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CORRECTION OF THE STOCHASTIC PROCESSES’ EXAM — OCTOBER 2024

Few questions ...

go to the lectures and/or the answers given in the list of questions.

2

The moments for a linear drift

We consider

1/

2/

3/

O Py(x) = =0, [(a + ba)Pi(x)] + 82[D(x) Pi(x)] forzeR. (9)
% (x(t)) = [dax 8 P;(z), then we use the FPE

d

 alt)) = /d:mc [0, [(a + ba)Py(a)] + &2 [D(2)Pi(x)]] = /d:c (a+ba)Pi(x)

with integration by parts (no boundary terms because P;(x) should vanish at co). I.e. we
obtained the differential equation % (x(t)) = a+ b(x(t)). The solution for initial condition
z(0) =0is
a (bt
(@(t) = 5 (" —1) (10)
It is linear for small time, (x(t)) ~ at. For large time, it blows up for b > 0, as (z(t)) ~ e,
or saturates to (x(t)) ~ —a/b > 0 for b < 0.

The FPE is related to the SDE

dz(t) = (a + bx)dt + \/2D(z) dW (t) (Ito) (11)
With the It6 SDE, averaging is straightforward and we recover the same differential equation.

I prefer to use Doblin-It6 calculus : d (z) = nz" 1 dz + sn(n — 1) 2" 2da? ie.
d(z@®)™) = [n(az" " +b2") + n(n — 1) 2" 2D(z)] dt + na""' /2D (z) dW (¢) (Ito)

as a result

d

e (x(®)") =nb{z(t)") +na <x(t)”_1> +n(n—1) <9:(t)”_2D(x(t))> (12)

One can also obtain this equation by considering [ dx 8;P;(x) 2", again using the FPE and
performing some integrations by parts.

In general, we cannot do much with this equation as it involves the unkown correlator
<x”*2D(aﬁ)>. However, if D(z) is a polynomial of second degree at most, we get a differential
equation for (z™) with a source term combining <x”_1> and <x”_2>. Then we can solve the
differential equations by recurrence.



4/ Consider D(x) = Do + Dy x + Dy 2? (the three parameters are such that D(z) > 0 Vz).
From the previous equation, we have

d

&<x2> =2b(2*) +2a (z) +2 (D2 (2*) + D1 (z) + Dy) (13)

This is a differential equation for (x(t)?), with a source term depending on (z(t)), which
was obtained above.

We prefer to solve a differential equation for the variance. We substract % (z)? = 2 (x) % (x) =
2(z) (a+b(z)) and get

d
o (2%), = 2(b+ D3) (2*) — 2b(z)* + 2D\ (z) + 2Dy
removing and adding 2D ()% we end with the nice form

d

r (x(t)?), =2(b+ Da) (x(t)*), +2D({(x(t))) (14)

For a fixed initial condition, the solution is

(z(t)?), = 260+ D2)t /t du D({z(u))) e b+ D2)u (15)
0

More explicitely

2

t
<$(t)2>c — 2e2(b+D2)t/ du I:D2 % (ebu o 1>2 + Dl % (ebu _ 1> + D[):| e—2(b+D2)u (16)
0

the integral is dominated by the lower bound, hence (z?) ~ e2(b+D2)t - The relative fluctu-
ations thus grow exponentially
EGLAY

(x(t))
More precise result (not asked).— It is not difficult (just a bit lengthy) to get a more
precise result. The leading terms at large ¢t are
2 —2D 2 2
(x(t) >2C :{Dg [1 —e P2ty N 1 n Dy b Dy (b) }GQDgt
<x<t>> D2 b—|-2D2 b+D2 a(b+D2)(b+2D2) b+D2 a
+0(e™) (17)
b\? a%+ Dia+ Do (b+2Ds) 4p.,
- e“72" for Dy >0
~ <a> (b+ D2)(b+2D3) T
D D
Dra+ Dob for Dy = 0
a

For the multiplicative noise with D(z) = Dy 2, i.e. Itd6 SDE dx = (a + bz)dt + /2Dy x dW (1),
the relative fluctuations grow like e”?!, however for multiplicative noise with D(x) = Dz i.e.
Ito6 SDE dz = (a + bx)dt + v/2D; x dW(t), the relative fluctuations saturate, like for additive
noise (D1 = D2 = 0)



3 Bridge processes : conditioning in the Langevin equation

We consider the process described by the SDE

dz(7)
dt
where 7)(7) is a normalised Gaussian white noise, (n(t)) = 0 and (n(t)n(t')) = é(t — t').

= F(x(r)) + V2D 1(r) (18)

1/ a) Pr(z|xo) is the usual conditional probability for the unconstrained process.

P(z) = Py (xflx)Pr(x|zo0) _ Py (wy,t; 2, 7|20,0) (19)
’ Py(w s|wo) Py(z s|70)

_ joint distribution of x(t) & x(7) conditioned onz(0) = xq

20
distribution of z(t) conditioned onx(0) = x (20)

This is the distribution of (7), conditioned on both the initial value, x(0) = xo and the final
value z(t) = xy. Using the Chapman-Kolmogorov equation, we have indeed [ dz 2 (z) = 1.

(note that looking at the normalisation is an indication that 2, (x) is the distribution
for x(7)).

b) For F(z) = 0 and xp = y = 0 we have

1 _7932 1 z2 t t
P(x) = V2t ———e 207 e = | — — _ex —x2}
(@) 27(t — 1) V2T 2T (t — 1) P { 27(t — 1)

Therefore

.
(@(r)? [2(0) = o(t) = 0) =7 (1- 7 (21)
It is a parabola (the result vanishes both for 7 = 0 and 7 = ¢, as it should).

2/ The correlator of the Wiener process is (W (7)W (7')) = min (7, 7’). We deduce the correlator
of B(t)=W(r) — WT(t)T :

T 7! T TT

C(r,7) = WEOW ()= (WOW ()= (WOW@)+—5 (W(H)?) = min (r,7)——~

which vanishes for 7 =0, 7 = ¢, 7/ = 0 or 7/ = ¢t, as it should. Cp(7,7) =7 (1 —7) is the

¢
same parabola as in 1/.

b) B(7) is Gaussian and has same variance as the constrained Brownian trajectory described
by Z.(x). The fact that they are both Gaussian processes and have same variance suggests
that the two processes coincide. In principle, we should compare the correlators to identify
the two processes (i.e. write an equality in law).

More (not asked) : We can construct the correlator for z(7) by considering

(a(r)(r') | 2(t) = 27 & 2(0) = o) = J%Pt_mfw) 2 Pr_(zla) 2! Pro(a|zo)
(22)

For xy = z9 = 0, you can easily check that the calculation indeed gives the same result
as Cp(7,7'), hence we can identify the process defined by £, (x), associated to the usual
measure for Brownian motion, with the bridge B(7) constructed from the Wiener process.
B(7) is the Brownian bridge.

¢) To emphasize this point, we consider By (1) <= W () — W (¢) (%) for o > 0, with variance
<Ba (7‘)2> =T7-2T (%) ‘ot (%) ** The process is also Gaussian, vanishes at the two boundaries

(i.e. is a bridge), however it presents different correlations and variance, hence it cannot be
identified with the constrained BM : B, (1) with « # 1 is not the Brownian bridge.



3/

4/

5/

For convenience, we write

def
L@T(.I) —_ Q('T7 7_) P(ZE’, T) Where P(I’, T) ;f PT(.Q?‘.TO) (23)
Pt(l‘f|$0) Q(va) = Pt—T(:Uf"x)
P and @ obey the forward and backward FPE, respectively :
O;P(x,7) = =0y [F(z)P(z,7)] + DOZP(2,7)  (forward FPE) (24)
—0:Q(z,7) = +F(x) 0,Q(x,7) + DI*Q(z, ) (backward FPE). (25)
We deduce
=02(QP)—2P0;Q—2(0:Q)(9: P)
0;(PQ) = —Q0,[FP] — PF9,[Q| + D{Qd2P — POQ}
= —0,[FQP] —2D 08,[(8,Q)P] +D2[QP]
—_——
=0 (0. mQ)QP]
i.e. the distribution obeys
8, Pr(x) = 0, [F(x,7) P, ()] + DO P, () (26)
for the time dependent drift
F(z,7) = F(z) + 2D 8, In Q(z, 7) (27)

By construction, the solution &, (z) describes the stochastic process constrained to reach
xy at time t. Le. Z7(x) — 0(x — xf) (this is clear from its definition).
Tt~

According to the appendix, this FPE corresponds to the SDE

dz(:) — F(z(7),7) +V2Dn(r)  forre[0,1] (28)

for the modified drift (simulations of the figures are performed with this SDE for F'(z) =0

and F(z) = —yx).

From the previous question, we conclude that z(7) - x(t) = xy is non random. This is
T—

remarkable : we have constructed a SDE which produces a deterministic final result (cf.
figures) !
Let us illustrate this on the free BM :

a) Q(z,7) = \/ﬁexp{ — (xf — x)?/4D(t — T)} We get

Fz,7)=2D 8, nQ(z,7) = xtf;‘” . (29)
-7
We deduce the SDE for the constrained process
d _
o) _ 2 =20 D) (30)
dr t—T
The drift term compels the process to reach s (otherwise the term blows up) : when 7 — t,
the drift dominates the noise, gg;ifx o~ td_—TT, ie. In(xy — (7)) ~ In(t — 7) + cste. This shows

that x(7) @ zy —c(t —7) = xy.
For g = 2y = 0 with D = 1/2, it simplifies as

dz(7) 1
dr t—r




b) This equation has the form dﬁ—(:) = A7) z(7) + n(7), with solution

t
z(7) = elo d“)‘(“)/ dun(u) e Jo W) (32)
0

Application : A(1) = —1/(t — 7) then [/ du(u) = In[(t — 7)/t], leading to the nice
representation for the solution of :

t—u

a(r) = (t—1) /OT du 1| (33)

Obviously (x(7)) = 0. The correlator is

77 du (t—7)(t —7') min

min(7,
Co(r,7') = (z(n)a(r)) =t —7)(t —7) /0 (t— ) = 1t — min)

T'r

= min (7,7") — < = Cp(r, )

This is precisely the correlator of B(7). Both x(7) and B(7) being Gaussian, we conclude
that

() "2 B(r) (34)

Eq. 1s another representation of a Brownian bridge.
¢) An integration by parts gives

2(r) = W(r) - (t - 7) /0 " du (tmi(z;z (35)

Hence the difference

2(r) = B(r) = TW(t) = (t = 7) /O "au (K(Z§2 (36)

is non zero! The two Brownian bridges are not equal for a given realization of the noise.
However we have shown that they have exactly the same statistical properties (this is the
meaning of the equality in law).

This reminds us that z(7) "=’ B(r) (correct) does not imply z(r) — B(r) "=’ 0 (wrong!)

Let us now constrain the Ornstein-Uhlenbeck (linear force F(x) = —y z). Let us recover
the propagator. We integrate the SDE , leading to z(7) = zge " +v/2D fOT dun(u) e 7(T=w),
Averaging is easy :

(2(1) [2(0) = zo) = zoe ™" (37)
D
Var(z(7) | 2(0) = o) = > (1—e7) (38)
Using that the Ornstein-Uhlenbeck process is Gaussian, we deduce the conditional proba-
bility
Y Y(x —x9e7)?
P, = - 39
(zl0) \/27TD<1 — o) eXp{ 9D(1 — e—27) (39)
We get
xp—xe VET)
2D 0, nQ(x,7) =2D 0, In P, (xf|lx) =~ (40)

sinh~y(t — 1)



x(t) x(t)

Figure 2: Left : Unconstrained Ornstein-Uhlenbeck process (D = 1, v = 3). Right : Ornstein-
Uhlenbeck process constrained to reach xy = 2 obtained by solving . Unconstrained and
constrained case involve the same noise (for each color).

i.e. the SDE for the constrained Ornstein-Uhlenbeck process is

dz(7)
dr

xp—a(r)e VT

)
= —ya(r) +7 +V2Dn(r) (41)

sinh~y(t — 1)
Again : the modified drift compels the process to reach xy at final time 7 = ¢. Some solutions
of this SDE are represented on the figure.

Conditioning is more spectacular for the Ornstein-Uhlenbeck process (compared to the
Wiener process) because the constraint enforces the process to explore very atypical sit-
uations.

To learn more : S. N. Majumdar & H. Orland, “Effective Langevin equations for constrained
stochastic processes”, J. Stat. Mech. P06039 (2015).
This is also related to “conditioning and Doob A’s transform”.
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