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Tutorial 1

Langevin model and random processes

1.1 Brownian motion and stationary velocity distribution

We consider a Langevin model for the diffusion of a Brownian particle in a thermal bath that

obeys in one dimension the differential equation

bt v =£(1), (11)

where 7 is a damping coefficient and £, a Langevin force. The latter is assumed to be a white

noise with zero mean and peaked correlations

() =0, (E@EX)) =qd(t—1), (1.2)

with some constant ¢ related to the strength of the thermal fluctuations.
1. Solve the evolution equation (1.1) for a particule with a velocity vg at ¢t = 0.
2. Show that the velocity correlation is

(o(t)o(t)) = vRe~ /T 4 % o=t/ _ e—(t+t’)/7] . (1.3

1

)

3. In the stationary limit, when ¢ and ¢’ — oo, we define the temperature <%m1}2> = 5kpT.

Deduce the relation between ¢, 7 and T

We look for the velocity distribution function in the stationary regime.

4. Show that in this regime

o(t) = /OOO e VImet — ) dt (1.4

We recall that for a gaussian white noise (1.2)

)

(§(t1)&(t2) - - - &(tan41)) =0, (1.5)

(E(t1)E(t2) ... &(tan)) = 4" 25 (tr1) = tr(2)) 0 (tr(3) — tr(a)) - - - 0 (tx(@n—1) — tr(2n)) » (1.6

)



for an integer n, where we sum only only those permutations 7(7) that lead to different expressions
for & (tx(1) = tr(2)) 0 (tx(z) = ta(@)) -+ 8 (tr(zn-1) = triam)):

5. How many such permutations are involved in the sum (1.6) ?
6. Compute the average (v(t)*"*!) and (v(t)*").

7. Deduce the characteristic function Cy(u) = (€'“"), and the resulting velocity distribution
function P(v). Comment.

1.2 Time and statistical averages

One considers the random "function" given by the sum of impulses

N
= kOt —ty) (1.7)
n=1

defined over the interval [0, 7], where

e the t,,’s are independent and identically distributed (i.i.d) random times uniformly distributed
(i.e. one t, has distribution p(t,) = 1/T"). We denote by A = N/T (for N — oo and T' — 00)
the rate of occurence of the random times.

e the ks are i.i.d random variables with common distribution w(x) with finite (x2).

1. Compute the time average of £(t), over the time interval [0, T]. Compare with the statistical
average (over t,’s and ky,’s).

2. Compute the time averaged correlator C(t, ') = ()W) = (
it invariant with respect to time ? Compare to C(t,t') = (£ (t) (t )> = (&()E)) —

(€(1)) (€(@)-

1.3 To go further : Mean square displacement from the Langevin
equation
We consider a particle in a fluid. We write the 1D equation of motion to simplify

du(t)
dt

+ () = (1) (18)

where £ a a Gaussian white noise of zero mean and local time correlations
(EMEX)) =Co(t —t) (1.9)

Our aim is to compute the mean square displacement (z(t)?) assuming that z(0) = 0. We
apply the method proposed by Langevin in his famous article, P. Langevin, Sur la théorie du
mouvement brownien, C. R. Acad. Sc. (Paris) 146, 530-533 (1908).



1/ Prove that
2
%x(t)Q + %gx(tf = 20(t)% + za:(t) £(t)

2/ Give an argument to justify (z(t)£(t)) = 0.
3/ What is (v(t)?) in the stationary regime ?

4/ Argue that % (z(t)?) ’tfo = 0 and deduce

<:1:(t)2> = 2T [t -7 (1 - e_t/T)}

m

Analyze carefully the limiting behaviours and plot the function.

(1.10)

(1.11)



Tutorial 2

Master equation

2.1 Random telegraph process

We consider a small electric conductor with two contacts which are pinned by gate voltages so
that electrons enter one by one (this the so called "Coulomb blockade regime"). The number
of electrons inside the island can be controlled by the gate underneath, so that the number of
electrons is either N or N + 1.

1 Vap lap

Time [ms]

Figure 2.1: The charge inside the conductor is measured as a function of the time : Igpc is
proportional to the number of electron inside the central island, which fluctuates by one unit (one
electron).

Consider the Markov process X (¢) taking two values X; or X5. The transition rates are A\;
(from X; to X3) and Ag (from X5 to Xj). The mean time spent in state Xq2 is 1/A12. We
denote by P;(t) = Proba{X(t) = X;} with i € {1, 2}.

1/ Write the set of differential equations for P;(t) and P»(t).

2/ Find the stationary solution, deno ted by P; (hint : consider Pi(t) + P»(t) and y(t) =

Py(t) = Pa(t)). . L
An interesting exercice is to write the system of equations in a matricial form %P (t) = MP(t)
and diagonalize the non-symmetric stochastic matrix M. Show that

M M\ (PP (B P oo
ol (3 )= R (G %) @



3/ Find the conditional probability P;(i|j) (i.e. P:(i|j) = P;(t) for Pj(0) = 1). Check that the
detailed balance condition

P,(112) Py = P(21) Py (2.2)
is fulfilled.

4/ We now want to characterize the correlation of the charge in the conductor. Express (X (t))
and (X (t)X(¢)) in the stationary regime. For simplicity, we assume that X; = 0 describes
the conductor empty and X9 = 1 the conductor with one electron. Compute explicitly (X (¢))
and C(t —t') = (X ()X (') — (X (t)) (X(t')) in this case.

In the experiments, the fluctuations of the charge in the QD can be characterized by mea-
suring the power spectrum S(w). Compute S(w) for the random telegraph process. The
measurment is reported in another article, Fig. 2.2. Compare your result with the data.

() 7T T | \ 50x10"°+
S0 ‘ p S.. £

o data
— fit

| i
| o}
v, 50mK | 4.2K | 300K 2.0

fiMHz) 21
Figure 2.2: Left : The microstructure studied. Right : Power spectrum. From : Y. Okazaki, S.
Sasaki and K. Muraki, Shot noise spectroscopy on a semiconductor quantum dot in the elastic

and inelastic cotunneling regimes, Phys. Rev. B 87, 041302(R) (2013).

2.2 Poisson jump process

In this exercise, we study the "Compound Poisson process" (or "Poisson jump process"). The
process starts at X (0) = 0 and makes jumps at random times ¢,, occuring with rate A :

X(th) = X(ty) + 1 - (2.3)

The jump amplitudes n,,’s are i.i.d. random variables, distributed according to a distribution
w(n), assumed symmetric for simplicity. We denote by P(x,t) the distribution of the process
X(t).

1/ Show that P(z,t) obeys the integro-differential equation

OP(z,t)

—5 = )\/dnw(n) [P(x —mn,t) — P(z,t)] (2.4)

Check conservation of normalisation.

2/ Using that the problem is translation invariant (both in time and space), solve the master
equation by using Fourier transformation : show that ﬁ(k,t) = [dze ™ P(x;t) obeys a
simple differential equation. Deduce a general integral representation of P(z,t) involving the
Fourier transform w(k) of the jump distribution.



3/ We have w(k) =~ 1 —agk®+ask* +o(k*) for k — 0. Give the interpretation of the two positive
coefficients as and ay.

Argue that the large time limit of P(z,t) involves the k — 0 behaviour of w(k). Deduce that
the distribution is Gaussian at large time. Give (X (¢)?) and interpret.

4/ We now consider the case where the jump distribution exhibits a power law tail w(n) ~
In|=#=1 for n — oo, with 0 < p < 2. One can show that w(k) ~ 1 — c|k|* + o(k")
for K — 0, where ¢ > 0. Show that, at large time, the distribution can ne written as
P(x,t) ~ F(x/t?)/t%. Give the exponent  in terms of y and express F(z) as an integral.

Compute explicitly F(z) for p = 1.
What is the expected asymptotic behaviour of F'(z) Vu €]0,2[ 7

2.3 To go further : Master equation for the diffusion on Z

Let us consider the master equation describing the one dimensional diffusion on Z with transitions
between nearest neighbour sites

0P (t) = Wy n—1Pp—1(t) + Wi i1 Prsa1(t) — Wh—1n + Wi n) Po(t) (2.5)
i.e. Wy is a tridiagonal (infinite) matrix with W, , = —Wy,_1, — Wyt10.
1/ Current : check that the master equation can be rewritten under the form
P, = —Jp+ Jn-1 (2.6)
and express the "current density" J, related to the distribution of the P,’s.
2/ We now choose the matrix such that
Wnm = VIm=VmI/2 - for m #£n, (2.7)

where V(x) is a known function.

Equilibrium state.— Show that
Pr=Ce V(M (2.8)

is a stationary solution corresponding to a vanishing current. Discuss the normalisability.

3/ NESS (J # 0).— Find the stationary solution corresponding to J,, = J Vn. Show that it is

P;lk _ Jer(n) Z e[V(m+1)+V(m)]/2 (29)

m=n
Discuss the normalisability (consider the continuum limit for simplicity).

4/ Provide an example where there is no stationary state.

10



2.4 To go further : Gaussian-versus-non Gaussian white noise —
Shottky noise

We consider the noise

N
= Z Kn 0(t — tn) for t € [0,T] (2.10)

where N is random. {x,} and {t,} are two sets of i.i.d. random variables. ! The probability to
have N “impulses” in [0,77] is

e (2.11)

The t,, are uniformly distributed over the interval [0, T, i.e. the joint distribution of the N times
simply Py(t1,---,tn) = 1/TY. The weights r,,’s have a common law p(k).

We first consider the case where p(k) = d(k — q).

1/ We introduce the generating functional

Glo() & (el o0 ®) (2.12)

Show how one can deduce the correlation functions from the knowledge of G[¢] (which will be
calculated below).

. 52G . . . .
Hint . Use the functional derivatives ¢(t1)7 ICNTCIE etc. Functional derivatives are easily

computed with the rule

5¢(t’)
=6(t—1t) (2.13)
3¢(1)
and usual rules for derivation. Example : 5 qf(t J[dt' ¢ =2¢(t).

2/ Using that averaging over the random variables is

_ T, dty
AT/ — = () (2.14)
o T T

oo

(C DN gty
N=0

compute explicitly G[¢(1)].

3/ Functional derivations of G[¢] generate the correlation functions (F'(¢1)--- F(t,)) and the
derivations of W[¢] = In G[@] generate the connex correlation functions, i.e. (F(t)), (F(t)F(t')), =
(F(t)F(t)) — (F(t)) (F(t)"), etc. Deduce these latter.

4/ Application : Classical theory of shot noise (Shottky noise).— Some current i(¢) flows
through a conductor. Due to the discrete nature of the charge carriers, the current presents some
fluctuations (noise) known as “shot noise”, which we aim to characterize here (not to be confused
with the thermal fluctuations, i.e. the Johnson-Nyquist noise). We assume that the current can

'ii.d. = independent and identically distributed.

11



be written under the form of independent implulses i(t) = , 0(t —t,). The average rate is .
Express the two first cumulants of current, (i(¢)) and (i(t)4 ( t'))c. Deduce the power spectrum

S(w) % / d(t — 1) =) (1) i (1) (2.15)

and express the relation between the shot noise and the averaged current (7).

Remark : This result has permitted to demonstrate the existence of charge carriers with fractional charge
in the regime of the fractional quantum Hall effect (strong magnetic field, low temperature) :
e L. Saminadayar, D. C. Glattli, Y. Jin & B. Etienne, Observation of the e/3 Fractionally
Charged Laughlin Quasiparticle, Phys. Rev. Lett. 79 (1997) 2526.
e M. Reznikov, R. de Picciotto, T. G. Griffiths, M. Heiblum & V. Umansky, Observation of
quasiparticles with 1/5 of an electron’s charge, Nature 399 (May 1999) 238.

5/ Transfered charge (Poisson process).— We consider the stochastic differential equation

dQ(t) .
— =it 2.1
20— i) (2.16)
a) Draw a typical realisation of the process Q(t). Deduce the cumulants of the charge (Q(t)")..

b) Argue that on the large time scale At > 1, the cumulants with n > 2 can be neglected. What
is then the nature of the process Q(t) ?

¢) We introduce the distribution of the charge P(Q;t) = (§(Q — Q(t))) describing the evolution
of the process with a drift

dQ(t ,

di) = Z(Q(t)) +i(t) . (2.17)

Consider separatly the effect of the drift and the jumps to relate P(Q;t + dt) to P(Q;t). Show
that the distribution obeys

P(Q;t) = —0q [1(Q) P(Q; )] + A[P(Q — g;1) — P(Q;1)] - (2.18)

6/ Compound Poisson process.— We now consider an arbitrary distribution w(x) and intro-
duce the generating function g(k) = <e]m”>.

a) Find the new expression of the generating functional G[¢].

b) Show that it is possible to define a limit (changing A and w(x)) where the noise becomes a
Gaussian white noise.

c) Show that the generalisation of (2.18) is

P(Q:1) = —00 [T(Q) P(Q;1)] + A / dguw(q) [P@Q—q:t) — P@QD)|  (219)

Check the conservation of probability. Express the probability current J(Q;t) related to the
distribution by the conservation law 0,P(Q;t) = —0QJ (Q;t). Consider the limit of small jumps
g — 0, i.e. when w(q) is concentrated at the origin. Assuming (q) = 0, show that (2.19) leads to
a Fokker-Planck like equation of the form 0,P(Q;t) = —0,[a1(Q)P(Q;t) + 30:2[a2(Q)P(Q; )],
and express the diffusion constant D of the charge diffusion.

12



Tutorial 3

Correlations and fluctuations

3.1 Generalised Langevin equation — Wiener-Khintchine theorem

We consider a small particle in a fluid whose velocity can be analysed thanks to the generalised

Langevin equation
d
mav(t) =- /dt”y(t — o)+ F(t) (3.1)

(set m = 1). The Langevin force F(t) is correlated over a short “microscopic” time 7.. The
integral term comes from damping.

1/ Show that the correlation function of the velocity is

_ oo diw 61FF (w) efin
Cuu(T) /OO 27 (@) — P (3.2)

2/ We first consider the limiting case where v(t) = Ad(¢) and Cpp(7) = 06(7). Compute the
correlator Cl, (7) and express o in terms of the diffusion constant D ) [ 2% <a:(t)2>

3/ We now consider Crp(t) = 2D/\22%Ce_|t‘/76 with 7, < 1/A. Show that

dw e—iwt 1 1 1
a = — _a‘tl _ —b|t‘
/R o (w2 4 a2)(w? 4+ b2)  2(b2 — a?) (ae pC ) (3.3)

and deduce Cy,(t). Analyze its limiting behaviors.

4/ We can assume that damping occurs over a finite memory time 7, > 7., so that v(7) is a
causal function decaying fast over this time scale, like v(7) = Oy (7) (\/7Tm) €7/,

Discuss the hypothesis v(¢) = Ad(t) in this case.

For a finite 7,,, give a physical argument to express the correct hierarchy of times 1/\, 7, and
Te-

13



3.2 Response function for the Ornstein-Uhlenbeck process

We consider a small ball bound to a substrated by a polymer and submitted to a time dependent
external force fox(t). The position of the particle is described by the Langevin equation

%m(t) = X3(t) + fos(t) + F(2) (3.4)

where F(t) is the Langevin force. We choose to model the force as a Gaussian white noise,
(F(t)F(t')) =2Dé(t —t').

P
- e e e e e e e -

Figure 3.1: A small particle is bound to a surface thanks to a polymer which acts like a spring.

1/ Correlations at equilibrium.— We consider the case fext(t) = 0. Compute de correlation
function C(t — ) & (x(t)2(t'))eq- Deduce what is the stationary distribution Peq(z) of the
process. Assuming equipartition theorem, relate D to the temperature.

2/ Response (out of equilibrium).— Show that we can easily determine the response function
x for this linear problem. We recall that it is defined by

<x(t)>out of eq. — <x>eq + /dt/X(t - t/) fext(t,) + O( 62Xt) (35)

3/ Fluctuation dissipation theorem.— Check that the two functions satisfy the FDT

d

X(t) = =B u(t) ;C() (3.6)

where g =1/(kgT).

14



Tutorial 4

Fokker-Planck approach

4.1 The moments for a linear drift

We study a diffusion on R for a linear drift, described by the Fokker-Planck equation
W P(z) = =0y [(a+ bz)Pi(z)] + 02 [D(z) Py(x)] . (4.1)

1/ Express & (z(t)) in terms of P;(z). Deduce that (z(t)) obeys a simple differential equation.
Solve this differential equation for initial condition z(0) = 0. Discuss the solution briefly :
assuming a > 0, plot neatly (z(t)) for b > 0 and b < 0.

2/ Consider now & (z(#)"). Under what condition on D(z) would it be possible in principle to

solve a differential equation for (z(¢)"™) 7 (do not solve it yet).

3/ We choose D(z) = Do+ Dy x+ Dy x? (>0 V). Show that the variance (z(t)?). = (x(t)?) —
(z(t))? obeys a linear differential equation with a source term D({x(t))). Solve the equation
for £(0) = 0. Estimate the main behaviour for large ¢t (for b > 0 and Dy > 0). Prefactor not

asked. Discuss /(z(t)?)./ (z(t)) in this limit.

4.2 Ornstein-Uhlenbeck process and the Fokker-Planck equation

We study the Ornstein-Uhlenbeck process, the only Markovian, stationnary and Gaussian ran-
dom process. It describes the motion of the particle submitted to a spring force in the over-
damped regime. It obeys the Langevin equation

d
50 = =Xx() + F(1) (42)

where F(t) is the Langevin force, a Gaussian white noise (F(t)F(t')) = 2D 6(t — t’). Our aim is
here to determine the stationnary distribution Peq(z) and the conditional probability Pr(z|xo).

1. Method 1.— Recall the expression of (z(t)) and Var(z(t)) obtained with the Langevin
approach. Deduce the expression of the conditional probability Pr(z|zp). What is its
T — oo limit ?

15



2. Method 2.— Write the corresponding Fokker-Planck equation.

In order to solve this partial differential equation, we can use its equivalence with the
Schrédinger equation. Indeed, the Fokker-Planck equation

O P(x,t) = Oy [D(?gg — F(x)]P(x, t) (4.3)
can be mapped onto the imaginary time Schrédinger equation

d? 1 5 1,

—0pp(z,t) = Hyp(x,t) where Hy = —D 2 + EF(.I‘) + §F () (4.4)

thanks to the transformation P(z,t) = ¢o(x) ¥ (z,t) with ¥o(z) = \/Peq(z) o exp[-U(z)/2D]
where U(z) = — ["d€ F(€) is the potential.

3. Demonstrate the formula (4.4) and give the corresponding supersymmetric Schrédinger
operator H associated with the Fokker-Planck equation of the over-damped regime. Give
the spectrum of its eigenvalues.

4. We recall the expression of the quantum mechanical propagator for the harmonic oscillator

tH mw mw 9 9
“|zp) = | exp — = [ch(wt —2 45
(rle™10) =\ oronon) P "shen (PN T ) m2ewo] - (45)
where H, = fﬁ% + %mwaQ.

Recover the expression of the propagator of the Ornstein-Uhlenbeck process.

4.3 To go further : Diffusion on a ring
4.3.1 Free diffusion
We consider the free diffusion in a ring
OiP(x,t) = DO?P(z,t) for x € [0, L] (4.6)

with periodic boundary conditions

(time dependence is omitted).

1/ Analyze the spectrum of the diffusion operator DA?. Deduce a first series representation
of the propagator P(z,t|xo,0). Is it convenient to analyze short or large time ? Identify the
characterisitic time 7p (Thouless time) separating the "short" and "long" time regimes.

2/ Using the Poisson formula (appendix), deduce another series representation for P(x,t|xo,0)
convenient to analyze the other limit in time.

16



4.3.2 Effect of a drift

Same question when a constant drift is introduced :
O P(z,t) = (DI —v0,) P(x,t) for z € [0, L] (4.9)

In particular, discuss the stationary limit ¢ — co. Compute the stationary current .J,.

4.3.3 Boundary conditions induced current

We now come back to the analysis of the free diffusion (4.6), however we now study the problem
for a new set of boundary conditions :

P(L)=0 (4.10)
P'(0) = P'(L) (4.11)
Interpret the two boundary conditions. Found the stationary state and deduce a formula for the

current Jp. Discuss the L dependence (compare with J,).

Remark : the spectral analysis is more tricky in this case because the Fokker-Planck operator in not self
adjoint (due to the choice of boundary conditions), which makes it non diagonalisable. The eigenvalues
are doubly degenerated and in each subspace the operator must be written under the form of an upper
triangular 2 X 2 matrix.

Appendix : a Poisson formula

262171’71776 w2 (nta)? Ze2l7rn n)a (o) 71) ) (412>

neZ nGZ

Proof : apply > .z f(n) => ez f(2mn) where f(k = [pdz f(z)e .

17



Tutorial 5

Random walks

5.1 The Gaussian model of polymer

We discuss a simple model of polymer. We consider a sequence of N monomers attached at point
0. We denote by 7, the end of the n-th monomer.

N

Figure 5.1: The “Gaussian polymer” : N independent monomers.

We assume that the n-th monomer #,, = 7, — 7,1 has a fixed length a and its direction is
uniformly distributed in space, independently of the other monomers.

We introduce the probability to find the end of the polymer at 7 given that the other end is
fixed at (.

1. Justify the recurrence

- ddi . I
Py (7| 70) = /Sdadlé(HuH —a) Py_1(F—u|70) . (5.1)

where Sy being the surface of the unit sphere in dimension d (e.g. S3 = 4).

2. Solve the equation by using the Fourier transform in the d = 3 case.

3. We define the "giration radius" as R%, = [ d? Py (7] 0) #2. By studying the small wavevec-
tor expansion of the Fourier transform, deduce Rg.
Compare Rg (in unit of a) with the length of the polymer £y = Na.

4. Study the continuum limit @ — 0 and N — oo with ¢ = Na? fixed.

18



5.2 Few properties of the free diffusion on the line

We illustrate how powerful is the Fokker-Planck approach by considering several properties of
the Brownian motion.

1. Propagator on the half line. We consider the free diffusion on R} with a Dirichlet
boundary condition at the origin. We write Py(x) the initial condition Py(z) = P(z,t = 0).
Construct the solution of the diffusion equation

OyP(x,t) = DO?P(x,t) for x > 0 with P(0,¢) =0 (5.2)
(use the image method). Apply the method to the propagator, denoted P, (z|zo).

2. Survival probability. Dirichlet boundary condition describes absorption at z = 0. Com-
pute the survival probability for a particle starting from xg :

Sup(t) = | e (ol (5.3)
0
Remark : what would have been the result if P;"(z|x) would have satisfied a Neunmann

boundary condition ?

3. First passage time. We denote by T the first time at which the process starting from
xo > 0 reaches x = 0 (it is a random quantity depending on the process), and Py, (T")
is distribution. The survival probability is the probability that the process did not reach
xz =0 up to time ¢ :

Szo(t) = / dT Py, (T) (5.4)
t
Deduce Py, (T") and plot it.

4. Maximum. We now consider another property of the Brownian motion X (7) with 7 €
[0, t] starting from Xy = 0 : we denote by m > 0 its maximum and @;(m) the corresponding
distribution. Justify the following identity

/m dm/ Qi(m/) = Sp(t) (5.5)

0

Deduce the expression of Q¢(m). What does Q¢(0) represent ? The exponent of the power
law ¢~ is called the persistence exponent. Give 6 for the Brownian motion.

Appendix : the error function

erf(z) & — / dte " (5.6)
0

and erfc(z) = 1 — erf(z). Asymptotics :

2 N
erfe(z) =~ Z(—l)n <1> #jLRN(z) (5.7)
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Tutorial 6

Fokker-Planck and Stochastic
Differential Equations

6.1 Connection between stochastic and Fokker-Planck equations
We consider the stochastic differential equation (SDE)
da(t) = afz(t)] dt + blz@)]dW () (Ito). (6.1)

A simple manner to make the connection between stochastic equations and Fokker-Planck equa-
tion (FPE) is to use the independence of z(t) and dW (¢) at coinciding times and (dW (¢)?)noise =
dt (physicist’s notation). Thus, the drift and the "diffusion" terms in the related FPE

1
O Py(x) = |—0ga(x) + iﬁgb(x)Q Py (x) (6.2)
are given b
: ’ (d) noise 2 <dx2>noise

1. We consider the multidimensional case
dz; (t) = a; (f) dt + bij (:f) de (t) (It@). (64)
with (dW;(t))

=0 and (dW;(t)dW;(t)) = 0;;dt. Show that the related FPE is

noise noise

,P,(7) = [—&'ai(f) + %&@»bik(f)bjk(f) Pi(7) (6.5)

(with implicit summation over repeated indices).

2. Application : Kramers equation.— Consider the equations

dx =vdt
dv = <_§ T %) dt + L2k, Ty dW (t)
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Consider (z(t),v(t)) as 2D random process. What are the drift a;(x,v) (i.e. a, and a,)
and the diffusion matrix (byy, bzy, by, byy) 7 Deduce that the FPE equation is

&J> Pi(x,v) = 181, (v + Fe T
m T

= av> Py(z,v) (6.7)

This equation is called the Kramers equation.

3. Smoluchowski equation.— The Smoluchowski equation is the overdamped limit of the
Kramers equation. The treatment at the level of FPE is complicated. It is more simple
to start from SDE. Remembering that the overdamped limit corresponds to neglect the
acceleration term in the Newton equation, show that the equation for the distribution
Pi(z) = [ dv Pi(z,v) in the limit of strong friction is

0P, (z) ~ }y [0, F(x) + ksT0?] Py(z) (6.8)

6.2 Escape from a metastable state : Arrhenius law

We consider the first passage time problem : a particle starts at z(0) = xp and reaches the
point b for the first time at a (random) time Ty, : z(Ty,) = b with x(t) < b for t € [0,T},]. In
the lectures, we have obtained a formula for the average time, assuming a reflecting boundary

condition at a < zg :
I v :
(Typy) = = / dz eV @)/P / da’ eV @)D (6.9)
D 2 a
We have applied this formula to the case where the potential presents a well at 1 and a barrier
at zo (escape from a metastable state) and have obtained the formula

N 2m
VAV @)V (@2)
in the D — 0 limit. This formula describes a smooth potential € €2(R).

Consider the potentials of the figure 6.1 and derive analogous formulae for the averaged
escape time.

exp { Virs) ; Vi) } (6.10)

(T)

V(x) V(x)

Figure 6.1: Two other types of trapping potentials.
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Tutorial 7

Phase separation

7.1 The critical point of the van der Waals model

The Van der Waals model is a model for a real fluid, with a strong repulsion between atoms (or
molecules) and a weak attraction. It is characterised by two parameters : the first one is related
to the exclusion volume around each atom/molecule : b ~ r§, where rq is the interaction range.
The second is the typical potential energy averaged in the volume a ~ uorg, where —uy is the
depth of the potential well. The van der Waals equation reads

N2
<p+v2a> (V. — Nb) = NkgT (7.1)
1/ Using dimensionless analysis, relate the three coordinates (T¢, V¢, p.) of the critical point to

a and b.

2/ At the critical temperature T, the isotherm presents a vanishing slope and an inflexion point
at point C'. Write the three equations determining (7%, V., p.). Solve them.

3/ Give the value of the dimensionless ratio p.V./(Nkg1.). Compare with the experimental
data of the table

T. (K) V. (cm®) p. (atm) ]\;;Jlgl‘g/%c

He 5.2 97.8 2.26 0.30
Ho 33.1 65.0 12.8 0.31
No 126.1 90.1 33.5 0.29
Oq 154.4 74.4 49.7 0.29
COq 304.2 94.0 72.9 0.27
H,O 6474 56.3 218.3 0.23

4/ We now study the vicinity of the critical point C'. We introduce the dimensionless variables

vE % -1, 7 e p% —land ¢t Tl — 1. Write the VAW equation with the new variables and

show that its expansion in the viéinity of the critical point is

3
m ~ 4t — 6vt — 52)3 (7.2)
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(justifiy that we can stop at order v® and can neglect the term v?t and higher).

5/ For T' < T, discuss explicitly the Maxwell construction with the simplified isotherm. What
are the values of the volume of the liquid vy and of gas vg, defining the two ends of the
liquefaction plateau ? What is the value of the saturation pressure ms(t) ?

Deduce the critical exponent fyqw (controlling the order parameter). In a famous set of
experiments on various fluids, Guggenheim has plotted the ratio T'/T, as a function of the
two densities (liquid and gas) : cf. Fig.7.1. Comment the figure.

51

Figure 7.1: Figure from : E. A. Guggenheim, “ The principles of corresponding states”, J. Chem.
Phys. 13(7), p. 253 (1945).

6/ Analyze the critical isotherm. Deduce the critical exponent dyvqwy.

7/ The isothermal compressibility is defined as xr o —%(%—‘;)T. What is the behaviour of xr1
in the vicinity of the critical point 7 Deduce the critical exponent yyvqw.

8/ The spinodal is the curve corresponding to the end of metastability (i.e. the set of points
where g—z = 0 in the Clapeyron diagram). Deduce the expression of the spinodal curve.

9/ Plot neatly the phase diagram in the Clapeyron representation and indicate the region of
metastability.
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Tutorial 8

Mean field - Demixing transition

8.1 Lattice gas model for the demixing transition

We study a lattice gas model for mixing of a solute (dissolved material) in a solvent (liquid).
The lattice is made of N elementary cells, which each contains one molecule : the solute or the
solvent. We denote by N, the number of solute molecules (particles in the fluid) and N, the
number of solvent molecules. We denote by z the coordination number of the lattice (z = 2d for
a square lattice in dimension d).

O[0|0|0|O|®@|0|0|0[0|O
O[0|0|0|®(®O0|0|0[0|0
o0|le®@®O00C®@®O
Oo0|®|®OO|0|0|@®@O|O
cee e eeoo0o00e
Oo|0|0|0|@O|0|@OO|@®
O|l@0|0|0|0|0|0|0|® @

Figure 8.1: Two types of molecules on a lattice : solute particles (o) and solvent molecules (o).

We introduce the concentration of solute

Np

= —. 8.1
6= (5.1)
The molecules interact through the following rules (for neighbour molecules):
o - Epp
N (8.2)
00 ! Eg4g
We denote by E(C) the energy of a configuration C, which can be written as
E(C) = Npp(C) epp + Nps(C) €ps + Nos(C) €55 (8.3)
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where N, (C), Ngs(C) and Np(C) are the numbers of bonds between two solute molecules, solvent
molecules and solute/solvent molecules, respectively. Np,(C) + Nss(C) + Nps(C) = Nponds With
Nbonds = ZN/Q.

In a first time, we compute the partition function

Z =Y e PFO (8.4)
C

with a mean field approximation.

1/

2/

3/

4/

5/

6/

Justify the three following expression for the mean values :

Ny = 3Nz¢?
Nps = Nzo(1—9) (8.5)
N = %Nz(l — ¢)?

Deduce the mean value of the energy E as a function of ¢. Show that it is of the form

1

= i 9
NE—50+01¢+2A5¢ (8.6)

The energy Ac is the effective interaction energy between solute molecules in the solvent
(think at the energy of the Ising model). Discuss physically its dependence in .

What is the number of microstates of the fluid Q(Np) = > 1 for a given N, (and N;) ?
Compute the entropy per site s(¢) o kg limy_ o0 % In €.

Partition function : The mean field approximation corresponds to Z = ), e PEC) =
Q (e PF) ~ Qe PP, Show that
7 ~ e~ NBIL(9) (8.7)

and give the expression of f1,(¢), the Landau free energy per unit volume (remember that N
is the volume in cell unit).

In the following, we simplify the analysis and adjust the coefficient ¢; in E so that the energy
is symmetric with respect to ¢ <» 1—¢. Give the expression of f1,(¢) (disregard the constant).

Analyze f1,(¢) for different temperatures (plot the function). Interpret the behaviour. Show
that there is a first order phase transition below a certain critical temperature 7T,. Introduce
the parameter n = —2zAe/(2ksT’) : what is the critical value 7. corresponding to T, 7

We consider T" < T.. We denote by ¢ and ¢o the concentrations of the two phases. Give
the equation for ¢15. Plot T' as a function of ¢12. Analyzing the limit 7" — T, give the
critical exponent §¢ = ¢g — ¢y ~ (T — T)5.

Osmotic pressure : is the force per unit surface when a solution (solvent-solute) is in
contact with pure solvent through a semi-permeable membrane (figure 8.2).
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.o i :O.Eihn

Figure 8.2: The left volume contains solute+solvent and the right volume only solvent. The two
volumes are separated by a semi-permeable wall allowing only sovent to pass through.

The volume of the solution is N (in appropriate units) and the total volume Niot. The total
free energy is thus Fiot(N) = N fr.(¢) + (Niot — N) f£(0). Express the osmotic pressure

OFu(N)

I1(g) = ==

(8.8)

as a function of ¢ (be careful that ¢ depends on the volume N).
Plot II(¢). Discuss the cases n < n. and n > 7.
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Tutorial 9

Charged fluids

9.1 The mean-field Debye-Hiickel theory for charged fluids

We will study the mean-field theory relevant at equilibrium for classical plasmas made of mobile
charges of opposite signs, that is referred to as Debye-Hiickel theory. This theory may be applied
to dilute electrolytes where various charged ions are in solution or to the free carriers in semi-
conductors. It is also used to describe the disorder phase of two-dimensional xy-models where
topological point defects called vortices interact via a Coulomb potential.

We will consider plasmas made of only two types of charge carriers, one with positive charge
g+ with density 74, and one with negative charge g— and density m_. One may show that
equilibrium may occur only when the global electroneutrality is satisfied, g1y +g-n_ = 0. In
presence of an external potential ¢**!(r), the Hamiltonian of the system is

, 1
HM = Z QUQT'UC’(I';‘T - I‘;) + Z qa¢ezt(rzq) ) (9'1)
(i,U);ﬁ(j,T) i’U
where the Coulomb potential satisfies Ayvo(r,r’) = —4wd(r — r’). We introduce the local

densities (ng(r)) = (3, 6(r —r?)) and the charge density (p4(r)) = ¢4 (ny(r)) +¢—(n_(r)). We
recall that the free energy density for a monoatomic ideal gas of density n at temperature T is
f =kgTn [In(nA?) — 1] with the de Broglie wavelength A = h/v/2rmk;T. We consider the local
densities (n4(r)) and (n_(r)) as variational functions and look for their solutions at equilibrium.

1. Argue that the mean-field free energy of the system is
F = [drdr (peects o) + [ v (o) o)
+ kBT/dr<n+(r)> In[(ny (r))A3] + kBT/dr<n_(r)> In[(n_(r))A3 (9.2)

in terms of (p4(r)) together with (n4(r)) and (n_(r)) ?

2. What are the constraints on (n_(r)) and (ny(r)) ? By introducing Lagrange multipliers,
the local densities at equilibrium are given by

5<nf(r)> []—'Wr/dr (ny(r)) — p— /dr <n(r)>} =0 (9.3)
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Show that the solution is
(ng(r)) = Ao exp [-Bg-¢(r)] (9.4)

with some constants A, and the total electric potential

b(r) = 6(x) + / dr' vo(r — ') (pg(t')) (9.5)

that is the sum of the external potential and the induced part arising from the induced
charge (pq(r)). What are the values of the constants A, 7 In the special case where
¢t = 0, what are the values of the different densities ?

(pq(r))

We consider the charge-density response function x,,(r,r’) = — 56T | geot o

3. Show that its Fourier transform is, for non-zero k,

2 53
Tooll) = 55009, 0.

where we introduce the inverse Debye-Hiickel length % = 47f3 (q_%_ﬁJr + q%ﬁ,). What is
its value for k =0 7
4. Considering the definition of ¢(r), show that

k2 K2

P CEER (9.7)

%pp(k) =

We consider a point charge of charge ) placed at the origin.

5. What is thence the electric potential induced by this charge in the whole system 7 What
is the charge density 7 Comments ?

We investigate the validity of the mean-field approximation.

6. What is the condition of its validity regarding the balance between the kinetic vs potential
energy ? What is the condition on kzT, 7 and ¢? ?

7. Argue that the mean-field approximation is valid when (p,(r)dp,(r')) < ¢*n?, where
dpq(r) = pg(r) — (pg(r)). What is the link between (dpq(r)dpy(r')) and x,,(r,r’) ? What
is then the condition of validity of the mean-field approximation ?

We will expand the mean-field free energy (9.2) in terms of the fluctuations in the densities.
Hence we decompose the local densities as (n4(r)) =y + dny(r).

8. Expand the free energy (9.2) up to and including the second order dn. We introduce the
auxiliary fields (p4(r)) = ¢4-6n4(r) + g-on_(r) a

nd
= —q—\ / 5n+ ) + G4y / 5n (9.8)
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Give dn4(r) as a function of (p4(r)) and ¢ (r). Show that eventually
F=j [ rd ou)U= ) + [drlpum) ')+ 25 [ droe?, 09)

where U(r — ') = ve(r — /) + 4—7;5(r —r').
K

9. Deduce that %(ﬁq(k)p}*(k)) = ksT/U (k)

10. Retrieve the previous results for x, ,.

Bonus Consider the case of a charged particle located at a distance d from a perfect conducting
wall embedded in an electrolyte. What is the electric potential 7 Comment ?
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Tutorial 10

Ginzburg-Landau mean field approach

10.1 Cost of an interface

We study the interface between two domains where the order parameter takes opposite values
(ex: between positive and negative magnetization, or between liquid and gas, etc). We consider
the Ginzburg-Landau functional

b

rulol = [ @ {o (Fo) 4 ot} with fulo) = fum)+ “G P+ Fot - qa0)

for a(T) =a (T —T.) and b > 0.

ST {
zts)‘t%é«‘i"s’ \"é

Figure 10.1: Interface between two regions of opposite magnetization.

1/ Preliminary : 1D Newton equation. Consider ma = F(z) with F(z) = —V'(x).

a) Recall the expression of the conserved quantity.

b) We consider a confining potential V' (x). Use the conservation law to find a representation
of the period of oscillation T'(E) as an integral, where F is the energy of the particle.

Check your result for the harmonic potential V(z) = 3mw?a?.

c¢) 1If the potential grows faster than the harmonic potential, for example V(x) = %mwQSUQ +
Az plot a sketch of T(E).

d) Optional: Same question if the potential grows slower, for example V(z) = %mwQ sin? z.
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2/

3/

Derive the field equation (condition that Fp[¢] is minimum). Simplify the equation by

assuming translation invariance in two directions : ¢(7) — ¢(x).

The equation is solved by analogy with the 1D Newton equation : identify the conserved

quantity.

4/ Remark : The resolution of the field equation is a boundary problem (for the interface
problem the values at +oo are fixed), while the resolution of the Newton equation is an
initial value problem (z(0) and #(0) are fixed). In this latter case, the energy is a parameter
of the problem (related to the initial conditions), while in the first case, the "energy" is fixed

5/

by the requirement to satisfy the boundary conditions.

We consider T" < T,.. Recall the solution in bulk, denoted ¢¢. Find the solution of the
field equation which statisfy ¢(z — +00) = +¢o. Express the solution as a function of the

correlation length £ = /g/(—a).

The aim is here to find a formula for the cost of the interface :
_ Fo(x)] — Fiéo)
N Surf

Show that

o=2g /+OO dz [¢'(:B)]2

—0o0

Compute explicitly the integral. Comment on the temperature dependence.
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Tutorial 11

Real space renormalization of an Ising
model

11.1 The Niemeijer-Van Leeuwen decimation procedure

The purpose of this problem is to learn how to implement the renormalization group ideas
on simple physical systems, such as interacting spins, see Leo P. Kadanoff [Statistical Physics:
Statics, Dynamics, and Renormalization, World Scientic, Singapore, (2000)]

In the early days of the renormalization, Niemeijer and Van Leeuwen [Phys. Rev. Lett. 31,
1411 (1973)] came up with an explicit, albeit approximate, procedure to integrate out a fraction
of the degrees of freedom in a two-dimensional spin system. We consider a 2D Ising model
with NV spins living on a triangular lattice with spacing a. The normalized exchange energy is

K = J/kpT.

Figure 11.1: The original spins o; lie at the black bullets while the plaquette lie at the empty
circles. They form a triangular lattice.

1. The lattice is divided into triangular plaquettes as shown in Figure 11.1. A spin variable
S; = +£1 is associated to each plaquette I = {iy,149,43} via a majority rule: St = signo;, +
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i, +0iy. What is the number N’ of plaquettes and what is the spacing a’ of the triangular
lattice the plaquettes make up 7

The Hamiltonian H = —J ZUz‘Uj involves interactions of all the nearest neighbors. We
2,

gather on one hand interacéi(zils between spins o; that belong to the same plaquette I, and
on the other hand, interactions between spins o; and o; that belong to different nearest
neighbor plaquettes I and J. We thus split the Hamiltonian into two parts, H = H; +
Hj, where Hy = ) ;hi(I) encompass all the nearest-neighbor interactions of spins that
belong to same plaquettes, and Hy = ) (1,7) ha(I,.J), that describes interactions of spins of
different plaquettes. For a given triangular plaquette I = i1,42,73 and J = j1, jo, j3, write
hao(1,J) as a function of 0;,, 04,, 04, and o, 0),,0;,.

We would like to rewrite the original partition function Z in terms of a summation over
the {S;} configurations rather than over the {o;} configurations, be it at the expense of
modifying the Hamiltonian. As a step in that direction, we note that

Z(K,Nya) =Y Y lerfHl) (11.1)

{81} {04}
where ¥/ denotes a summation over all the {o;} configurations at fixed plaquette configura-
tions Sy = sign (3, 04). Let Z({S1}) = >, . e~PH(@:)  Give the approximate expression

g

of Z({Sr}), denoted Z; in the following, when the plaquette-plaquette interactions are
discarded.

Show that
Z(K,N,a)= > 7 <e—5H2>1 (11.2)
{S1}
where (0); = Z% Z/{Ui} e PO

Let o; be a spin belonging to a plaquette I. Show that
3K e K

R

(11.3)

In general, computing <€—5H2>1 is a formidable task. Express the latter average in terms
of the cumulants of Hy with respect to the measure (...);.

We now implement the Niemeiher-Van Leeuwen approximation which consists in dropping
all cumulants of order > 2.

7.

What is the physical content, in terms of plaquette-plaquette interactions, of the second
cumulant that is neglected 7

Within this approximation, show that
)

Z(K,N,a) = (*® + 3¢ )" Z(K',N',d') , (11.4)

where K’ = f(K) is a function to be identified.
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9. Find the fixed points of f(K). Discuss their stability and their physical meaning. Find
the critical temperature within this approximation scheme. Compare its value with the
mean-field value and with the exact value that is close to 3.6.J/kp as found by Onsager.

10. Let v be the exponent governing the divergence of the correlation length as criticality is
approached. Find the value predicted by the Niemeijer-Van Leeuwen approximation and
compare it with both its mean-field and exact values (Vegaet = 1).

A few years later, Van Leewen and collaborators [Phys. Rev. Lett. 40, 1605 (1978)| came
up with a new decimation scheme that is exact in the limit of very large systems. While the
specifics of the calculation itself are tedious, the idea was to begin with a system of NV spins and
to eliminate at each step of the decimation procedure, an infinitesimal fraction of spins.
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