Gell-

mann and Low (1954), in order to cure the divergences of the field theory. Later, Leo Kadano↵
introduced the concept of block spin and renormalization transformation (1966), however the
precise connection with the critical properties was only understood in 1971 by Kenneth Wilson
(Nobel prize winner in 1982). Another important contribution is the ✏-expansion by Michael
Fisher, which provides nowadays the most accurate theoretical predictions for critical exponents.

8.1 The Ising chain

A good starting point is to consider the Ising chain

HN = �J

N�1X

n=1

�n+1�n (8.1)

(here with open boundary conditions). The model is exactly solvable : in a first step I recall
the calculation of the partition function (next paragraph), then the problem is reanalysed with
the RG method.

a) Reminder : the exact solution

There exist two simple methods to solve the problem (calculate the partition function exactly).

• A recursive approach (at h = 0 and for an open chain)

• A transfer matrix approach (at h 6= 0, irrespectively of the boundary conditions)

Let us follow the first approach (which is a bit faster), which is su�cient for our purposes here.
Aiming at calculating the correlation function h�n�mi, we generalize the problem and consider
the Hamiltonian

bHN = �
N�1X

n=1

Jn�n+1�n (8.2)

with position dependent couplings. The partition function is

bZN =
X

�1,··· ,�N

e
P

N�1

n=1
Kn�n�n+1 where Kn = �Jn . (8.3)

Using that X

�N

eKN�1�N�N�1 = 2 cosh(KN�1�N�1) = 2 cosh(KN�1) (8.4)

we deduce the recursion bZN = 2 cosh(KN�1) bZN�1 hence

bZN = 2N
N�1Y

n=1

cosh(Kn) . (8.5)

In particular, setting all coupling equals, we get ZN = 2N [cosh(�J)]N�1 and the free energy
per spin f(T ) = �T ln[cosh(J/T )], from which we can deduce thermodynamic properties.

The interest of the generalization lies in the fact that it allows a simple determination of the
correlation function. Remark that

h�n�n+1i =
@

@Kn

ln bZN = tanh(Kn) (8.6)
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We have also

1
bZN

@
` bZN

@Kn@Kn+1 · · · @Kn+`�1

= h(�n�n+1)(�n+1�n+2) · · · (�n+`�1�n+`)i = h�n�n+`i (8.7)

Using the expression of bZN and eventually setting Jn = J 8 n in this relation, we get

h�n�n+`i = [tanh(K)]` = e�`/⇠̃ (8.8)

where

⇠̃(K) =
1

� ln tanh(K)
'
(

1/ ln(T/J) for T � J

1

2
exp{J/T} for T ⌧ J

(8.9)

is the correlation length in lattice spacing unit (hence the ˜). The correlation length diverges as
T ! 0 (i.e. going to the ”ferromagnetic phase” at T = 0).

- Exercice 8.1 Ising chain and transfer matrices : We consider an Ising chain submitted
to a finite magnetic field B in the ring geometry (which will be slightly more easy to deal with).

a) Use the transfer matrix method to compute the partition function, i.e. write ZN = Tr
�
T
N
 

where T is a 2⇥ 2 transfer matrix.

Hint: start from the form ZN =
P

�1,··· ,�N
e��HN =

P
�1,··· ,�N

T�1,�2T�2,�3 · · ·T�N ,�1 .

b) compute the free energy per spin f(T, B) in the thermodynamic limit N ! 1. Check your
result by comparing with the result given above for B = 0.

c) Use the method to derive the correlation function.

b) Decimation and the renormalization group transformation

The general idea of the renormalization group is to perform the ”integration” over a fraction of
degrees of freedom and study the new problem emerging. To simplify the discussion, we consider
now the Ising chain with the ring geometry

ZN =
X

�1,··· ,�N

eK
P

N

n=1
�n�n+1 with �N+1 ⌘ �1 (8.10)

for N = 2p so that we can ”decimate” half of the spins at each step. One can perform an
integration over half of the spins (all spins with even index) by using

X

�2

eK�2(�1+�3) = 2 cosh[K(�1 + �3)] =

(
2 cosh(2K) for (�1,�3) = (++) or (��)

2 for (�1,�3) = (+�) or (�+)
(8.11)

It takes two di↵erent values corresponding to aligned spins or anti-aligned spins, like eK
0
�1�3 .

Hence we can write
2 cosh[K(�1 + �3)] = eK

0

0
+K

0
�1�3 (8.12)

by setting e2K
0

= cosh(2K), or more elegantly

tanh K
0 = (tanh K)2 (8.13)

and
eK

0

0 = 2
p

cosh(2K) . (8.14)
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In conclusion we have
P

�2
eK�2(�1+�3) = eK

0

0
+K

0
�1�3 . If we use this identity for all even spins

�2, �4, · · · in the partition function, we get rid of half of the sums and we obtain the exact
identity

ZN (K) = e(N/2)K
0

0 ZN/2(K
0) (8.15)

By ”integrating over half of the degrees of freedom” (i.e., performing the summation over half
of the spin variables), the decimation has related the problem with N spins for coupling K to
the problem with N/2 spins with coupling K

0, for the same hamiltonian, up to the shift K
0

0
.

1 3 1 3
σ σ σ σ σ

2

K’K K

K K’

Figure 50: Decimation : one ”integrates” over half of the spins (i.e. the ”small scale degrees
of freedom”) in order to relate the original problem with N spins for coupling K to the same
problem with N/2 spins and coupling K

0.

If we define the ”free energy” per spin (here without the 1/�, i.e. f = f̃/�),

f̃(K)
def

= � lim
N!1

ln ZN (K)

N
(8.16)

we get

f̃(K) =
1

2

h
f̃(K 0)�K

0

0

i
. (8.17)

The correlation length should be the same with ZN (K) or ZN/2(K
0), as they describe the same

problem. One should however pay attention to the fact that (8.9) is measured in units of the
lattice spacing

⇠ = ✏ ⇠̃(K) = 2✏ ⇠̃(K 0) (8.18)

from which we get

⇠̃(K 0) =
1

2
⇠̃(K) (8.19)

The relation also obviously follows from (8.13), given the knowledge of the exact expression (8.9).
The set of transformations (8.13,8.15,8.17,8.19) is called a RG transformation.
We have now to understand why these formal manipulations, which seem purely technical

at the level of the partition function ZN (K), can have some interest for the study of critical
phenomena. This has to do with the existence of fixed points.

8.2 Fixed points

a) Case of the Ising chain

We now identify some values of the ”coupling” K = J/T invariant under the RG trans-
formation (8.13) : such values are called “fixed points”. It is more clear if we introduce
x = tanh K 2 [0, 1] : the RG transformation (8.13) takes the form x

0 = x
2, which makes

clear that it presents two fixed points x = 0 or x = 1 (cf. Fig. 51). They correspond to :

• the point K = 0 : paramagnetic (trivial) fixed point.

• the point K =1 : ferromagnetic fixed point.
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Figure 51: RG flow for the 1D Ising model

Starting from any value of K, iterations of the RG transformation lead to a decrease of the
coupling, which eventually vanishes :

K ! K
0 ! K

00 ! · · ·! 0 .

In other terms, the ferromagnetic fixed point is repulsive, while the paramagnetic fixed point
is attractive. The RG transformation drives the system towards the point describing the large
scale physics. Hence, the interpretation is here that the system is disordered at any temperature,
as it is always driven towards the paramagnetic phase with ⇠̃ ! 0.

b) Case of the 2D Ising model

Imagine now that the RG transformation accompagnying the transformation N ! N
0 = N/`

d

and ZN (K) = eN
0
K0ZN 0(K 0) are

K
0 =  (K) with ⇠̃(K 0) =

1

`
⇠̃(K) (8.20)

involves a function of the form represented in Fig. 52. It is shown below that this corresponds
to the 2D Ising model, which is known to exhibit a second order phase transition. Here we
have introduced the scaling factor ` > 1, which depends on the precise nature of the RG
transformation (it was ` = 2 for the Ising chain ; below it will be taken equal to ` =

p
2 for the

square lattice and ` =
p

3 for the triangular lattice).

Figure 52: RG flow for the 2D Ising model : function K
0 =  (K).

A fixed point of the RG transformation is defined as K⇤ =  (K⇤). The function of Fig. 52
has three fixed points :
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• K = 0 : the paramagnetic attractive fixed point.

• Kc = J/Tc such that Kc =  (Kc). This fixed point is repulsive.

• K =1 : the ferromagnetic fixed point, which is attractive.

The existence of a repulsive fixed point at Kc has now made the ferromagnetic fixed point
attractive. By elimination of degrees of freedom characterizing the physics on small scale (lattice
spacing ✏ ! ✏

0 = ` ✏), the RG transformation drives the system towards the state describing
the problem on large scale. Depending on the initial point we have : for an initial K < Kc

(i.e. T > Tc = J/Kc) the system flows towards the paramagnetic state, while for K > Kc (i.e.
T < Tc) it flows towards the ferromagnetic state. The repulsive fixed point separating these two
situations is the critical point as we now show.

The critical exponent from the RG transformation.— The only way the transformation
of the correlation length (8.20) can be consistent with the existence of fixed points, ⇠̃(K⇤) =
1

`
⇠̃(K⇤), is that it is zero or infinite :

• ⇠̃(0) = 0 for the paramagnetic fixed point.

• ⇠̃(Kc) =1 for the critical fixed point.

• ⇠̃(1) = 0 for the ferromagnetic fixed point.

Let us perform an expansion in the neighbourhood of Kc. We linearize the transformation

K
0 �Kc '  0(Kc) (K �Kc) (8.21)

Assume the standard behaviour ⇠ ⇠ |T � Tc|�⌫ / |K �Kc|�⌫ , as K = �J . Thus, if we combine

⇠̃(K) ⇠ |K �Kc|�⌫ for K ⇠ Kc (8.22)

with ⇠̃(K 0) = ⇠̃(K)/`, we have |K 0 �Kc|⌫ ⇠ `|K �Kc|⌫ , i.e. combined with the above equation
we get the critical exponent

⌫ =
ln `

ln 0(Kc)
. (8.23)

Of course, this leaves entire the problem of the determination of  (K) ! However, this shows
how the study of the RG transformation, a very formal operation, can provide a practical tool
to determine the critical exponent ⌫ (and other exponents).

This discussion emphasizes the critical nature of the repulsive fixed point. Indeed, in general
denoting by K⇤ the fixed point, we have :

• For  0(K⇤) > 1 (repulsive fixed point), we find ⌫ > 0, hence ⇠̃(K) ! 1 for K ! K⇤. The
repulsive fixed point is critical.

• However if  0(K⇤) < 1 (attractive fixed point, see figure), the same formula gives ⌫ < 0,
leading to ⇠̃(K)! 0 for K ! K⇤, corresponding to a trivial fixed point.

- Exercice 8.2 : Argue that the ”thermal eigenvalue of the RG”, ⇤t = `
yt , is

⇤t =
@K
0

@K

����
Kc

(8.24)

and recover the expression of the critical exponent ⌫ in terms of  (K).
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- Exercice 8.3 Two-dimensional Ising model for triangular lattice : Consider the
Ising model on the triangular lattice. The RG transformation replaces the three spins on each
triangular plaquette by one e↵ective spin, correspondly the number of spins is reduced as N !
N
0 = N/3 and thus the correlation length in lattice spacing unit is ⇠̃(K 0) = 1

p
3
⇠̃(K). The

renormalization transformation of the coupling is controlled by a function, K
0 =  (K), which

is approximatively given by

 (K) ' 2K

✓
1 + e�4K

1 + 3 e�4K

◆2

(8.25)

(it is derived below).

a) Find the fixed points. Discuss their stability (attractive/repulsive).

b) Deduce the value of the critical exponent ⌫. Using the scaling relations, give the heat capacity
critical exponent ↵.

c) Compare ⌫ and ↵ with the exact results : the Onsager solution corresponds to ↵ = 0.

Imposrtant remark : long-range order versus longe-range-correlations.— One should
distinguish two concepts :

(i) Long range correlations : the correlation length ⇠ goes to infinity, which characterizes a
critical state.

(ii) Long range order : characterizes an ordered phase, like the ferromagnetic state.

In d > 2, we have h�ri = ±1 and h�r�r0i ' 1 for T ! 0 (long range order), however h�r�r0i
c

=
h�r�r0i � h�ri h�r0i ⇠ exp{�||r � r

0||/⇠} with a finite ⇠ when T ! 0 (short range correlations).
At T = Tc, h�ri = 0 (no long range order) and h�r�r0i ⇠ ||r�r

0||�d+2�⌘ (long range correlations).
Long range correlations are observed in the vicinity of a critical fixed point, which manifests
itself in the RG flow by its repulsive nature : there ⇠ =1 (long range correlations).
Let us now make a remark about the ferromagnetic fixed point : in d > 2, the ferromagnetic
fixed point is attractive and is characterized by a finite correlation length. The one-dimensional
case is a bit peculiar as the ferromagnetic fixed point is repulsive, which indeed characterizes a
critical point with ⇠ =1, as demonstrated by the exact calculation. For d > 2, the ferromagnatic
fixed point is attractive (with ⇠ = 0)

8.3 RG flow

The renormalization group method is the study of the flow generated by the RG transformation
in the parameter space of the Hamiltonian. Note that the parameter space is nothing but the
phase diagram. This allows (in principle) to identify the fixed points and determine the critical
exponents. In the language of the previous paragraph, this amounts to the determination of the
function  , which is unfortunately a di�cult task in general. I discuss few approaches for the
2D Ising model.

a) Decimation for the 2D Ising model on the square lattice

In dimension higher than one, the decimation should be done so that the nature of the lattice
is not changed. This is simple on the square lattice since it is a bipartite network made of two
intricated square lattices. One can remove half of the spins, N ! N

0 = N/2, as it is represented
in Fig. 53. The lattice spacing changes as

✏
0 =
p

2 ✏ . (8.26)
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Figure 53: Decimation on the square lattice. Half of the spins are removed (red crossed), hence
the number of spins changes as N

0 = N/2.

The correlation length is thus renormalized as

⇠̃(K 0) = ⇠̃(K)/
p

2 . (8.27)

We are however confronted with a new di�culty : if we ”decimate” the spin �0 in the middle of
four spins, the result cannot be expressed in terms of nearest neighbour (n.n.) couplings only,
like in 1D. Indeed,

P
�0

eK1 �0 (�1+�2+�3+�4) = 2 cosh(K1Stot) where Stot = �1 + �2 + �3 + �4 2
{0, ±2, ±4}. On the other hand eH = �1�2 + �2�3 + �3�4 + �4�1 2 {0, ±4}. The problem is
that there is no simple correspondence between Stot and eH. Considering the 16 states, we find
several situations :

• Stot = ±4 for eH = 4

• Stot = ±2 for eH = 0

• Stot = 0 for eH = 0 or eH = �4

Hence we cannot relate
P

�0
eK1 �0 (�1+�2+�3+�4) to an e↵ective nearest neighbour interaction

between the four spins, of the form e
1

2
K

0

1
eH.

Instead, the exact identity

X

�0

eK1 �0 (�1+�2+�3+�4) = eK
0

0 e
1

2
K

0

1
(�1�2+�2�3+�3�4+�4�1)

| {z }
n. n. couplings

n. n. n. couplingsz }| {
eK

0

2
(�1�3+�2�4) eK

0

3
�1�2�3�4

| {z }
quartet couplings

(8.28)

shows that the decimation generates new types of couplings (the 1/2 in front of K
0

1
is introduced

for convenience, as each such term will appear twice when decimating the two spins in the two
sides of the bond). While the simple decimation leaves the form of the Hamiltonian invariant
for the Ising chain (in 1D), this is not the case in 2D : the RG transformation now relates two
di↵erent Hamiltonians. One could introduce the partition function ZN (K1, K2, K3) describing
the problem with nearest neighbour (n.n.) couplings (K1), next nearest neighbour (n.n.n.)
couplings (K2), and quartet couplings (K3), in order to write the RG transformation as

ZN (K1, 0, 0) = eK
0

0
N/2

ZN/2(K
0

1, K
0

2, K
0

3) . (8.29)

The relation is exact, however, another RG step will generate further types of couplings. In order
to proceed with ”reasonable” calculation, one needs to perform approximations, i.e. neglect
certain couplings, which is however di�cult to justify properly. Copying Brézin [3], “real space
RG transformations of the sort considered here are more an art than a science” !

- Exercice 8.4 Decimation for the square lattice : We consider the decimation on the
square lattice, Eq. (8.28). Identify four types of 16 states for the four spins (�1,�2,�3,�4) on a
square (i.e. classify the states with respect to their symmetries). Comparing the two sides of the
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equation (8.28) for each of these states, deduce four equations and show that the RG equations
corresponding to the decimation are

e4K
0

0 = 16 cosh2(2K1)
p

cosh(4K1) , (8.30)

e4K
0

1 = cosh(4K1) , (8.31)

e4K
0

2 =
p

cosh(4K1) , (8.32)

e4K
0

3 =
p

cosh(4K1)/ cosh2(2K1) . (8.33)

The RG analysis of the Ising model on the square lattice will be discussed at the end of the
chapter, with the help of these equations.

b) Block spins and projectors

We describe here a di↵erent approach allowing to integrate out a fraction of degrees of freedom,
using the idea of ”block spin” of Leo Kadano↵. Consider N spins {�i} on a lattice. One
introduces blocks gathering each n` = `

d spins and to which are attached new spin variables
denoted {Sb}, the “block spins”. Here the number of spins is reduced as N ! N

0 = N/`
d,

hence ` is the rescaling factor for the lattice spacing. An example is represented in Fig. 54 which
shows the triangular lattice with block spins of n` = 3 spins on each plaquette (thus ` =

p
3).

A standard choice for the relation between the original spins and the new variables is

Sb = sign

✓ X

i2 block b

�i

◆
(8.34)

so that, if n` is odd, the new variables are similar to the original one : Sb = ±1. Note that for an
even number of spins per block, there is an ambiguity with the states such that

P
i2 block b

�i = 0,
however it is possible to choose blocks with an odd number of spins : for example, for the square
lattice, the smallest natural blocks with ` = 2 contain 4 spins, however choosing ` = 3 leads to
n` = 9 odd.

The RG transformation corresponds to integrate over the {�i}, keeping fixed the values of
the {Sb}. This is conveniently expressed with the help of the projector :

⇧ ({Sb}, {�i})
def

=
Y

b

�
Sb , sign

�P
i2 block b

�i

� (8.35)

so that the RG transformation, also known as the “Kadano↵ transformation”, takes the form

e��H
0

N0 ({Sb}) =
X

{�i}

⇧ ({Sb}, {�i}) e��HN ({�i}) (8.36)

where HN and H
0

N 0 are the Hamiltonians before and after the RG transformation, respectively.
The renormalization transformation of the partition function convert the sum over spins into a
sum over block spins

ZN =
X

{�i}i=1,··· ,N

e��HN ({�i}) = Z
0

N 0 =
X

{Sb}b=1,··· ,N0

e��H
0

N0 ({Sb}) (8.37)

In general the projector should satisfy three properties :

(i) Positivity, ⇧ ({Sb}, {�i}) > 0, so that the previous expression makes sense.

(ii)
P

{Sb}
⇧ ({Sb}, {�i}) = 1.
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(iii) The projector should reflect the symmetry of the problem so that HN and H
0

N
have the

same form (same types of couplings)

To emphasize the third point : for example, for vectorial spins (XY or Heisenberg model), the
block spins must also be vectorial, like the original spins [14]. For example, using incorrectly
the relation (8.34) for the z component of vectorial spins would change the universality class.

We illustrate the method on the 2D Ising model for a triangular lattice (Fig. 54). The
analysis of the paragraph is due to Niemeyer and van Leeuwen [28] (see also § 9.6 of [14]). Each
plaquette (three spins) is associated with one block b. Thus

N
0 = N/3 and ` =

p
3 . (8.38)

Let us denote by
Hb = K (�1�2 + �2�3 + �3�1) (8.39)

the three couplings internal to the block b and by

Hb,b0 = K �1(�4 + �5) (8.40)

the interblock couplings (cf. Fig. 54). The Ising Hamiltonian can be splitted as

��HN ({�i}) =
X

b

Hb +
X

hb,b0i

Hb,b0 . (8.41)

The implementation of (8.43) can be done by treating first Hb and then Hb,b0 in perturbation.
The key observation is that at order 0 in the interblock couplings (i.e. forgetting Hb,b0), the
blocks are independent :

• Sb = +1 corresponds to the four states (+++), (++�), (+�+), (�++). Thus the partition
function of the block, constrained by the value of the the spin block, is

X

�1,�2,�3

eHb({�i}) �+1 , sign(
P

i
�i)

= e3K + 3eK ⌘ zb (8.42)

the (unconstrained) partition function of a block being 2zb.

• Sb = �1 corresponds to the four states (���), (+��), (�+�), (��+). The constrained
partition function is also zb

We now write
e��H

0

N0 ({Sb}) = (zb)
N

0
D
e
P

hb,b0i
H

b,b0

E

{Sb}

(8.43)

where h· · ·i
{Sb}

is the average for a fixed configuration {Sb}, with the measure e
P

b
Hb . 39 Then

we use heV i = exp
�
hV i+ 1

2
(hV 2i � hV i2) + · · ·

 
(cumulant expansion).

First order in the interblock couplings : we first consider (see labels in Fig. 54)

⌦
Hb,b0

↵
Sb,Sb0

= K h�1(�4 + �5)iSb,Sb0
= K h�1iSb

h�4 + �5iS
b0

(8.45)

where I have used the independence of the blocks for the measure e
P

b
Hb .

39Explicitely

h· · ·i
{Sb}

=
X

{�i}

· · ·
Y

b

1
zb

eHb �Sb , sign(
P

i2b �i)
(8.44)
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Figure 54: The 2D Ising model on the triangular lattice. Blue triangles represent the ”block
spins” and form another triangular lattice with larger lattice spacing.

Consider Sb = +1 :

h�1iSb=+1
=

1

zb

�
e3K + (1 + 1� 1)e�K

�
=

e3K + e�K

e3K + 3eK
⌘ �(K) (8.46)

Similarly, for Sb = �1 :

h�1iSb=�1
=

1

zb

�
�e3K + (�1� 1 + 1)e�K

�
= ��(K) (8.47)

hence we obtain the useful relation

h�1iSb
= �(K) Sb . (8.48)

Finally we have ⌦
Hb,b0

↵
Sb,Sb0

= 2K�(K)2 Sb Sb0 (8.49)

If we truncate the cumulant expansion of (8.43) at the first order in the block couplings, we
have

e��H
0

N0 ({Sb}) ⇡ (zb)
N

0

e
hPhb,b0i

H
b,b0i

{S
b
} = eN

0
K

0

0eK
0
P

hb,b0i
Sb Sb0 (8.50)

where N
0 = N/3 , K

0

0
= ln zb and

K
0 =  (K) ' 2K�(K)2 = 2K

✓
e3K + e�K

e3K + 3eK

◆2

(8.51)

is the function introduced above, cf. Eq. (8.25). The function is plotted in Fig. 55. The RG
transformation of the partition function thus takes the form

ZN (K) ⇡ eN
0
K

0

0 ZN 0(K 0) (8.52)

Because the lattice spacing changes as ✏0 =
p

3 ✏, the correlation length in lattice spacing unit
changes as

⇠̃(K 0) =
1p
3
⇠̃(K) (8.53)

[this follows from the invariance of the correlation length ⇠ = ✏ ⇠̃(K) = ✏
0
⇠̃(K 0), as discussed

above].
The fixed point, defined by Kc =  (Kc), can be found explicitly. Using the approximate

form (8.51), one finds

Kc '
1

4
ln(1 + 2

p
2) ' 0.3556 . (8.54)
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Figure 55: Function  (K) for the triangular lattice, given by Eq. (8.51).

At first order, only n.n. couplings matter and we can get the critical exponent as explained
above, see Eq. (8.23),

⌫ ' ln(
p

3)/ ln 0(Kc) ' 1.133 (8.55)

(cf. exercise 8.3). I postpone the comparison with the exact results to the end of the section.

Second order in the interblock couplings : We have to consider contributions to the
renormalized Hamitonian ��H

0

N 0 of the form

1

2

h⌦
Hb,b0Hb00,b000

↵
Sb,Sb0 ,Sb00 ,Sb000

�
⌦
Hb,b0

↵
Sb,Sb0

⌦
Hb00,b000

↵
S
b00 ,Sb000

i
(8.56)

Obviously, this vanishes if the blocks b and b
0 do not have common spins with the blocks b

00

and b
000. In fact, at least two blocks must coincide, like b

0 = b
000. Note that hH2

b,b0i � hHb,b0i2 is
independent of the spin block variables, and thus only contributes to the term K

0

0
.

(a) (b) (c) (d)

Figure 56: Di↵erent configurations of blocks.

We have to consider several cases represented on the Fig. 56 :

Case where b, b
0 and b

00 are aligned [(a), (b), or (c)] : this is the case where the three
blocks are aligned. We write

⌦
Hb,b0Hb0,b00

↵
Sb,Sb0 ,Sb00

= K
2h�1(�4 + �5)�6(�7 + �8)iSb,Sb0 ,Sb00

(8.57)

= K
2h�1iSb

h(�4 + �5)�6iS
b0
h�7 + �8iS

b00
(8.58)

The calculation is similar as above : additionnaly to the rule

h�iiSb
= �(K) Sb (8.59)
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obtained above (8.46,8.47), the calculation requires

h�i�jiSb
=

e3K � e�K

e3K + 3e�K
= 2�(K)� 1 for i 6= j (both in block b) , (8.60)

the result is independent of Sb. Note that ±�(K) has the interpretation of the average magne-
tization in the block, constrained by Sb = ±1, and 3K [2�(K)� 1] is the average energy. In the
configuration (a) or (b) of Fig. 56, one obtains after some simple calculations that

1

2

h⌦
Hb,b0Hb0,b00

↵
Sb,Sb0 ,Sb00

�
⌦
Hb,b0

↵
Sb,Sb0

⌦
Hb0,b00

↵
S
b0 ,Sb00

i
= �2K

2�(K)2 (1� �(K))2 Sb Sb00

(8.61)
i.e. this produces next nearest neighbour couplings, like in the decimation procedure. For the
configuration (c) of Fig. 56, one rather gets �K

2�(K)2
�
1� 3�(K) + 2�(K)2

�
Sb Sb00 . The

two contributions (b) and (c) should be added and describe another type of n.n.n. coupling,
renormalized in a di↵erent manner. Hence, one should introduce two parameters to describe
n.n.n. couplings : K

0

2k
' �2K

2�(K)2
⇥
1� �(K)

⇤
2

the n.n.n. coupling for aligned sites [like (a)

for blocks], and K
0

2⇧ ' �K
2�(K)2

⇥
3 � 7�(K) + 4�(K)2

⇤
the n.n.n. for non aligned sites [like

(b+c)].

Case where b, b
0 and b

00 form a triangle [case (d)] : Similar arguments give

1

2

h⌦
Hb,b0Hb0,b00

↵
Sb,Sb0 ,Sb00

�
⌦
Hb,b0

↵
Sb,Sb0

⌦
Hb0,b00

↵
S
b0 ,Sb00

i
= 2K

2�(K)3 (1� �(K)) Sb Sb00 (8.62)

This time however the blocks b and b
00 are neighbours, hence this is another contribution to the

nearest neighbour couplings. If we consider a triangle of blocks, we have to consider the three
couplings

Hb,b0Hb0,b00 + Hb0,b00Hb00,b + Hb00,bHb,b0 (8.63)

which produce the contribution to ��H
0

N 0 :

2K
2�(K)3 [1� �(K)] (Sb Sb0 + Sb0 Sb00 + Sb00 Sb) (8.64)

Because the bond hb, b0i belongs to two such triangles, we conclude that the renormalized cou-
pling between nearest neighbour blocks is

K
0 =  (K) ' 2K�(K)2 + 4K

2�(K)3 [1� �(K)] . (8.65)

Note that the results have the form of an expansion in powers of the coupling K. Forgetting the

n.n.n. couplings, we can easily find the fixed point numerically : K
(2)

c ' 0.2758 which is closer

to the exact value (I recall that the first approximation (8.51) has led to K
(1)

c ' 0.3556). If we
apply the formula (8.55) to the new function  (K), we get ⌫(2) ' 1.1246. We will compare to
the exact results below, and will provide a more precise discussion.

E↵ect of the magnetic field : the e↵ect of the magnetic field is easy to analyze, at least at
the lowest order. We have to account for the term

�HN = · · ·� h

X

i

�i (8.66)

(from now on, the temperature is included in the field h for convenience). At lowest order, i.e.

writing heH
mag.

b i ⇡ ehH
mag.

b
i, this corresponds to add to ��H

0

N 0

+h

DX

i

�i

E

{Sb}

= h

X

b

X

i2 block b

h�iiSb
= h

X

b

3�(K) Sb . (8.67)
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We can interpret this term as a RG equation for the conjugated field

h
0 ' 3�(K) h (8.68)

Close to the critical fixed point, the magnetic eigenvalue is [see (8.24)]

⇤h =
@h
0

@h

����
Kc

' 3�(Kc) =
3p
2

> 1 , (8.69)

hence the RG flow drives the system away from the critical fixed point in the direction of the
field. The fixed point is repulsive both in the K direction and the h direction.

- Exercice 8.5 Renormalization of the magnetic field : Because the magnetic Hamil-
tonian does not couple blocks, we can improve the treatment of the magnetic field. Write
Hmag.

b
= h bSb with bSb =

P
i2b

�i, hence Sb = sign
�bSb

�
, and perform exactly the calculation of

heH
mag.

b iSb
. Compare with the above analysis (in particular the RG eigenvalue ⇤h).

Comparison with the exact results : Many exact results have been obtained for the 2D
Ising model. The critical temperature for the triangular lattice is known :

K
(triang.)

c =
1

4
ln(3) ' 0.27465 . (8.70)

All the critical exponents in 2D can be deduced from the Onsager and Yang solutions : we
have determined the thermal and magnetic critical exponents controlling all critical exponents
in the exercise 7.6 : yt = 1 and yh = 15/8. Correspondingly, the two RG eigenvalues are

⇤t = `
yt =

p
3 ' 1.732 and ⇤h = `

yh =
�p

3
�
15/8 ' 2.801 (for the triangular lattice, the scaling

factor was chosen to be ` =
p

3).

Lowest order.— We can compare with the solution for lowest order (for nearest neighbour
couplings only) : above, we have obtained the form K

0 =  (K), from which we have deduced

K
(1)

c ' 0.3556. Linearization close to the fixed point gives K
0 � Kc '  

0(Kc) (K � Kc), i.e.
writing K �Kc = (� � �c)J ' �t Kc

t
0 '  0(Kc) t ⌘ ⇤t t (8.71)

The renormalization of the coupling constant is equivalent to renormalization of the temperature.
At lowest order, we can use the expression (8.51) giving

⇤(1)

t
' 1.6235 . (8.72)

Renormalization of the magnetic field close to the fixed point is h
0 ' 3�(Kc) h ⌘ ⇤(1)

h
h hence

⇤(1)

h
= 3�(Kc) =

3p
2
' 2.1213 . (8.73)

Considering the simplicity of the analysis and the calculations, the agreement is quite satisfac-
tory.
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Second order.— The analysis at second order in the interblock couplings presented above
has neglected an important point : starting from the Hamiltonian for n.n. couplings only, we
have generated n.n. and n.n.n. couplings after RG transformation. As for the square lattice, the
correct analysis requires to consider from the begining of the calculation both the n.n. coupling
K1 and the n.n.n. couplings K2k (for Fig. 56.a) and K2⇧ (for Fig. 56.b+c). 40 It is a bit long
but not di�cult in principle. It has been performed in Ref. [28] for h = 0. These authors give

K
(2)

c ' 0.251 (8.74)

showing a significant improvement, with respect to K
(1)

c . The RG eigenvalue is

⇤(2)

t
' 1.7835 , (8.75)

which gets closer to the expected value
p

3. Correspondingly one finds the critical exponents

y
(2)

t
' 1.053 and ⌫(2) ' 0.949 (this is better than the rough approximation neglecting the n.n.n.

couplings discussed above). 41

c) RG in momentum space

As we have seen on these two examples, the derivation of the RG equations by real space renor-
malization is not very well controlled, although the block spins technique allows for systematic
improvement (the reference [28] also proposes other approximations). Another more systematic
approach is the one of renormalization in momentum space. The general idea is to consider the
free energy (7.56) as the action of a (statistical) field theory : for the Ising universality class,
this is just the '4 theory for a real scalar field with Euclidean action in dimension d. The theory
is then studied as follows : for B = 0, the integral is Gaussian and can be performed exactly (at
least for A > 0, i.e. T > Tc). Then, the '4 term is treated in perturbation theory (for A < 0,
one should rather expand around ' 6= 0). Renormalization is needed to make the perturbative
calculations meaningful. In this case, the RG equations for the coupling constants are obtained
by successive integration over momentum shell, i.e. eliminating short scale degrees of freedom.
The procedure can be safely defined for the critical dimension d = du = 4. The dimensions
d < du are considered by performing ”dimensional regularisation” and so-called ”✏-expansion”
(where ✏ = du � d). Such systematic expansions provide the best theoretical estimates for the
critical exponents. If you are interested in this more technical question, see [3] or [17].

8.4 General discussion

We now provide an abstract discussion : we assume that the problem is described by p couplings,
thus its partition function is ZN (K1, · · · , Kp). A RG transformation by a factor ` is

8
>>>>>><

>>>>>>:

N ! N
0 = N/`

d (degrees of freedom)

✏! ✏
0 = ` ✏ (lattice spacing)

⇠̃ ! ⇠̃
0 = ⇠̃/` (correl. length in latt. sp. unit)

K↵ ! K
0
↵ =  ↵(K1, · · · , Kp) , ↵ = 1, · · · , p (couplings)

ZN (K1, · · · , Kp) = eK
0

0
N

0

ZN 0(K 0
1
, · · · , K

0
p) (parition function)

(8.76)

where K
0

0
represents a shift, which is the contribution to the free energy of integrating out the

degrees of freedom on short scale.

40In Refs. [28, 14], K2⇧ and K2k are called ”second” and ”third” nearest neighbour couplings.
41As we will see in the next section, the linearization of the RG transformation leads to consider a 3⇥3 matrix.

Niemeyer and van Leeuwen have found the eigenvalues ⇤1 ' 1.7835, ⇤2 ' 0.2286 and ⇤3 ' �0.1156.
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Let us assume that the transformation has a fixed point (K⇤
1
, · · · , K

⇤
p). We can linearize in

its neighbourhood

K
0

↵ �K
⇤

↵ '
X

�

M↵�(`)
�
K� �K

⇤

�

�
for M↵�(`)

def

=
@ ↵

@K�

����
⇤

(8.77)

I have emphasize that the RG transformation depends on the scaling factor ` for later con-
venience. We further assume that the matrix can be diagonalized : it has p eigenvalues
⇤n(`) corresponding to p directions in the parameter space, given by the (right) eigenvector,
M(`)R(n) = ⇤n(`) R

(n). Because the matrix has no reason to be symmetric, each eigenvalue
is related to a pair of right and left eigenvectors, the latter satisfying M(`)TL

(n) = ⇤n(`) L
(n).

They form a bi-orthogonal set,
�
L

(n)
�
T
R

(m) = �n,m. We denote by eKn the new parameters,

linear combinations of the original couplings, eKn =
P

↵
R

(n)

↵ (K↵ �K
⇤
↵).

Combining two RG transformations for two scales `1 and `2 corresponds to one RG trans-
formation for scale `2`1. This is also true for the linearized transformation

M(`2)M(`1) = M(`2`1) (8.78)

with M(1) = 1p. I.e. the RG transformations form a semi-group (because ` > 1, there is no
inverse transformation). Correspondingly, the eigenvalues present the same property

⇤n(`2)⇤n(`1) = ⇤n(`2`1) (8.79)

leading to the power law behaviour
⇤n(`) = `

yn (8.80)

where yn is an exponent characterizing the behaviour of the coupling eKn upon RG transforma-
tion : eK 0n ' ⇤n(`) eKn.

We distinguish three cases :

(i) yn < 0 : the corresponding coupling eKn is said irrelevant. The RG transformations
drive such a coupling to zero, eKn ! eK 0n ! eK 00n ! · · · ! 0. Hence it has no e↵ect on the
critical behaviour : an irrelevant coupling can be set to zero, without changing the critical
properties.

(ii) yn > 0 : the corresponding coupling eKn is said relevant. It increases under the e↵ect
of successive RG transformations, which eventually drive the system out of the critical
region.

(iii) yn = 0 : the corresponding coupling eKn is said marginal. The influence of such couplings
cannot be determined from the linearized transformation.

The correlation length is infinite at the critical point ⇠ = 1. Because the irrelevant cou-
plings play no role, on the critical properties, ⇠ = 1 everywhere in the ”surface” spanned by
the irrelevant directions : this subspace is called the critical manifold. All trajectories on
the critical manifold end at the critical point, hence the critical manifold is the basin of attrac-
tion of the critical point. This is the explanation for universality : all points of the critical
surface correspond to di↵erent Hamiltonians (with di↵erent couplings), however under the ac-
tion of succesive RG transformations they all end at the critical point. As a consequence, the
properties of all models living in the critical manifold are controlled by the same set of positive
exponents {yn}n=1,··· ,r, where r 6 p is the number of relevant directions.

- Exercice 8.6 RG flow for the square lattice — Wilson solution : This exercise aims
at solving the RG equations obtained in the exercise 8.4. Wilson has proposed a solution in 1975,
which neglects the quartet couplings K3�1�2�3�4. Assuming small couplings, the equations
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Figure 57: RG flow in the parameter space. For example, consider the Ising model on the square
lattice at h = 0. We have seen that the first RG step involves the three couplings : K1 (nearest
neighbours), K2 (next nearest neighbours) and K3 (quartet). Assume that one can restrict to
these three couplings for the next RG steps. In this case there exists one relevant coupling
(associated witth the thermal eigenvalue) and two irrelevant couplings : the critical manifold is
a 2D surface in the three dimensional space, like on the figure.

(8.31,8.32) for n.n. and n.n.n. couplings read K
0

1
' 2K

2

1
and K

0

2
' K

2

1
. For consitency, one

should however introduce the n.n.n. couplings from the begining, i.e. add such terms in the
l.h.s. of Eq. (8.28) : this is easy as n.n.n. couplings before decimation is independent of the
decimated spin and simply become n.n. couplings after decimation. 42 We can simply write
K
0

1
' 2K

2

1
! K

0

1
' 2K

2

1
+ K2 in the previous equation :

(
K
0

1
' 2K

2

1
+ K2

K
0

2
' K

2

1

(8.81)

a) Find the fixed point (K⇤
1
, K
⇤

2
).

b) Linearize the transformation : Ki ' K
⇤

i
+ i with i ⌧ 1. Diagonalize the linearized

transformation and plot the RG flow in the neighbourhood of the two fixed points (the trivial
paramagnetic fixed point and the non trivial critical fixed point).

c) The critical value Kc for the Ising model with nearest neighbour couplings only corresponds
to the point (Kc, 0) on the critical manifold. A rough approximation can be obtained by finding
the projection of the fixed point along the irrelevant direction on the n.n. axis. Compute Kc.

d) Compare with the exact result in 2D :

K
(square)

c =
1

2
ln(1 +

p
2) (8.82)

Remembering that ⌫ = 1, give the related eigenvalue ⇤t and compare with the approximation
found previously.

To learn more about RG

there are plenty of books introducing the RG. This last chapter is inspired by the three following
references :

• The excellent book of Édouard Brézin [3].

42note that this neglects the n.n.n. couplings of the spin �0 with spins outside the square of four spins
(�1,�2,�3,�4).
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• The book of Pathria [33] (chapter 14) is detailed and pedagogical.

• Last but not least, I recommend the book of Goldenfeld [14].

I can also mention the little book of Cardy [5] or the book of Ma [26].
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