
Master 2 Physics of Complex Systems

Ch. Texier

Correction of the Stochastic processes’ exam – october 2024

1 Few questions ...

go to the lectures and/or the answers given in the list of questions.

2 The moments for a linear drift

We consider

@tPt(x) = �@x
⇥
(a+ b x)Pt(x)

⇤
+ @2

x

⇥
D(x)Pt(x)

⇤
for x 2 R . (9)

1/
d
dt hx(t)i =

R
dxx @tPt(x), then we use the FPE

d

dt
hx(t)i =

Z
dxx

⇥
�@x

⇥
(a+ b x)Pt(x)

⇤
+ @2

x

⇥
D(x)Pt(x)

⇤⇤
=

Z
dx (a+ b x)Pt(x)

with integration by parts (no boundary terms because Pt(x) should vanish at 1). I.e. we
obtained the di↵erential equation d

dt hx(t)i = a+ b hx(t)i. The solution for initial condition
x(0) = 0 is

hx(t)i =
a

b

⇣
ebt � 1

⌘
(10)

It is linear for small time, hx(t)i ' a t. For large time, it blows up for b > 0, as hx(t)i ⇠ ebt,
or saturates to hx(t)i ' �a/b > 0 for b < 0.

2/ The FPE is related to the SDE

dx(t) = (a+ b x) dt+
p
2D(x) dW (t) (Itô) (11)

With the Itô SDE, averaging is straightforward and we recover the same di↵erential equation.

3/ I prefer to use Doblin-Itô calculus : d (xn) = nxn�1 dx+ 1
2n(n� 1)xn�2 dx2 i.e.

d (x(t)n) =
⇥
n (a xn�1 + b xn) + n(n� 1)xn�2D(x)

⇤
dt+ nxn�1

p
2D(x) dW (t) (Itô)

as a result

d

dt
hx(t)ni = n b hx(t)ni+ na

⌦
x(t)n�1

↵
+ n(n� 1)

⌦
x(t)n�2D(x(t))

↵
(12)

One can also obtain this equation by considering
R
dx @tPt(x)xn, again using the FPE and

performing some integrations by parts.

In general, we cannot do much with this equation as it involves the unkown correlator⌦
xn�2D(x)

↵
. However, if D(x) is a polynomial of second degree at most, we get a di↵erential

equation for hxni with a source term combining
⌦
xn�1

↵
and

⌦
xn�2

↵
. Then we can solve the

di↵erential equations by recurrence.
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4/ Consider D(x) = D0 + D1 x + D2 x2 (the three parameters are such that D(x) > 0 8x).
From the previous equation, we have

d

dt

⌦
x2
↵
= 2 b

⌦
x2
↵
+ 2 a hxi+ 2

�
D2

⌦
x2
↵
+D1 hxi+D0

�
(13)

This is a di↵erential equation for
⌦
x(t)2

↵
, with a source term depending on hx(t)i, which

was obtained above.

We prefer to solve a di↵erential equation for the variance. We substract d
dt hxi

2 = 2 hxi d
dt hxi =

2 hxi (a+ b hxi) and get

d

dt

⌦
x2
↵
c
= 2(b+D2)

⌦
x2
↵
� 2b hxi2 + 2D1 hxi+ 2D0

removing and adding 2D2 hxi
2 we end with the nice form

d

dt

⌦
x(t)2

↵
c
= 2(b+D2)

⌦
x(t)2

↵
c
+ 2D(hx(t)i) (14)

For a fixed initial condition, the solution is

⌦
x(t)2

↵
c
= 2e2(b+D2)t

Z t

0
duD(hx(u)i) e�2(b+D2)u (15)

More explicitely

⌦
x(t)2

↵
c
= 2e2(b+D2)t

Z t

0
du


D2

a2

b2

⇣
ebu � 1

⌘2
+D1

a

b

⇣
ebu � 1

⌘
+D0

�
e�2(b+D2)u (16)

the integral is dominated by the lower bound, hence
⌦
x2
↵
c
⇠ e2(b+D2)t. The relative fluctu-

ations thus grow exponentially p
hx(t)2ic
hx(t)i

⇠ eD2t

More precise result (not asked).— It is not di�cult (just a bit lengthy) to get a more
precise result. The leading terms at large t are

⌦
x(t)2

↵
c

hx(t)i2
'

⇢
D2


1� e�2D2t

D2
�

4

b+ 2D2
+

1

b+D2

�
+

D1 b2

a(b+D2)(b+ 2D2)
+

D0

b+D2

✓
b

a

◆2�
e2D2t

+O(e�bt) (17)

'

8
>><

>>:

✓
b

a

◆2 a2 +D1 a+D0 (b+ 2D2)

(b+D2)(b+ 2D2)
e2D2t for D2 > 0

D1a+D0b

a2
for D2 = 0

.

For the multiplicative noise with D(x) = D2 x2, i.e. Itô SDE dx = (a+ bx)dt+
p
2D2 x dW (t),

the relative fluctuations grow like eD2t, however for multiplicative noise with D(x) = D1 x i.e.
Itô SDE dx = (a + bx)dt +

p
2D1 x dW (t), the relative fluctuations saturate, like for additive

noise (D1 = D2 = 0).
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3 Bridge processes : conditioning in the Langevin equation

We consider the process described by the SDE

dx(⌧)

dt
= F (x(⌧)) +

p

2D ⌘(⌧) (18)

where ⌘(⌧) is a normalised Gaussian white noise, h⌘(t)i = 0 and h⌘(t)⌘(t0)i = �(t� t0).

1/ a) P⌧ (x|x0) is the usual conditional probability for the unconstrained process.

P⌧ (x) =
Pt�⌧ (xf |x)P⌧ (x|x0)

Pt(xf |x0)
=

P2|1(xf , t;x, ⌧ |x0, 0)

Pt(xf |x0)
(19)

=
joint distribution of x(t) & x(⌧) conditioned onx(0) = x0

distribution of x(t) conditioned onx(0) = x0
(20)

This is the distribution of x(⌧), conditioned on both the initial value, x(0) = x0 and the final
value x(t) = xf . Using the Chapman-Kolmogorov equation, we have indeed

R
dxP⌧ (x) = 1.

(note that looking at the normalisation is an indication that P⌧ (x) is the distribution
for x(⌧)).

b) For F (x) = 0 and x0 = xf = 0 we have

P⌧ (x) =
p
2⇡t

1p
2⇡(t� ⌧)

e
� x2

2(t�⌧)
1

p
2⇡⌧

e�
x2

2⌧ =

s
t

2⇡⌧(t� ⌧)
exp

⇢
�

t

2⌧(t� ⌧)
x2
�

Therefore ⌦
x(⌧)2 |x(0) = x(t) = 0

↵
= ⌧

⇣
1�

⌧

t

⌘
(21)

It is a parabola (the result vanishes both for ⌧ = 0 and ⌧ = t, as it should).

2/ The correlator of the Wiener process is hW (⌧)W (⌧ 0)i = min (⌧, ⌧ 0). We deduce the correlator

of B(⌧) = W (⌧)� W (t)
t ⌧ :

CB(⌧, ⌧
0) =

⌦
W (⌧)W (⌧ 0)

↵
�
⌧

t

⌦
W (t)W (⌧ 0)

↵
�
⌧ 0

t
hW (⌧)W (t)i+

⌧ ⌧ 0

t2
⌦
W (t)2

↵
= min

�
⌧, ⌧ 0

�
�
⌧ ⌧ 0

t

which vanishes for ⌧ = 0, ⌧ = t, ⌧ 0 = 0 or ⌧ 0 = t, as it should. CB(⌧, ⌧) = ⌧
�
1� ⌧

t

�
is the

same parabola as in 1/.

b) B(⌧) is Gaussian and has same variance as the constrained Brownian trajectory described
by P⌧ (x). The fact that they are both Gaussian processes and have same variance suggests
that the two processes coincide. In principle, we should compare the correlators to identify
the two processes (i.e. write an equality in law).

More (not asked) : We can construct the correlator for x(⌧) by considering

⌦
x(⌧)x(⌧ 0) |x(t) = xf & x(0) = x0

↵
=

Z
dxdx0

Pt(xf |x0)
Pt�⌧ (xf |x)xP⌧�⌧ 0(x|x

0)x0 P⌧ 0(x
0
|x0)

(22)
For xf = x0 = 0, you can easily check that the calculation indeed gives the same result
as CB(⌧, ⌧ 0), hence we can identify the process defined by P⌧ (x), associated to the usual
measure for Brownian motion, with the bridge B(⌧) constructed from the Wiener process.
B(⌧) is the Brownian bridge.

c) To emphasize this point, we consider B↵(⌧)
def
= W (⌧)�W (t)

�
⌧
t

�↵
for ↵ > 0, with variance⌦

B↵(⌧)2
↵
= ⌧�2⌧

�
⌧
t

�↵
+t
�
⌧
t

�2↵
. The process is also Gaussian, vanishes at the two boundaries

(i.e. is a bridge), however it presents di↵erent correlations and variance, hence it cannot be
identified with the constrained BM : B↵(⌧) with ↵ 6= 1 is not the Brownian bridge.
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3/ For convenience, we write

P⌧ (x) =
Q(x, ⌧)P (x, ⌧)

Pt(xf |x0)
where

(
P (x, ⌧)

def
= P⌧ (x|x0)

Q(x, ⌧)
def
= Pt�⌧ (xf |x)

(23)

P and Q obey the forward and backward FPE, respectively :

@⌧P (x, ⌧) = �@x
⇥
F (x)P (x, ⌧)

⇤
+D@2

xP (x, ⌧) (forward FPE) (24)

�@⌧Q(x, ⌧) = +F (x) @xQ(x, ⌧) +D@2
xQ(x, ⌧) (backward FPE). (25)

We deduce

@⌧ (PQ) = �Q@x
⇥
FP

⇤
� PF@x

⇥
Q
⇤
+D

=@2
x(QP )�2P@2

xQ�2(@xQ)(@xP )
z }| {�
Q@2

xP � P@2
xQ

 

= �@x
⇥
FQP

⇤
� 2D @x

⇥�
@xQ

�
P
⇤

| {z }
=@x

⇥�
@x lnQ

�
QP

⇤
+D @2

x

⇥
QP

⇤

i.e. the distribution obeys

@⌧P⌧ (x) = �@x
⇥ eF (x, ⌧)P⌧ (x)

⇤
+D @2

xP⌧ (x) (26)

for the time dependent drift

eF (x, ⌧) = F (x) + 2D @x lnQ(x, ⌧) (27)

By construction, the solution P⌧ (x) describes the stochastic process constrained to reach
xf at time t. I.e. P⌧ (x) �!

⌧!t�
�(x� xf ) (this is clear from its definition).

4/ According to the appendix, this FPE corresponds to the SDE

dx(⌧)

d⌧
= eF (x(⌧), ⌧) +

p

2D ⌘(⌧) for ⌧ 2 [0, t] (28)

for the modified drift (simulations of the figures are performed with this SDE for F (x) = 0
and F (x) = �� x).
From the previous question, we conclude that x(⌧) �!

⌧!t
x(t) = xf is non random. This is

remarkable : we have constructed a SDE which produces a deterministic final result (cf.
figures) !

5/ Let us illustrate this on the free BM :
a) Q(x, ⌧) = 1p

4⇡D(t�⌧)
exp

�
� (xf � x)2/4D(t� ⌧)

 
. We get

eF (x, ⌧) = 2D @x lnQ(x, ⌧) =
xf � x

t� ⌧
. (29)

We deduce the SDE for the constrained process

dx(⌧)

d⌧
=

xf � x(⌧)

t� ⌧
+
p

2D ⌘(⌧) (30)

The drift term compels the process to reach xf (otherwise the term blows up) : when ⌧ ! t,
the drift dominates the noise, dx

xf�x '
d⌧
t�⌧ , i.e. ln(xf � x(⌧)) ' ln(t� ⌧) + cste. This shows

that x(⌧) ' xf � c (t� ⌧) ! xf .

For x0 = xf = 0 with D = 1/2, it simplifies as

dx(⌧)

d⌧
= �

1

t� ⌧
x(⌧) + ⌘(⌧) (31)
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b) This equation has the form dx(⌧)
d⌧ = �(⌧)x(⌧) + ⌘(⌧), with solution

x(⌧) = e
R ⌧
0 du�(u)

Z t

0
du ⌘(u) e�

R u
0 dv �(v) (32)

Application : �(⌧) = �1/(t � ⌧) then
R ⌧
0 du�(u) = ln

⇥
(t � ⌧)/t

⇤
, leading to the nice

representation for the solution of (31) :

x(⌧) = (t� ⌧)

Z ⌧

0
du

⌘(u)

t� u
. (33)

Obviously hx(⌧)i = 0. The correlator is

Cx(⌧, ⌧
0) =

⌦
x(⌧)x(⌧ 0)

↵
= (t� ⌧)(t� ⌧ 0)

Z min(⌧,⌧ 0)

0

du

(t� u)2
=

(t� ⌧)(t� ⌧ 0)min

t(t�min)

= min
�
⌧, ⌧ 0

�
�

⌧ 0⌧

t
⌘ CB(⌧, ⌧

0)

This is precisely the correlator of B(⌧). Both x(⌧) and B(⌧) being Gaussian, we conclude
that

x(⌧)
(law)
= B(⌧) (34)

Eq. (33) is another representation of a Brownian bridge.

c) An integration by parts gives

x(⌧) = W (⌧)� (t� ⌧)

Z ⌧

0
du

W (u)

(t� u)2
(35)

Hence the di↵erence

x(⌧)�B(⌧) =
⌧

t
W (t)� (t� ⌧)

Z ⌧

0
du

W (u)

(t� u)2
(36)

is non zero! The two Brownian bridges are not equal for a given realization of the noise.
However we have shown that they have exactly the same statistical properties (this is the
meaning of the equality in law).

This reminds us that x(⌧)
(law)
= B(⌧) (correct) does not imply x(⌧)�B(⌧)

(law)
= 0 (wrong!)

6/ Let us now constrain the Ornstein-Uhlenbeck (linear force F (x) = �� x). Let us recover
the propagator. We integrate the SDE (18), leading to x(⌧) = x0 e��⌧+

p
2D

R ⌧
0 du ⌘(u) e��(⌧�u).

Averaging is easy :

hx(⌧) |x(0) = x0i = x0 e
��⌧ (37)

Var(x(⌧) |x(0) = x0) =
D

�

�
1� e�2�⌧

�
(38)

Using that the Ornstein-Uhlenbeck process is Gaussian, we deduce the conditional proba-
bility

P⌧ (x|x0) =

r
�

2⇡D(1� e�2�⌧ )
exp

⇢
�
�(x� x0 e��⌧ )2

2D(1� e�2�⌧ )

�
(39)

We get

2D @x lnQ(x, ⌧) = 2D @x lnPt�⌧ (xf |x) = �
xf � x e��(t�⌧)

sinh �(t� ⌧)
(40)
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Figure 2: Left : Unconstrained Ornstein-Uhlenbeck process (D = 1, � = 3). Right : Ornstein-

Uhlenbeck process constrained to reach xf = 2 obtained by solving (41). Unconstrained and

constrained case involve the same noise (for each color).

i.e. the SDE for the constrained Ornstein-Uhlenbeck process is

dx(⌧)

d⌧
= �� x(⌧) + �

xf � x(⌧) e��(t�⌧)

sinh �(t� ⌧)
+

p

2D ⌘(⌧) (41)

Again : the modified drift compels the process to reach xf at final time ⌧ = t. Some solutions
of this SDE are represented on the figure.

Conditioning is more spectacular for the Ornstein-Uhlenbeck process (compared to the
Wiener process) because the constraint enforces the process to explore very atypical sit-
uations.

To learn more : S. N. Majumdar & H. Orland, “E↵ective Langevin equations for constrained

stochastic processes”, J. Stat. Mech. P06039 (2015).
This is also related to “conditioning and Doob h’s transform”.
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