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Stochastic processes

Tutorials 5 – Master equation (2)

1 Di↵usion of a 1D particle on Z with a potential

Let us consider the master equation describing the one dimensional di↵usion on Z with transi-
tions between nearest neighbour sites

@tPn(t) = Wn,n�1Pn�1(t) +Wn,n+1Pn+1(t)� (Wn�1,n +Wn+1,n)Pn(t) (1)

i.e. Wn,m is a tridiagonal (infinite) matrix with Wn,n = �Wn�1,n � Wn+1,n. Such a master
equation, with transitions between nearest neighbours, is said to describe a “birth and death
process”.

1/ Current : check that the master equation can be rewritten under the form

@tPn = �Jn + Jn�1 (2)

and express the ”current density” Jn(t) related to the distribution Pn(t)

2/ We now choose the matrix such that

Wn,m = e[V (m)�V (n)]/2 (3)

where V (x) is a known function.

Equilibrium (J = 0).— Show that

P
⇤
n = C e�V (n) (4)

is a stationary solution corresponding to a vanishing current. Discuss the normalisability.

3/ NESS (J 6= 0).— Find the stationary solution corresponding to Jn = J 8n. Show that it is

P
⇤
n = J e�V (n)

1X

m=n

e[V (m+1)+V (m)]/2 (5)

Discuss the normalisability (consider the continuum limit for simplicity).

4/ Provide an example where there is no stationary state.
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2 Continuous time random walks and anomalous di↵usion

We consider a more general class of stochastic processes, known as “renewal processes”. In
particular, we focus on a simple example generalizing the compound Poisson process (CPP).

A particle has position X(t) and starts at the origin at initial time X(0) = 0. Then it
performs random jumps

X(t+n ) = X(t�n ) + ⌘n , (6)

where the jump amplitudes are distributed according to the distribution w(⌘), assumed sym-
metric for simplicity. The CPP corresponds to time intervals ⌧n = tn � tn�1 > 0 exponentially
distributed according to the distribution q(⌧) = �e��⌧ . Here, we discuss a generalization of the
compound Poisson process and consider a general distribution q(⌧) for the time intervals.

1/ Justify that the master equation is replaced by the integral equation (in time)

P (x, t) =

Z t

0

d⌧ q(⌧)

Z

R
d⌘w(⌘)P (x� ⌘, t� ⌧) + �(x)

Z 1

t
d⌧ q(⌧) . (7)

Check normalisation.

2/ If q(⌧) = �e��⌧ , check that one recovers the master equation of the CPP from (7).

3/ Solve the equation by introducing the Fourier-Laplace transform

eP (k, s)
def
=

Z 1

0

dt e�st
Z

R
dx e�ikx

P (x, t) (8)

Deduce eP (k, s) in terms of q̃(s) =
R1
0

d⌧ e�s⌧
q(⌧) and ŵ(k) =

R
R d⌘ e�ik⌘

w(⌘). Find an
integral representation of P (x, t).

4/ Consider distributions with power law tails w(⌘) ' c
|⌘|µ+1 for ⌘ ! ±1 and q(⌧) ' a

⌧↵+1 for
⌧ ! +1.
What is the s ! 0 behaviour of q̃(s) for ↵ > 1 ? And for ↵ < 1 ?

5/ Same questions for ŵ(k) (distinguish µ > 2 and µ < 2).

6/ Discuss the limiting behaviour of eP (k, s) for k ! 0 and s ! 0. Deduce the scaling relation
between space x and time t.

7/ Draw a ”phase diagram” in the plane (µ,↵) and identify the regions of normal di↵usion,
subdi↵usion and superdi↵usion.
Discuss the case µ = 2↵ 2]0, 2[ : does this correspond to normal di↵usion ?
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