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CORRECTION OF THE EXAM — JANUARY 2025

Two stochastic processes

We start from the SDE %Z(Lu) = n(u) where n(u) is a normalised Gaussian white noise.
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We write the solution of the SDE W (u) = [ dtn(t). The correlator is (W (u)W (v)) =
St [P (o)) = [rde [2dt 5t —¢) = [ At = min (u, v).

The noise is Gaussian, hence W (u) is also Gaussian with (W (u)) = 0 and (W (u)?) = u. As
a result the distribution of W (u) is

1
Py(W) = Nor o~ W?/2u (10)

The conditional probability P, (W |Wj) is the distribution of the same process with a different
initial condition W (0) = Wp. Using translation invariance, we get

1
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Consider ¢(t) a monotonous and differentiable function. We write (n(p(t))n(e(t))) =
5(¢(t) — p(t')). The function being monotonous, the argument vanishes for ¢ = ¢/, hence

p Bt a(t—t)
(n(e()n(e(t)) = EORNYIFLOrG] (12)

where we symmetrized the result. This is also

P, (W|Wp) = o~ (W=W0)?/2u (11)

(n(t)n(t))
VIe' )¢’ ()]
Because 7 is Gaussian, all information is in the two-point correlation function, hence this

equality means that n(¢(t)) and n(t)/+/|¢’(t)| have the same distribution. QED.
It is convenient to write

(nle®)nle(t)) = (13)

(law) 1
n(e(t) = N0l n(t) (14)

where the equality in law ) relates two quantities with the same statistical properties. We

can also write an equality n(p(t)) = | 1’(t)| 7(t), involving another independent noise, with
%)

the same statistical properties as 7(t).
We differentiate x(t) = W (uge?’*)e™7*/\/ug :

dz(t)
dt

= —ya(t) + 2’y\/u>oe+7t n(uoe27t) (15)

Using (14) we have n(upe®'?) = 7j(t)e =7 /\/uo2y where 7j(t) is a noise with the same properties
as 1(t). Finally
dz(t) _
U ) + ) (16)
which is the SDE for the Ornstein-Uhlenbeck process (particle attached to a spring in the
overdamped regime).




4/ No need to solve this new SDE (which is easy). We can simply use the mapping =z =
We™7t/, /ug, which gives

2
_dw Yo 1 U [a:e”t — xoe'yto}
Ficwlelen) =gy P W) = 50 =) P [ — o270
i.e. )
1 [ac - xoe*V(t*tO)]
Pty (wlw0) = V2r(1 — e 2E=h)) Py (1 — e~ 290—10)) (17)
We recognize a result obtained in the lectures. In the large time limit, we get
Pi(alro) = e (18)

t—o0 7'['

i.e. the equilibrium solution. Rescaling the time as u = uge®’* has related a transient process
(Wiener) to an equilibrium process (Ornstein-Uhlenbeck).

2 Steady state for the diffusion in a periodic potential

We consider the general FPE 9, Pi(z) = —0,[F(x)Py(x)] + 02[D(z)Pi(z)] for & € [0, L] with
periodic boundary conditions.

The stationary state corresponds to a constant current J = F(z)P*(z) — 0, [D(z)P*(x)], i.e.
this is a first order differential equation with a source term. Introducing ¢ (z) = D(x)P*(x), we
have

V'(z)+U (z)(z) = —J where U'(z)=—F(z)/D(x) (19)
Solution of the homogeneous equation (for J = 0) is 1(z) = Ae (). Then we get the general
solution from the ”variation of the constant method”. We obtain eventually the general solution

Y(z) = Ae U@ — Je_u(f‘)/ dyetU®) je. P*(z) = —— e U@ _ e_u(z)/ dy etU®)
) o = Dy D@y
(20)

where A is an integration constant.
The current is constant, hence also periodic. There remains to impose P*(0) = P*(L) which
leads to the condition

D(L) w(r)- t
A[l—e (L)-u(0) :J/ dy M) 21
D(0) : 2y
The condition for equilibrium (J = 0) is
D(L) wir)-u(o)
i Sl =1 22
D) " (22)

for D(0) = D(L) (periodic and continuous diffusion constant), the potential must be continuous
and periodic, U(L) = U(0). The equilibrium state is then

Pequil(x) = D?:L’) e—u(x) (23)

NESS : If (22) is not fulfilled, we find A in terms of J, leading to

B fOL dy eu(y) x Uw) e—u(:v)
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where AU = U(L) —U(0) is the discontinuity of the potential. We can also rewrite the solution
as

[ dy ) N
P = =0 7 (v) 9
s () = gggge—m_ﬁ/x W B )

The expression of the current is provided by the normalization condition fOL dz Pygpss(z) =1,

-U(z) pL
fOL dx 7eDZZz) fO dy eU() L g-Ulx) rL
1/J = +/ da / dy W) 26
/ Eoper o D, (26)

Application : Consider D(x) — D and F(x) — p are constant :

L L _
da et=/D d py/D L L
D/ = fo re fo ye +/ dxe,ﬂ/D/ dye—,u,y/D (27)
0 x

enl/D _ 1

The integrals are easy to compute : one eventually gets J = u/L. That was in fact pretty
obvious : for constant drift and diffusion constant, the distribution is uniform Pygss(z) = 1/L,
hence J = ,UPNESS(x) = [L/L.

When the potential barrier is high, like on the figure, the integral over x is dominated by the
neighbourhood of x; and the integral over y by the neighbourhood of zs. Steepest descent
approximation gives :

J ~ Déil) VU (1)U (29) <1 — g((([)/))eu(m“(ov H(@1)—U(z2) (28)

Intererstingly, for D(0) = D(L), we see that the sign of the current is controlled by the discon-
tinuity of the potential, AU = U(L) — U(0). When AU > 0 (accumulation of probability close
to the left boundary), the current is J < 0. Conversely, for AU < 0 we obtain J > 0.

Futhermore, the current is exponentially suppressed by the Ahrrenius factor e¥(#1)—(#2) « 1
since the particle must overcome the barrier in order to go from one side to the other.

3 Surface phase transition

1/ In the Landau-Ginzburg approach, the order parameter minimizes the functional : O — .

5o(x)
Here, using % =d(z —y), we get

oF [ ; 0 , 2g
s = | an {20000 5500 - 00+ fiow) ot - 00} + 2 60) )
One must be careful with the boundary terms in the integration by parts :
| awé) 5ot =) = [610) 8ty — ]2 6" (@) bula) = ~60) ) — 6"(2) b

0

where 0y (z) is the Heaviside function. We have used that ¢'(c0) = 0. As a result, we find

Y
0¢(x)

— ) [~200/(0) + F10(0)] +200(0) | -6 0) 4 300)| =0 (9
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hence
206" (x) + f1(6(x) = 0
) 1 (30)
¢'(0) =

—¢(0
~6(0)
The boundary term gives rise to a boundary condition controlled by the length A\ (the
parameter can be positive or negative).

In bulk : f}(¢o) = 0, then (a + be3)po = 0.
(31)

a>0 = ¢o==+\/—a/b

Below we select the positive solution, ¢g = ++/—a/b.

{a>0 = ¢p=0

We can use the analogy with 1D classical mechanics : 2g ¢"(z) = f1(¢(x)) is the Newton
equation for a fictitious particle of mass 2g at ”position” ¢ at "time” x, submitted to
a ”conservative force” f](¢). The conserved quantity is the ”mechanical energy” & =
g [/ (@)]* = fr(é(z)), i.e. the particle is submitted to a ”potential energy” — f1,(¢).

We check indeed that writing %éa = 0, we recover the field equation.
For x — 00, ¢p(x — +00) = ¢ and ¢'(z — +00) = 0, therefore & = — f,(¢).

Consider T' < T, : at infinity the field is constant ¢(x) ~ ¢o > 0 (corresponding to a
maximum ”potential energy” and no "kinetic energy”). At the origin, the field fulfills the
boundary condition ¢'(0) = %gb(O), hence it aquires some "kinetic energy” and the ”potential
energy” should decreases. Assume that ¢(x) is monotonous (in order to minimize the elastic
energy). We have two situations :

(i) for A > 0, the derivative is ¢'(0) > 0, hence the field grows. It should start from ¢(0) < ¢p.
(ii) for A < 0, we have ¢'(0) < 0, hence ¢(0) > ¢y.

& & $o)zo A<o
4’@ - =

That is pretty clear from the functional (6) : for A > 0, the boundary term favours a small
¢(0), whereas for A < 0, large value of ¢(0) is favoured and the field is increased at the
interface.

def

The surface order parameter is now denoted ¢s = ¢(0). We can use the conservation of
"energy” to relate the surface field and the filed at infinity :
2
& =g [#(0)]" — fr(6(0)) = —fr(¢o) (32)

and using the boundary condition
g
F(ﬁ — fL(¢s) + fr(do) =0 (33)

Note that fr(¢s) — fr(¢o) is a quartic polynomial of ¢s and, when T' < T, vanishes for
¢s = t¢g. Therefore f1.(ds) — fr(do) = %((ﬁg — ¢3)?, hence

b
5502 = (62— 80)? (34)
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o A> 0= ¢y < o, then ¢ay/G/A = /b/2(¢% —

o A <0 = ¢ > ¢, then ¢5/g/|\| = /b/2(6% — ¢3)
In both cases
\/T

\[ = ¢ — % (35)

which has one positive solution

_ |9 1 /g
¢s = Qb)\2+¢% )\\/;b (36)

We recover that ¢ < ¢g for A > 0 and ¢5 > ¢ for A < 0. Ok.

Consider now 1" > T,.. Then ¢¢ = 0 in bulk and therefore & = 0. The max of the ”potential
energy” —fr(¢) is at ¢ = 0, hence the only possible positive solution is a monotonously
decreasing function, which is only possible when A\ < 0.

bix Lo ]
. F s 5
P.
=0
Y
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Equation for ¢, takes the form
g g b
30— fu(es) =0 = (Ag—a—Q 2) ¢ =0 (37)

Two cases :
)\2 —a<0,ie a(T—T.) > g/\? then ¢? =

0.
—a>0,ie a(T —T,) < g/A\? then ¢? = %(%—a).

[ J
[ ] )\2
The second case corresponds to

o=} (e =\ )

Tsurf dch + -2 ~)\2 (39)

is the critical temperature at which the surface order parameter vanishes. The surface and

bulk order parameters present the same type of behaviour ¢s oc /TS5 — T and ¢y
v 1. —T. The surface order parameter persists at a larger temperature when A < 0.

where

Consider T, < T < T™ (¢g = 0).
The phase with ¢, =0 (i.e. ¢(z) = 0) has a free energy Flp(z)] = 0.

Consider now the phase with a surface order parameter, ¢5 > 0.



9/

Then & = 0 and thus \/g¢'(xz) = —+/fr(¢(x) (the field decreases). We can write

Fiole) = L0002+ [~ da{g (@] + 6N} = Lot 42 [ @ [$@)]

0 0

_ gqﬁ _ 2\/§/0OO dz ¢'(z) v/ fr(o(z)

which allows the change of variable leading to

és
Fiole) = § 62 +2 [ a0 VI (10)

We can compute the integral explicitely

bs s ¢3/2
/ dé /fL(9) :/ d¢¢\/a+g¢2 z/ dzVa+bz (41)
0 0 0

G+5) 0" =

Clearly, for A > 0, the free energy is positive, hence the configuration is not favourable
compared to ¢(x) = 0.

For A < 0, let us check that F[¢(z)] < 0, i.e. ¢(z) > 0 with ¢4 # 0 is favourable. For
simplicity we consider ¢ < /a/b, then

Finally

Figla) = $ 2+ 22

Floa) = o2va (%7 + va) (13)

Using a(T,5" — T,) = g/|\|?, we obtain the form
Floo)] = v/ai (VI T, - T =12 < (14)

since T, < T' < TS, QED.

Phase diagram : in the half plane (1/),T), the surface critical temperature TS is a
parabola. This defines three regions :

/t/A

There is a whole region where the phase transition only takes place at the surface, not in
the bulk.



