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Tutorials 4 — Master equation (1)

1 Correlations from the conditional probability

We introduce the normalised Gaussian white noise of zero mean 7(t) and the Langevin equation

d

du(t)
dt

1/ Express the solution for fixed initial velocity vy in terms of an integral of the noise.

= —yu(t) + /27 ks T n(t) (1)

2/ Compute (v(t)]v(0) = vo) and (v(t)* |v(0) = o), (the averages are conditioned, i.e. mo-
ments are computed for the velocity initially fixed).
3/ Deduce the conditional probability P;(v|vg).

4/ Express the correlator (v(t)v(t')|v(0) = vp), as an integral involving P;(v|vp). Recover the
expression of the correlator (for a fixed initial value v(0) = vy).

5/ Same question for a random initial value v(0) = vy, corresponding to thermal equilibrium.

2 Random telegraph process

We consider a small electric conductor with two contacts which are pinned by gate voltages so
that electrons enter one by one (this the so called ”Coulomb blockade regime”). The number
of electrons inside the island can be controlled by the gate underneath, so that the number of
electrons is either N or N + 1.
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Figure 1: The charge inside the conductor is measured as a function of the time : Iqpc is
proportional to the number of electrons inside the central island, which fluctuates by one unit
(one electron). From : S. Gustavsson, I. Shorubalko, R. Leturcq, S. Schén, and K. Ensslin,
“Measuring current by counting electrons in a nanowire quantum dot”, Appl. Phys. Lett. 92,
152101 (2008)

Consider the Markov process X (t) taking two values X; or X5. The transition rates are A
(from X; to X3) and Ay (from X3 to X7). This means that the averaged time spent in state
X128 1/A12. We denote by P;(t) = Proba{X(t) = X;} with i € {1, 2}.

1/ Write the set of differential equations for P;(t) and Py (t).

2/ Find the stationary solution, denoted by P, and give the general solution of the master
equation (hint : consider P;(t) + P»(t) and y(t) = Pi(t) — Pa(t)).
An interesting exercice is to write the system of equations in a matricial form %P(t) =
W P(t), where P = (P; , P»)" and diagonalize the non-symmetric matrix W. Show that
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3/ We now determine the conditional probability P;(i|j), which is a specific solution of the
master equation. What is the initial condition corresponding to P;(i|j) ? Deduce P:(i|j).
Check that the detailed balance condition

P(12) Py = P(21) PY (3)

is fulfilled. Compute _; Pi(n|j) P} and interpret.

4/ We now want to characterize the correlations of the charge in the conductor, in the stationary
regime. Express (X (¢)) and (X (¢)X (¢')) in terms of P;(i|j) and P;. For simplicity, we assume
that X; = 0 describes the conductor empty and X5 = 1 the conductor with one electron.
Compute explicitly (X (¢)) and C(t —t') = (X ()X (¢')) — (X (¢)) (X (¢)) in this case.

5/ Deduce the power spectrum S(w) of the telegraphic noise (recall the relation with the cor-
relation function C(t)).

3 Biased random walk on a ring

Consider the random walk on a ring with L sites, such that with

My = pén,erl +q 5n,m71 (4)
for n, m € {1,---, L}. Periodic boundary conditions are My;, = p and My, = q.

1/ Argue that the stationary state is an equilibrium state when p = ¢ = 1/2 and a NESS for
p#q.

2/ Give the spectrum of eigenvalues and eigenvectors (left/right) of the stochastic matrix M.
Write p = HT“ and ¢ = 1%” with v € [—-1,+1]. Check that the "spectral radius” is unity, i.e.
[Ae| < 1VE.

3/ Decompose the conditional probability P;(n|m) over the eigenvalues and the eigenvectors.

4/ Consider the limit L — oo and discuss the bottom of the spectrum. Compute P;(n|m) in
the two limiting cases v =0 and v = £1.

4 Compound Poisson process : normal and anomalous diffusion

A particle is moving on a line, with position X (¢) € R at time ¢. The particle performs jumps
are random times, occuring with rate A. A jump has random amplitude n, with distribution
w(n), assumed symmetric for simplicity, w(n) = w(—n). The position X (¢) corresponds to the
compound Poisson process (CPP). The aim of the exercice is to analyze its distribution P(x,t).

1/ Express P(x;t -+ 6t) in terms of P(z,t). Show that it obeys the master equation 0;P(x,t) =
[ dy W (z|y) P(y;t) and give the kernel W (z|y).

2/ What are the two properties of W (z|y) ? Making use of one of these properties, solve the dif-
ferential equation and deduce P(z,t) under an integral form involving w(k) = [ dnw(n) e *7,

3/ Argue that the At > 1 limit involves the k — 0 behaviour of w(k).
4/ For (n?) < oo, deduce the form of P(x,t) for large times.

5/ We now consider (n?) = oo. Recall the k — 0 behaviour of (k) when the distribution
presents a power law tail w(n) ~ ¢|n|~*~!. Deduce P(x,t) for large times.



5 Noise from the CPP and Shottky electric noise

In this exercice, we study the properties of the “Poisson noise” obtained from a derivativion of
the Poisson process (PP) or the compound Poisson process (CPP).
We consider the noise

N

§t) = kn ot —t,) for ¢ € [0, 7] (5)

n=1

where N is random. {,} and {t,} are two sets of i.i.d. random variables. [[| The probability to
have N “impulses” in interval [0, 7] is the Poisson distribution

Pr(N) = “ﬂNeAT (6)

The t,, are uniformly distributed over the interval [0,7], i.e. the joint distribution of the N
times simply Py(t1,---,tx) = 1/TN. The weights ,’s have a common law p(k).

1/ We introduce the generating functional
Glo(t)] & <ef dt¢<t>s<t>> (7)

where (- - -) denotes averaging over the noise £(¢). Show how one can deduce the correlation

functions from the knowledge of G[¢] (which will be calculated below).
Hint : Use the functional derivatives 5<z(55(€1)’ 3 ¢(t‘f;%( &) etc. Functional derivatives are easily
computed with the rule

5o (t')

¢ (t)
and usual rules for derivation. Example : W;(t) [dt' ¢(t')? =2¢(1).

=8(t—t) (8)

2/ Poisson process.— We first consider the case p(k) = d(k — ¢). Using that averaging over
the noise takes the form of an averaging over the random variables

% N T
<(...)>N’{tn}zz ()‘]1\2 eAT/O %...&TN(...), 9)

N=0

compute explicitly G[¢p(t)].

3/ Functional derivations of G[¢] generate the correlation functions (£(t1)---&(¢,)) and the
derivations of W{[¢] = In G[¢] generate the connex correlation functions (+» cumulants), i.e.

(€(1)), (EDEW), = (E@ED)) = (£(1) (€(2)'), ete. Deduce these latter.

4/ Application : Classical theory of shot noise (Shottky noise).— Some current i(¢) flows
through a conductor. Due to the discrete nature of the charge carriers, the current presents
some fluctuations (noise) known as “shot noise”, which we aim to characterize here (not to be
confused with the thermal fluctuations, i.e. the Johnson-Nyquist noise). We assume that the
current can be written under the form of independent implulses i(¢t) = ¢, d(t — t,). The
average rate is X\. Express the two first cumulants of current. Deduce the power spectrum

S(w) = / d(t —t') e () i(t))e (10)

and give the relation between the shot noise and the averaged current (7).

'i.i.d. = independent and identically distributed.



5/

6/

Remark : This result has permitted to demonstrate the existence of charge carriers with fractional
charge in the regime of the fractional quantum Hall effect (strong magnetic field, low
temperature) :

e L. Saminadayar, D. C. Glattli, Y. Jin & B. Etienne, Observation of the /3 Fractionally
Charged Laughlin Quasiparticle, Phys. Rev. Lett. 79 (1997) 2526.

e M. Reznikov, R. de Picciotto, T. G. Griffiths, M. Heiblum & V. Umansky, Observation
of quasiparticles with 1/5 of an electron’s charge, Nature 399 (May 1999) 238.

Transfered charge (Poisson process).— We consider the stochastic differential equation

dQ(t) .
—= =) (11)

a) Draw a typical realization of the process Q(t). Deduce the cumulants of the charge
Q)"

b) Argue that on the large time scale At > 1, the cumulants with n > 2 can be neglected.
What is then the nature of the process Q(t) ?

¢) We introduce the distribution of the charge P(Q;t) = (6(Q — Q(t))) describing the
evolution of the process with a drift

QO _ Fiuy + i) (12)

The equation could describes the RC circuit, for F(Q) = Q/(RC), with a noise source.
Consider separately the effect of the drift and the jumps to relate P(Q;t + dt) to P(Q;t).
Show that the distribution obeys

O P(Qit) = —0q [F(Q) P(Q:t)] + A[P(Q — ¢;t) — P(Qs1)] - (13)
Compound Poisson process.— We now consider an arbitrary distribution p(x) and in-
troduce the generating function g(k) = <ek“”>.
a) Find the new expression of the generating functional G[¢].

b) Show that it is possible to define a limit (changing A and p(k)) where the noise becomes
a Gaussian white noise.

c¢) Show that the generalization of is

OP(Q;t) = —0 [F(Q) P(Q51)] + A / dguw(q) [PQ—q:t) — P(@QD)] . (14)

Check the conservation of probability. Express the probability current J(Q;t) related to
the distribution by the conservation law 0;P(Q;t) = —00J (Q;1).

Consider the limit of small jumps ¢ — 0, i.e. when w(q) is concentrated at the origin.
Assuming (¢) = 0, show that leads to the Fokker-Planck equation and express the
diffusion constant D of the charge diffusion.
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