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1 Two stochastic processes

We start from the SDE dW (u)
du = ⌘(u) where ⌘(u) is a normalised Gaussian white noise.

1/ We write the solution of the SDE W (u) =
R u
0
dt ⌘(t). The correlator is hW (u)W (v)i =

R u
0
dt

R v
0
dt0 h⌘(t)⌘(t0)i =

R u
0
dt

R v
0
dt0 �(t� t0) =

R
min(u,v)
0

dt = min (u, v).

The noise is Gaussian, hence W (u) is also Gaussian with hW (u)i = 0 and
⌦
W (u)2

↵
= u. As

a result the distribution of W (u) is

Pu(W ) =
1p
2⇡u

e�W 2/2u (10)

The conditional probability Pu(W |W0) is the distribution of the same process with a di↵erent
initial condition W (0) = W0. Using translation invariance, we get

Pu(W |W0) =
1p
2⇡u

e�(W�W0)
2/2u (11)

2/ Consider '(t) a monotonous and di↵erentiable function. We write h⌘('(t))⌘('(t0))i =
�('(t)� '(t0)). The function being monotonous, the argument vanishes for t = t0, hence

⌦
⌘('(t))⌘('(t0))

↵
=
�(t� t0)

|'0(t)| =
�(t� t0)p
|'0(t)'0(t0)|

(12)

where we symmetrized the result. This is also

⌦
⌘('(t))⌘('(t0))

↵
=

h⌘(t)⌘(t0)ip
|'0(t)'0(t0)|

(13)

Because ⌘ is Gaussian, all information is in the two-point correlation function, hence this
equality means that ⌘('(t)) and ⌘(t)/

p
|'0(t)| have the same distribution. Qed.

It is convenient to write

⌘('(t))
(law)
=

1p
|'0(t)|

⌘(t) (14)

where the equality in law
(law)
= relates two quantities with the same statistical properties. We

can also write an equality ⌘('(t)) = 1p
|'0(t)|

⌘̃(t), involving another independent noise, with

the same statistical properties as ⌘(t).

3/ We di↵erentiate x(t) = W (u0e2�t) e��t/
p
u0 :

dx(t)

dt
= �� x(t) + 2�

p
u0e

+�t ⌘(u0e
2�t) (15)

Using (14) we have ⌘(u0e2�t) = ⌘̃(t)e��t/
p
u02� where ⌘̃(t) is a noise with the same properties

as ⌘(t). Finally
dx(t)

dt
= �� x(t) +

p
2� ⌘̃(t) (16)

which is the SDE for the Ornstein-Uhlenbeck process (particle attached to a spring in the
overdamped regime).
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4/ No need to solve this new SDE (which is easy). We can simply use the mapping x =
W e��t/

p
u0, which gives

Pt�t0(x|x0) =
dW

dx
Pu�u0(W |W0) =

p
u0

e��t

1p
2⇡(e2�t � e2�t0)

exp�
u0

⇥
xe�t � x0e�t0

⇤
2

2u0 [e2�t � e2�t0 ]

i.e.

Pt�t0(x|x0) =
1p

2⇡(1� e�2�(t�t0))
exp�

⇥
x� x0e��(t�t0)

⇤2

2
�
1� e�2�(t�t0)

� (17)

We recognize a result obtained in the lectures. In the large time limit, we get

Pt(x|x0) '
t!1

1p
2⇡

e�x2/2 (18)

i.e. the equilibrium solution. Rescaling the time as u = u0e2�t has related a transient process
(Wiener) to an equilibrium process (Ornstein-Uhlenbeck).

2 Steady state for the di↵usion in a periodic potential

We consider the general FPE @tPt(x) = �@x
⇥
F (x)Pt(x)

⇤
+ @2x

⇥
D(x)Pt(x)

⇤
for x 2 [0, L] with

periodic boundary conditions.

The stationary state corresponds to a constant current J = F (x)P ⇤(x) � @x
⇥
D(x)P ⇤(x)

⇤
, i.e.

this is a first order di↵erential equation with a source term. Introducing  (x) = D(x)P ⇤(x), we
have

 0(x) + U 0(x) (x) = �J where U 0(x) = �F (x)/D(x) (19)

Solution of the homogeneous equation (for J = 0) is  (x) = A e�U(x). Then we get the general
solution from the ”variation of the constant method”. We obtain eventually the general solution

 (x) = A e�U(x) � J e�U(x)
Z x

0

dy e+U(y) i.e. P ⇤(x) =
A

D(x)
e�U(x) � J

D(x)
e�U(x)

Z x

0

dy e+U(y)

(20)
where A is an integration constant.

The current is constant, hence also periodic. There remains to impose P ⇤(0) = P ⇤(L) which
leads to the condition

A


1� D(L)

D(0)
eU(L)�U(0)

�
= J

Z L

0

dy eU(y) (21)

The condition for equilibrium (J = 0) is

D(L)

D(0)
eU(L)�U(0) = 1 (22)

for D(0) = D(L) (periodic and continuous di↵usion constant), the potential must be continuous
and periodic, U(L) = U(0). The equilibrium state is then

Pequil(x) =
A

D(x)
e�U(x) (23)

NESS : If (22) is not fulfilled, we find A in terms of J , leading to

PNESS(x) = J

8
<

:

R L
0
dy eU(y)

1� D(L)
D(0)

e�U
�
Z x

0

dy eU(y)

9
=

;
e�U(x)

D(x)
(24)
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where �U def
= U(L)�U(0) is the discontinuity of the potential. We can also rewrite the solution

as

PNESS(x) = J

8
<

:

R L
0
dy eU(y)

D(0)

D(L)e
��U � 1

+

Z L

x
dy eU(y)

9
=

;
e�U(x)

D(x)
(25)

The expression of the current is provided by the normalization condition
R L
0
dxPNESS(x) = 1,

1/J =

R L
0
dx e

�U(x)

D(x)

R L
0
dy eU(y)

D(0)

D(L)e
��U � 1

+

Z L

0

dx
e�U(x)

D(x)

Z L

x
dy eU(y) (26)

Application : Consider D(x) ! D and F (x) ! µ are constant :

D/J =

R L
0
dx eµx/D

R L
0
dy e�µy/D

eµL/D � 1
+

Z L

0

dx eµx/D
Z L

x
dy e�µy/D (27)

The integrals are easy to compute : one eventually gets J = µ/L. That was in fact pretty
obvious : for constant drift and di↵usion constant, the distribution is uniform PNESS(x) = 1/L,
hence J = µPNESS(x) = µ/L.

When the potential barrier is high, like on the figure, the integral over x is dominated by the
neighbourhood of x1 and the integral over y by the neighbourhood of x2. Steepest descent
approximation gives :

J ' D(x1)

2⇡

p
�U 00(x1)U 00(x2)

✓
1� D(L)

D(0)
eU(L)�U(0)

◆
eU(x1)�U(x2) (28)

Intererstingly, for D(0) = D(L), we see that the sign of the current is controlled by the discon-
tinuity of the potential, �U = U(L) � U(0). When �U > 0 (accumulation of probability close
to the left boundary), the current is J < 0. Conversely, for �U < 0 we obtain J > 0.

Futhermore, the current is exponentially suppressed by the Ahrrenius factor eU(x1)�U(x2) ⌧ 1,
since the particle must overcome the barrier in order to go from one side to the other.

3 Surface phase transition

1/ In the Landau-Ginzburg approach, the order parameter minimizes the functional : �F
��(x) = 0.

Here, using ��(y)
��(x) = �(x� y), we get

�F
��(x)

=

Z 1

0

dy

⇢
2g�0(y)

@

@y
�(y � x) + f 0

L(�(y)) �(y � x)

�
+

2g

�
�(0) �(x)

One must be careful with the boundary terms in the integration by parts :
Z 1

0

dy �0(y)
@

@y
�(y � x) =

⇥
�0(y) �(y � x)

⇤y=1
y=0

� �00(x) ✓H(x) = ��0(0) �(x)� �00(x) ✓H(x) ,

where ✓H(x) is the Heaviside function. We have used that �0(1) = 0. As a result, we find

�F
��(x)

= ✓H(x)
⇥
�2g �00(x) + f 0

L(�(x))
⇤
+ 2g �(x)


��0(0) + 1

�
�(0)

�
= 0 (29)
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hence 8
<

:
�2g �00(x) + f 0

L(�(x)) = 0

�0(0) =
1

�
�(0)

(30)

The boundary term gives rise to a boundary condition controlled by the length � (the
parameter can be positive or negative).

2/ In bulk : f 0
L(�0) = 0, then (a+ b�2

0
)�0 = 0.

(
a > 0 ) �0 = 0

a > 0 ) �0 = ±
p
�a/b

(31)

Below we select the positive solution, �0 = +
p

�a/b.

3/ We can use the analogy with 1D classical mechanics : 2g �00(x) = f 0
L(�(x)) is the Newton

equation for a fictitious particle of mass 2g at ”position” � at ”time” x, submitted to
a ”conservative force” f 0

L(�). The conserved quantity is the ”mechanical energy” E =

g [�0(x)]2 � fL(�(x)), i.e. the particle is submitted to a ”potential energy” �fL(�).

We check indeed that writing d

dxE = 0, we recover the field equation.

4/ For x ! 1, �(x ! +1) = �0 and �0(x ! +1) = 0, therefore E = �fL(�0).

5/ Consider T < Tc : at infinity the field is constant �(x) ' �0 > 0 (corresponding to a
maximum ”potential energy” and no ”kinetic energy”). At the origin, the field fulfills the
boundary condition �0(0) = 1

��(0), hence it aquires some ”kinetic energy” and the ”potential
energy” should decreases. Assume that �(x) is monotonous (in order to minimize the elastic
energy). We have two situations :
(i) for � > 0, the derivative is �0(0) > 0, hence the field grows. It should start from �(0) < �0.
(ii) for � < 0, we have �0(0) < 0, hence �(0) > �0.

That is pretty clear from the functional (6) : for � > 0, the boundary term favours a small
�(0), whereas for � < 0, large value of �(0) is favoured and the field is increased at the
interface.

6/ The surface order parameter is now denoted �s
def
= �(0). We can use the conservation of

”energy” to relate the surface field and the filed at infinity :

E = g
⇥
�0(0)

⇤
2 � fL(�(0)) = �fL(�0) (32)

and using the boundary condition

g

�2
�2s � fL(�s) + fL(�0) = 0 (33)

Note that fL(�s) � fL(�0) is a quartic polynomial of �s and, when T < Tc, vanishes for
�s = ±�0. Therefore fL(�s)� fL(�0) =

b
2
(�2s � �2

0
)2, hence

g

�2
�2s =

b

2
(�2s � �20)

2 (34)
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• � > 0 ) �s < �0, then �s
p
g/� =

p
b/2(�2

0
� �2s)

• � < 0 ) �s > �0, then �s
p
g/|�| =

p
b/2(�2s � �2

0
)

In both cases p
2g

�
p
b
�s = �20 � �2s (35)

which has one positive solution

�s =

r
g

2b�2
+ �2

0
� 1

�

r
g

2b
(36)

We recover that �s < �0 for � > 0 and �s > �0 for � < 0. Ok.

7/ Consider now T > Tc. Then �0 = 0 in bulk and therefore E = 0. The max of the ”potential
energy” �fL(�) is at � = 0, hence the only possible positive solution is a monotonously
decreasing function, which is only possible when � < 0.

Equation for �s takes the form

g

�2
�2s � fL(�s) = 0 )

✓
g

�2
� a� b

2
�2s

◆
�2s = 0 (37)

Two cases :
• g

�2 � a < 0, i.e. ã(T � Tc) > g/�2, then �2s = 0.
• g

�2 � a > 0, i.e. ã(T � Tc) < g/�2, then �2s =
2

b

� g
�2 � a

�
.

The second case corresponds to

�s =

r
2

b

⇣ g

�2
� a

⌘
=

r
2ã

b
(T surf

c � T ) (38)

where

T surf

c
def
= Tc +

g

ã�2
(39)

is the critical temperature at which the surface order parameter vanishes. The surface and
bulk order parameters present the same type of behaviour �s /

p
T surf
c � T and �0 /p

Tc � T . The surface order parameter persists at a larger temperature when � < 0.

8/ Consider Tc < T < T surf
c (�0 = 0).

The phase with �s = 0 (i.e. �(x) = 0) has a free energy F [�(x)] = 0.

Consider now the phase with a surface order parameter, �s > 0.
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Then E = 0 and thus
p
g�0(x) = �

p
fL(�(x) (the field decreases). We can write

F [�(x)] =
g

�
�(0)2 +

Z 1

0

dx
n
g
⇥
�0(x)

⇤
2
+ fL(�(x))

o
=

g

�
�2s + 2g

Z 1

0

dx
⇥
�0(x)

⇤
2

=
g

�
�2s � 2

p
g

Z 1

0

dx�0(x)
p
fL(�(x)

which allows the change of variable leading to

F [�(x)] =
g

�
�2s + 2

p
g

Z �s

0

d�
p
fL(�) (40)

We can compute the integral explicitely

Z �s

0

d�
p

fL(�) =

Z �s

0

d��

r
a+

b

2
�2 =

Z �2
s/2

0

dz
p
a+ b z (41)

Finally

F [�(x)] =
g

�
�2s +

4
p
gb

3

"✓
a

b
+
�2s
2

◆3/2

�
⇣a
b

⌘
3/2

#
(42)

Clearly, for � > 0, the free energy is positive, hence the configuration is not favourable
compared to �(x) = 0.

For � < 0, let us check that F [�(x)] < 0, i.e. �(x) > 0 with �s 6= 0 is favourable. For
simplicity we consider �s ⌧

p
a/b, then

F [�(x)] ' �2s
p
g

✓p
g

�
+
p
a

◆
(43)

Using ã(T surf
c � Tc) = g/|�|2, we obtain the form

F [�(x)] ' �2s
p

gã

✓p
T � Tc �

q
T surf
c � Tc

◆
< 0 (44)

since Tc < T < T surf
c . Qed.

9/ Phase diagram : in the half plane (1/�, T ), the surface critical temperature T surf
c is a

parabola. This defines three regions :

There is a whole region where the phase transition only takes place at the surface, not in
the bulk.
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