Sorbonne Université, Université Paris Cité, Université Paris Saclay Master 2 Physics of Complex Systems Stochastic processes

Tutorials 9 - FPE(2)

1 FPE on \mathbb{R} for a non confining potential

Consider a diffusion on $\mathbb R$

$$\partial_t P_t(x) = D\partial_x^2 P_t(x) + \partial_x \left[V'(x) P_t(x) \right] \tag{1}$$

such that the drift F(x) = -V'(x) drives the particle from $-\infty$ to $+\infty$. This requires that $V(x \to \pm \infty) \to \mp \infty$.

- 1/ Give an example of V(x) and discuss the typical trajectories.
- 2/ Argue that $\mathscr{G}^{\dagger}P = 0$ has two independent solutions.
- 3/ Show that the equilibrium solution is not normalisable and find the expression of the second solution (under the form of an integral).

4/ Condition for the NESS

a) If the stationary solution exists, using the expression found above, show that it presents the asymptotic behaviour $P_{\rm st}(x) \simeq J/F(x)$ for $x \to +\infty$.

- b) Deduce the condition for existence of the stationary state for the non confining potential.
- c) Give an example of non confining drift with a stationary state, and an example without.

2 The pendulum in the overdamped regime

We consider a pendulum in a fluid, in the overdamped regime, described by the Fokker-Planck equation

$$\partial_t P_t(\theta) = D \,\partial_\theta^2 P_t(\theta) + k \,\partial_\theta \big[\sin\theta \,P_t(\theta)\big] \quad \text{for } \theta \in [-\pi, +\pi] \tag{2}$$

- 1/ What is the SDE related to this FPE ? Relate the drift to a potential $U(\theta)$.
- 2/ Show that the FPE admits an equilibrium state $P_{eq}(\theta)$.
- 3/ We now add a constant drift $F(\theta) = -k \sin \theta \longrightarrow \tilde{F}(\theta) = v k \sin \theta = -\tilde{U}'(\theta)$. How $P_{eq}(\theta)$ would be modified? Argue that this solution is not satisfactory and that there is no equilibrium when $v \neq 0$.
- 4/ To simplify the calculation, we set D = 1. Show that the stationary state has the form

$$P_{\rm st}(\theta) = J \,\psi(\theta) \left[c + \int_{\theta}^{\pi} \frac{\mathrm{d}\alpha}{\psi(\alpha)} \right] \quad \text{where } \psi(\theta) = \mathrm{e}^{-\widetilde{U}(\theta)} \,. \tag{3}$$

Get an expression of c in terms of an integral.

What is the physical meaning of J? Is it a free parameter? Express J in terms of integrals.

5/ Analyze the limiting behaviour of J when $v \to 0$; use the modified Bessel function $I_0(z) = \int_0^{2\pi} \frac{dt}{2\pi} e^{z \cos t}$ (with asymptotic $I_0(z) \simeq 1$ for $z \to 0$ and $I_0(z) \simeq e^z / \sqrt{2\pi z}$ for $z \to \infty$).

3 Broadening of the line shape by phase noise

A field E(t) is measured with a detector characterized by the response function $\psi(\omega)$ (the response of the detector at frequency ω) such that

$$\int_{\mathbb{R}} \frac{\mathrm{d}\omega}{2\pi} |\psi(\omega)|^2 = 1 \tag{4}$$

The outcome of the detector is

$$S = \left| \int_{\mathbb{R}} \frac{\mathrm{d}\omega}{2\pi} \psi(\omega) \,\widetilde{E}(\omega) \right|^2 \quad \text{where } \widetilde{E}(\omega) = \int_{\mathbb{R}} \mathrm{d}t \,\mathrm{e}^{\mathrm{i}\omega t} \,E(t) \tag{5}$$

We consider a monochromatic field with frequency ω_0 , carrying additionally a random phase $\theta(t)$

$$E(t) = E_0 e^{-i\omega_0 t + i\theta(t)}$$
(6)

The statistical properties of the phase are described by the Fokker-Planck equation

$$\partial_t P_t(\theta) = D \,\partial_\theta^2 P_t(\theta) \tag{7}$$

(here we can consider that $\theta \in \mathbb{R}$).

- 1/ What is the process described by the FPE ? Compute $\langle \left[\theta(t) \theta(t')\right]^2 \rangle$.
- 2/ Argue that

$$\left\langle e^{i[\theta(t)-\theta(t')]} \right\rangle = e^{-\frac{1}{2}\left\langle [\theta(t)-\theta(t')]^2 \right\rangle}$$
(8)

3/ Compute $\langle \widetilde{E}(\omega)\widetilde{E}(\omega')^* \rangle$. Compare the result to the expected one in the absence of the random phase.

Hint: the change of variable $(t,t') \rightarrow (u,v)$ with u = (t+t')/2 and v = (t-t') has Jacobian one.

4/ Deduce $\langle S \rangle$ as a simple integral over the frequency. Analyse $\langle S \rangle$ in the limit $D \to 0$ and in the limit $D \to \infty$.