

Master 2 iCFP - Soft Matter & Physics for biology

Advanced Statistical Physics – Exam

Friday 10 january 2025

Duration : 3h

NO document allowed (and no cell phone, no calculator,...)

\Lambda Write Exercice 3 on a separate sheet (with your name!) 🖊

1 Two stochastic processes (~25mn)

We consider the Wiener process described by the stochastic differential equation (SDE)

$$\frac{\mathrm{d}W(u)}{\mathrm{d}u} = \eta(u) \tag{1}$$

where $\eta(u)$ is a normalised Gaussian white noise, with $\langle \eta(u) \rangle = 0$ and $\langle \eta(u)\eta(v) \rangle = \delta(u-v)$.

- 1/ Deduce the correlator $\langle W(u)W(v)\rangle$. Give the distribution $P_u(W)$ of W(u). Give also the conditional probability $P_u(W|W_0)$.
- 2/ We now change the variable as $u = \varphi(t)$, where the function is monotonous and differentiable (for example $u = t^2$). Argue that

$$\eta(\varphi(t)) \stackrel{\text{(law)}}{=} \frac{1}{\sqrt{|\varphi'(t)|}} \eta(t) \tag{2}$$

where the equality in law $\stackrel{(law)}{=}$ relates two quantities with the same statistical properties. 3/ Give the SDE for

$$x(t) = \frac{W(u)}{\sqrt{u}} \quad \text{with} \quad u = u_0 e^{2\gamma t}$$
(3)

What is the name of this process ?

4/ Deduce the conditional probability $\mathscr{P}_{t-t_0}(x|x_0)$ (Hint: use the relation with $P_{u-u_0}(W|W_0)$). Discuss the $t \to \infty$ limit of $\mathscr{P}_t(x|x_0)$.

2 Steady state for the diffusion in a periodic potential (\sim 1h)

We consider the FPE

$$\partial_t P_t(x) = -\partial_x \big[F(x) P_t(x) \big] + \partial_x^2 \big[D(x) P_t(x) \big] \quad \text{for } x \in [0, L]$$
(4)

1/ Recall the expression of the current density $J_t(x)$ related to the probability density $P_t(x)$.

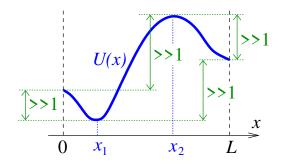
We analyze the FPE for the *periodic boundary conditions* $P_t(0) = P_t(L)$ and $J_t(0) = J_t(L)$. In the following, we study the steady state $P_t(x) \to P^*(x)$ related to the steady current $J_t(x) \to J$.

- **2**/ We solve the differential equation for $P^*(x)$:
 - when J = 0, give the general solution of the differential equation in terms of $\mathcal{U}(x) \stackrel{\text{def}}{=} -\int_0^x \mathrm{d}y F(y)/D(y)$, which is assumed continuous on [0, L]. The only possible discontinuity is at the boundary, $\Delta \mathcal{U} = \mathcal{U}(L) \mathcal{U}(0)$.
 - When $J \neq 0$, give the solution which vanishes at x = 0. Deduce the general solution of the differential equation for $P^*(x)$ in this case.

- 3/ Impose the periodic boundary conditions on the general solution.
- 4/ Equilibrium : What is the condition for an equilibrium solution $P^*(x) \longrightarrow P_{\text{equil}}(x)$? Discuss the case D(0) = D(L). Give $P_{\text{equil}}(x)$ (up to a normalisation).
- 5/ NESS : When the condition of question 4/ is not fulfilled, the steady state is a NESS. Express $P^*(x)$ in this case (in terms of J). What condition provides the expression of the current ? Show that

$$1/J = \frac{\int_0^L dx \, \frac{e^{-\mathcal{U}(x)}}{D(x)} \int_0^L dy \, e^{\mathcal{U}(y)}}{\frac{D(0)}{D(L)} e^{-\Delta \mathcal{U}} - 1} + \int_0^L dx \, \frac{e^{-\mathcal{U}(x)}}{D(x)} \int_x^L dy \, e^{\mathcal{U}(y)}$$
(5)

- **6**/ **Application :** give the explicit form of $P^*(x)$ and J when $D(x) \to D$ and $F(x) \to \mu$ are constant. Deduce J.
- 7/ Using the expression of the current (question 5/), find an approximation of J for the potential with the following form :



What controls the sign of the current when D(0) = D(L)?

3 Surface phase transition (~1h30mn)

We consider a semi-infinite medium (x > 0), translation invariant in two other directions. We denote by ϕ the order parameter, which is assumed to depend only on one coordinate x. We introduce the Landau-Ginzburg functional which includes a surface term

$$\mathcal{F}[\phi(x)] = \int_0^\infty \mathrm{d}x \left\{ g \left[\partial_x \phi(x) \right]^2 + f_L(\phi(x)) \right\} + \frac{g}{\lambda} \phi(0)^2 \quad \text{where } f_L(\phi) = a \phi^2 + \frac{b}{2} \phi^4 \qquad (6)$$

where b > 0 and $a = \tilde{a} (T - T_c)$. The parameter λ can be positive or negative.

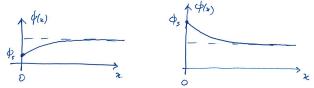
1/ Deduce the field equation for $\phi(x)$ in bulk. Treating carefully the boundary terms and assuming that $\phi'(\infty) = 0$, show that the functional is minimized when the field equation is fulfilled together with the boundary condition

$$\phi'(0) = \frac{1}{\lambda} \phi(0) . \tag{7}$$

- **2**/ Bulk : consider first a uniform solution, $\phi(x) = \phi_0$. Express ϕ_0 as a function of a and b (distinguish a > 0 and a < 0).
- 3/ Show that $\mathscr{E} = g \left[\phi'(x)\right]^2 f_L(\phi(x))$ is an "integral of motion" (a conserved quantity).

Until the end of the problem, we study a solution which matches with the bulk solution asymptotically : $\phi(x \to +\infty) = \phi_0 \ge 0$.

- 4/ Deduce the value of \mathscr{E} for the solution such that $\phi(x \to +\infty) = \phi_0$.
- 5/ Consider $T < T_c$. <u>Without calculation</u>, justify that the order parameter has the following form :



Which case corresponds to $\lambda < 0$ and which one to $\lambda > 0$? Comment on the effect of the boundary term in (6) (discuss also $\lambda = \infty$).

6/ Introduce the notation $\phi_s \stackrel{\text{def}}{=} \phi(0)$ for the surface order parameter. Show that it obeys

$$\frac{g}{\lambda^2}\phi_s^2 - f_L(\phi_s) + f_L(\phi_0) = 0$$
(8)

Deduce a second order polynomial equation for ϕ_s (choose $\phi_s \ge 0$). Solve it (for $T < T_c$). Compare ϕ_s and ϕ_0 (relate this to question 5/).

- 7/ Consider now $T > T_c$. What is \mathscr{E} then ? What is ϕ_0 ? Justify that it is possible to obtain a non vanishing surface order parameter only in one of the two cases $\lambda > 0$ or $\lambda < 0$. Argue that $\phi(x)$ is monotonous. From Eq. (8), show that the solution $\phi_s > 0$ exists only below a temperature $T_c^{\text{surf}} > T_c$. Express T_c^{surf} as a function of T_c , \tilde{a} , g and λ . Give ϕ_s as a function of T and T_c^{surf} . Plot on a same graph ϕ_0 and ϕ_s as a function of T.
- 8/ When $T_c < T < T_c^{\text{surf}}$, when the sign of λ allows a non zero solution, let us compare the free energy for the solution with $\phi_s = 0$ and the one with $\phi_s \neq 0$. What is $\mathcal{F}[\phi(x)]$ in the first case ?

Recall the sketch for $\phi(x)$ when $\phi_s > 0$. Recall the value of \mathscr{E} . Show that

$$\mathcal{F}[\phi(x)] = \frac{g}{\lambda} \phi_s^2 + 2\sqrt{g} \int_0^{\phi_s} \mathrm{d}\phi \sqrt{f_L(\phi)}$$
(9)

Compute the integral. Analyze $\mathcal{F}[\phi(x)]$ when $\phi_s \ll \sqrt{a/b}$. Give the sign of $\mathcal{F}[\phi(x)]$ in this case. Comment.

9/ *Phase diagram* : In the half plane $(1/\lambda, T)$, identify the regions where $\phi_0 \neq 0$ (bulk order parameter) and $\phi_s \neq 0$ (surface order parameter).

Proofreading (~5mn)

Appendix

• Functional derivatives can be computed by using $\frac{\delta\phi(y)}{\delta\phi(x)} = \delta(x-y)$.

SOLUTIONS WILL BE AVALAIBLE AT http://www.lptms.universite-paris-saclay.fr/christophe_texier/