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Tutorial 1

Langevin model and random processes

1.1 Brownian motion and stationary velocity distribution

We consider a Langevin model for the diffusion of a Brownian particle in a thermal bath that
obeys in one dimension the differential equation

v̇ +
1

τ
v = ξ(t) , (1.1)

where γ is a damping coefficient and ξ, a Langevin force. The latter is assumed to be a white
noise with zero mean and peaked correlations

⟨ξ(t)⟩ = 0 ,
〈
ξ(t)ξ(t′)

〉
= q δ(t− t′) , (1.2)

with some constant q related to the strength of the thermal fluctuations.

1. Solve the evolution equation (1.1) for a particule with a velocity v0 at t = 0.

2. Show that the velocity correlation is〈
v(t)v(t′)

〉
= v20e

−(t+t′)/τ +
qτ

2

[
e−|t−t′|/τ − e−(t+t′)/τ

]
. (1.3)

3. In the stationary limit, when t and t′ → ∞, we define the temperature
〈
1
2mv

2
〉
= 1

2kBT .
Deduce the relation between q, τ and T .

We look for the velocity distribution function in the stationary regime.

4. Show that in this regime

v(t) =

∫ ∞

0
e−t′/τ ξ(t− t′) dt′ . (1.4)

We recall that for a gaussian white noise (1.2)

⟨ξ(t1)ξ(t2) . . . ξ(t2n+1)⟩ = 0 , (1.5)

⟨ξ(t1)ξ(t2) . . . ξ(t2n)⟩ = qn
∑
π

δ
(
tπ(1) − tπ(2)

)
δ
(
tπ(3) − tπ(4)

)
. . . δ

(
tπ(2n−1) − tπ(2n)

)
, (1.6)
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for an integer n, where we sum only only those permutations π(i) that lead to different expressions
for δ

(
tπ(1) − tπ(2)

)
δ
(
tπ(3) − tπ(4)

)
. . . δ

(
tπ(2n−1) − tπ(2n)

)
.

5. How many such permutations are involved in the sum (1.6) ?

6. Compute the average
〈
v(t)2n+1

〉
and

〈
v(t)2n

〉
.

7. Deduce the characteristic function Cv(u) =
〈
ei u v

〉
, and the resulting velocity distribution

function P (v). Comment.

1.2 Time and statistical averages

One considers the random "function" given by the sum of impulses

ξ(t) =

N∑
n=1

κn δ(t− tn) (1.7)

defined over the interval [0, T ], where

• the tn’s are independent and identically distributed (i.i.d) random times uniformly distributed
(i.e. one tn has distribution p(tn) = 1/T ). We denote by λ = N/T (for N → ∞ and T → ∞)
the rate of occurence of the random times.

• the κn’s are i.i.d random variables with common distribution w(κ) with finite
〈
κ2n

〉
.

1. Compute the time average of ξ(t), over the time interval [0, T ]. Compare with the statistical
average (over tn’s and κn’s).

2. Compute the time averaged correlator C̃(t, t′) = ξ(t)ξ(t′)
c
= ξ(t)ξ(t′) − ξ(t) ξ(t′). Is

it invariant with respect to time ? Compare to C(t, t′) = ⟨ξ(t)ξ(t′)⟩c = ⟨ξ(t)ξ(t′)⟩ −
⟨ξ(t)⟩ ⟨ξ(t′)⟩.

1.3 To go further : Mean square displacement from the Langevin
equation

We consider a particle in a fluid. We write the 1D equation of motion to simplify

dv(t)

dt
+

1

τ
v(t) =

1

m
ξ(t) (1.8)

where ξ a a Gaussian white noise of zero mean and local time correlations〈
ξ(t)ξ(t′)

〉
= C δ(t− t′) (1.9)

Our aim is to compute the mean square displacement
〈
x(t)2

〉
assuming that x(0) = 0. We

apply the method proposed by Langevin in his famous article, P. Langevin, Sur la théorie du
mouvement brownien, C. R. Acad. Sc. (Paris) 146, 530–533 (1908).
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1/ Prove that
d2

dt2
x(t)2 +

1

τ

d

dt
x(t)2 = 2v(t)2 +

2

m
x(t) ξ(t) (1.10)

2/ Give an argument to justify ⟨x(t) ξ(t)⟩ = 0.

3/ What is
〈
v(t)2

〉
in the stationary regime ?

4/ Argue that d
dt

〈
x(t)2

〉 ∣∣∣
t=0

= 0 and deduce

〈
x(t)2

〉
=

2kBTτ

m

[
t− τ

(
1− e−t/τ

)]
(1.11)

Analyze carefully the limiting behaviours and plot the function.
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Tutorial 2

Master equation

2.1 Random telegraph process

We consider a small electric conductor with two contacts which are pinned by gate voltages so
that electrons enter one by one (this the so called "Coulomb blockade regime"). The number
of electrons inside the island can be controlled by the gate underneath, so that the number of
electrons is either N or N + 1.

Measuring current by counting electrons in a nanowire quantum dot

S. Gustavsson⇤, I. Shorubalko⇤, R. Leturcq, S. Schön, and K. Ensslin
Solid State Physics Laboratory, ETH Zürich, CH-8093 Zürich, Switzerland

(Dated: February 5, 2008)

We measure current by counting single electrons tunneling through an InAs nanowire quantum
dot. The charge detector is realized by fabricating a quantum point contact in close vicinity to the
nanowire. The results based on electron counting compare well to a direct measurements of the
quantum dot current, when taking the finite bandwidth of the detector into account. The ability to
detect single electrons also opens up possibilities for manipulating and detecting individual spins in
nanowire quantum dots.

A highly-sensitive charge detector is a powerful tool for
probing electronic properties of mesoscopic structures. In
contrast to conventional transport measurement, the sys-
tem under investigation does not need to be connected
to leads. This makes the measurement technique low-
invasive and allows charge transitions within the nanos-
tructure to be investigated [1]. By adding time resolution
to the detector, tunneling of individual electrons can be
detected in real-time [2]. This provides the possibility
to extract statistics for the tunneling electrons and to
probe electron-electron correlations [3, 4], as well as for
determining electron spin dynamics [5, 6].

Another possible application of time-resolved charge
detection is to use it as a metrology standard for current.
Bylander et al experimentally verified the fundamental
relation I = e f by relating a highly-correlated current I
through an array of tunnel junctions to the frequency re-
sponse f of a single-electron transistor [7]. In this work,
we combine a quantum dot (QD) formed in a semicon-
ductor nanowire with a quantum point contact (QPC)
acting as the charge detector. The large energy scales of
the nanowire QD enable operation at T = 4 K and allow
the QPC to be operated at larger bias voltages compared
to GaAs QDs [8]. This together with the high sensitivity
of the detector make time-resolved single-electron detec-
tion possible in a regime where we can simultaneously
measure the QD current with a conventional current me-
ter. In this way, we count electrons one by one and make
direct comparisons to the measured current. We find that
the current measured by counting is lower than the one
measured with conventional techniques. The di↵erence
can be quantitatively accounted for by considering the
electrons missed because of the limited bandwidth of the
charge detector, which is a known quantity [9].

InAs nanowires are catalytically grown by metal-
organic vapor phase epitaxy (the detailed recipe is de-
scribed in [10]). An InAs nanowire is deposited on top of
a shallow (37 nm) AlGaAs/GaAs heterostructure based
two-dimensional electron gas (2DEG). The QD in the
InAs nanowire and a QPC in the underlying 2DEG are
defined in a single etching step using patterned electron
beam resist as an etch mask. This method guarantees

⇤These authors contributed equally to this work.

perfect alignment as well as strong coupling between the
two devices [11].

Figure 1(a) shows a scanning electron microscope
(SEM) image of a device similar to the one used in the
measurements. The QD is defined by the etched con-
strictions in the nanowire between S and D. The QPC is
formed between the two etched trenches that separates
it from the rest of the 2DEG. The regions marked by L
and R are used as side gates to control the QD popula-
tion and to tune the coupling between the QD and the
source and drain leads. In the experiment, the QPC was
biased with a DC voltage of VQPC = 1 mV. In addition,
a voltage was applied to the 2DEG on both sides of the
QPC to compensate for the shift in QPC potential when
changing the voltages on gates L, R. The bias of the QPC
was kept smaller than the single-level spacing of the QD
to avoid QD excitations due to photon absorbtion [8].
The measurements presented here were performed at a
temperature of 1.7 K, but we have tested that the setup
produces similar results at T = 4 K.
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FIG. 1: (color online) (a) SEM image of the device. The
quantum dot is formed in the nanowire, with the quantum
point contact located in the 2DEG directly beneath the QD.
(b) Typical time trace of the QPC conductance, showing a few
electrons tunneling into and out of the QD. The upper level
corresponds to a situation with n electrons on the QD. (c)
Rise time of the detector, defined as the time needed for the
current to cross the midline between current levels belonging
to the n and n + 1 electron states.
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FIG. 1: (color online) (a) SEM image of the device. The
quantum dot is formed in the nanowire, with the quantum
point contact located in the 2DEG directly beneath the QD.
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Figure 2.1: The charge inside the conductor is measured as a function of the time : IQPC is
proportional to the number of electron inside the central island, which fluctuates by one unit (one
electron).

Consider the Markov process X(t) taking two values X1 or X2. The transition rates are λ1
(from X1 to X2) and λ2 (from X2 to X1). The mean time spent in state X1,2 is 1/λ1,2. We
denote by Pi(t) = Proba{X(t) = Xi} with i ∈ {1, 2}.

1/ Write the set of differential equations for P1(t) and P2(t).

2/ Find the stationary solution, deno ted by P ∗
i (hint : consider P1(t) + P2(t) and y(t) =

P1(t)− P2(t)).
An interesting exercice is to write the system of equations in a matricial form d

dt P⃗ (t) =MP⃗ (t)
and diagonalize the non-symmetric stochastic matrix M . Show that

exp

[
t

(
−λ1 λ2
λ1 −λ2

)]
=

(
P ∗
1 P ∗

1

P ∗
2 P ∗

2

)
+

(
P ∗
2 −P ∗

1

−P ∗
2 P ∗

1

)
e−(λ1+λ2)t (2.1)

8



3/ Find the conditional probability Pt(i|j) (i.e. Pt(i|j) = Pi(t) for Pj(0) = 1). Check that the
detailed balance condition

Pt(1|2)P ∗
2 = Pt(2|1)P ∗

1 (2.2)

is fulfilled.

4/ We now want to characterize the correlation of the charge in the conductor. Express ⟨X(t)⟩
and ⟨X(t)X(t′)⟩ in the stationary regime. For simplicity, we assume that X1 = 0 describes
the conductor empty and X2 = 1 the conductor with one electron. Compute explicitly ⟨X(t)⟩
and C(t− t′) = ⟨X(t)X(t′)⟩ − ⟨X(t)⟩ ⟨X(t′)⟩ in this case.

In the experiments, the fluctuations of the charge in the QD can be characterized by mea-
suring the power spectrum S(ω). Compute S(ω) for the random telegraph process. The
measurment is reported in another article, Fig. 2.2. Compare your result with the data.
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Supplementary Material for
“Shot noise spectroscopy on a semiconductor quantum dot in the elastic and inelastic

cotunneling regimes”

Yuma Okazaki,1, 2, ∗ Satoshi Sasaki,1, 2 and Koji Muraki1

1NTT Basic Research Laboratories, NTT Corporation,
3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan

2Department of Physics, Tohoku University, Sendai, Miyagi 980-8578, Japan
(Dated: June 2, 2021)

This supplementary material describes the details of
the current noise measurements presented in the main
article “Shot noise spectroscopy on a semiconductor
quantum dot in the elastic and inelastic cotunneling
regimes.” To measure current noise sourced from the
quantum dot (QD), we employ cryogenic-amplification
and fast-Fourier-transform based current noise measure-
ment system.1–3 This system is calibrated with refer-
ence to thermal noise, and the estimated resolution is
δS ∼ 2 × 10−29 A2/Hz.

Figure S1(a) shows a scanning electron microscope im-
age of our device and the setup for measuring the cur-
rent noise. The drain contact of the QD device is con-
nected with the LC tank to form an RLC tank circuit,
with ‘R’ being the resistance of the QD. The inductance
L ∼ 15.5µH and the capacitance C ∼ 390pF provides
the resonant frequency f0 = 1/2π

√
LC ∼ 2.05MHz, at

which the contribution of 1/f noise is negligible. Here,
the capacitance C ∼ 390 pF comes from a combination
of a parasitic capacitance Ccoax ∼ 80 pF of a coaxial ca-
ble connecting the device with the cryoamp and a ce-
ramic chip capacitor Cchip ∼ 310pF. A voltage fluctua-
tion across the RLC tank is amplified by a home-made
cryoamp cooled to the liquid helium temperature (4.2K)
with voltage power gain A1 ∼ 1V2/V2, followed by a
room-temperature amplifier (NF SA-220F5) with voltage
power gain A2 ∼ 4 × 104 V2/V2. A time-domain signal
of the amplified voltage fluctuation is digitized and then
is Fourier transformed to power spectral density.2 The
power spectral density is integrated over a period of 30
seconds.

In this system, the power spectral density Sout(f) of
the output voltage has a Lorentzian form, which can be
expressed as

Sout(f) = SA +
SB

1 + (f2 − f2
0 )2/(f∆f)2

. (1)

The measured Sout agrees well with this Lorentzian
formula, as shown in the inset of Fig. S1(b). Here,
the width of the Lorentzian, ∆f in Eq. 1, relates to
the effective impedance Reff of the RLC tank through
∆f = 1/2πReffC. Note that the value of Reff is usu-
ally smaller than R of the QD because of an energy loss
of the LC tank circuit.2,3 Additionally, the height of the
Lorentzian, SB in Eq. 1, is related to current noise via
SB = AR2

eff(SQD +SAmp), where A = A1 ·A2 is the total

50x10
-15

0

o
u

t
[V

2
/H

z
]

2.12.0 [MHz]

data

fit

(b)

4x10
-22

3

2

1

0

B
/

2

e
ff

[A
2
/H

z
]

150100500
1/ eff [!S]

=�600�mK
=�300�mK

100�nm

Vg

Vsd

I

50�mK 4.2�K

L C

A1 A2

300�K

(a)

Sout

S D

2�MHz

FIG. S1. (a) Scanning electron microscope image of the
device and schematic of the setup for measuring the current
noise. (b) A plot of SB/R2

eff versus 1/Reff at temperatures
T = 300 and 600 mK. The solid lines are linear fits to the
data. (Inset) Measured voltage power spectral density Sout

(circle) versus frequency f and the Lorentzian fit to the data
using Eq. 1 (solid line).

gain and SQD (SAmp) is a current noise sourced from the
QD (cryoamp).4,5

We calibrate two unknown parameters SAmp and A
through a measurement of thermal noise.1 When I = 0,
SQD dose not include shot noise induced by a current
flow, but includes thermal noise induced by a Brownian
motion of electrons. In this case, SQD can be determined
by two controllable parameters: effective impedance Reff

and system temperature T via SQD = 4kBT/Reff with kB

being the Boltzmann constant. We measure this thermal
noise for various Reff values and 12 different tempera-
tures from 200 to 700mK at 50mK intervals, as shown
in Fig. S1(b) for T = 300 and 600mK. In this figure,
measured SB/R2

eff is plotted as a function of 1/Reff to-
gether with the linear fitting results (solid lines). The
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is Fourier transformed to power spectral density.2 The
power spectral density is integrated over a period of 30
seconds.

In this system, the power spectral density Sout(f) of
the output voltage has a Lorentzian form, which can be
expressed as

Sout(f) = SA +
SB

1 + (f2 − f2
0 )2/(f∆f)2

. (1)

The measured Sout agrees well with this Lorentzian
formula, as shown in the inset of Fig. S1(b). Here,
the width of the Lorentzian, ∆f in Eq. 1, relates to
the effective impedance Reff of the RLC tank through
∆f = 1/2πReffC. Note that the value of Reff is usu-
ally smaller than R of the QD because of an energy loss
of the LC tank circuit.2,3 Additionally, the height of the
Lorentzian, SB in Eq. 1, is related to current noise via
SB = AR2

eff(SQD +SAmp), where A = A1 ·A2 is the total
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FIG. S1. (a) Scanning electron microscope image of the
device and schematic of the setup for measuring the current
noise. (b) A plot of SB/R2

eff versus 1/Reff at temperatures
T = 300 and 600 mK. The solid lines are linear fits to the
data. (Inset) Measured voltage power spectral density Sout

(circle) versus frequency f and the Lorentzian fit to the data
using Eq. 1 (solid line).

gain and SQD (SAmp) is a current noise sourced from the
QD (cryoamp).4,5

We calibrate two unknown parameters SAmp and A
through a measurement of thermal noise.1 When I = 0,
SQD dose not include shot noise induced by a current
flow, but includes thermal noise induced by a Brownian
motion of electrons. In this case, SQD can be determined
by two controllable parameters: effective impedance Reff

and system temperature T via SQD = 4kBT/Reff with kB

being the Boltzmann constant. We measure this thermal
noise for various Reff values and 12 different tempera-
tures from 200 to 700mK at 50mK intervals, as shown
in Fig. S1(b) for T = 300 and 600mK. In this figure,
measured SB/R2

eff is plotted as a function of 1/Reff to-
gether with the linear fitting results (solid lines). The

Figure 2.2: Left : The microstructure studied. Right : Power spectrum. From : Y. Okazaki, S.
Sasaki and K. Muraki, Shot noise spectroscopy on a semiconductor quantum dot in the elastic
and inelastic cotunneling regimes, Phys. Rev. B 87, 041302(R) (2013).

2.2 Poisson jump process

In this exercise, we study the "Compound Poisson process" (or "Poisson jump process"). The
process starts at X(0) = 0 and makes jumps at random times tn occuring with rate λ :

X(t+n ) = X(t−n ) + ηn . (2.3)

The jump amplitudes ηn’s are i.i.d. random variables, distributed according to a distribution
w(η), assumed symmetric for simplicity. We denote by P (x, t) the distribution of the process
X(t).

1/ Show that P (x, t) obeys the integro-differential equation

∂P (x, t)

∂t
= λ

∫
dη w(η) [P (x− η, t)− P (x, t)] (2.4)

Check conservation of normalisation.

2/ Using that the problem is translation invariant (both in time and space), solve the master
equation by using Fourier transformation : show that P̂ (k, t) =

∫
dx e−ikx P (x; t) obeys a

simple differential equation. Deduce a general integral representation of P (x, t) involving the
Fourier transform ŵ(k) of the jump distribution.
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3/ We have ŵ(k) ≃ 1−a2k2+a4k4+o(k4) for k → 0. Give the interpretation of the two positive
coefficients a2 and a4.

Argue that the large time limit of P (x, t) involves the k → 0 behaviour of ŵ(k). Deduce that
the distribution is Gaussian at large time. Give

〈
X(t)2

〉
and interpret.

4/ We now consider the case where the jump distribution exhibits a power law tail w(η) ∼
|η|−µ−1 for η → ∞, with 0 < µ < 2. One can show that ŵ(k) ≃ 1 − c |k|µ + o(kµ)
for k → 0, where c > 0. Show that, at large time, the distribution can ne written as
P (x, t) ≃ F (x/tθ)/tθ. Give the exponent θ in terms of µ and express F (x) as an integral.

Compute explicitly F (x) for µ = 1.

What is the expected asymptotic behaviour of F (x) ∀µ ∈]0, 2[ ?

2.3 To go further : Master equation for the diffusion on Z

Let us consider the master equation describing the one dimensional diffusion on Z with transitions
between nearest neighbour sites

∂tPn(t) =Wn,n−1Pn−1(t) +Wn,n+1Pn+1(t)− (Wn−1,n +Wn+1,n)Pn(t) (2.5)

i.e. Wnm is a tridiagonal (infinite) matrix with Wn,n = −Wn−1,n −Wn+1,n.

1/ Current : check that the master equation can be rewritten under the form

∂tPn = −Jn + Jn−1 (2.6)

and express the "current density" Jn related to the distribution of the Pn’s.

2/ We now choose the matrix such that

Wn,m = e[V (m)−V (n)]/2 for m ̸= n , (2.7)

where V (x) is a known function.

Equilibrium state.— Show that
P ∗
n = C e−V (n) (2.8)

is a stationary solution corresponding to a vanishing current. Discuss the normalisability.

3/ NESS (J ̸= 0).— Find the stationary solution corresponding to Jn = J ∀n. Show that it is

P ∗
n = J e−V (n)

∞∑
m=n

e[V (m+1)+V (m)]/2 (2.9)

Discuss the normalisability (consider the continuum limit for simplicity).

4/ Provide an example where there is no stationary state.

10



2.4 To go further : Gaussian-versus-non Gaussian white noise –
Shottky noise

We consider the noise

F (t) =

N∑
n=1

κn δ(t− tn) for t ∈ [0, T ] (2.10)

where N is random. {κn} and {tn} are two sets of i.i.d. random variables. 1 The probability to
have N “impulses” in [0, T ] is

PT (N) =
(λT )N

N !
e−λT (2.11)

The tn are uniformly distributed over the interval [0, T ], i.e. the joint distribution of the N times
simply PN (t1, · · · , tN ) = 1/TN . The weights κn’s have a common law p(κ).

We first consider the case where p(κ) = δ(κ− q).

1/ We introduce the generating functional

G[ϕ(t)]
def
=

〈
e
∫
dt ϕ(t)F (t)

〉
(2.12)

Show how one can deduce the correlation functions from the knowledge of G[ϕ] (which will be
calculated below).

Hint : Use the functional derivatives δG
δϕ(t1)

, δ2G
δϕ(t1)δϕ(t2)

, etc. Functional derivatives are easily
computed with the rule

δϕ(t′)

δϕ(t)
= δ(t− t′) (2.13)

and usual rules for derivation. Example : δ
δϕ(t)

∫
dt′ ϕ(t′)2 = 2ϕ(t).

2/ Using that averaging over the random variables is

⟨(· · · )⟩N,{tn} =

∞∑
N=0

(λT )N

N !
e−λT

∫ T

0

dt1
T

· · · dtN
T

(· · · ) (2.14)

compute explicitly G[ϕ(t)].

3/ Functional derivations of G[ϕ] generate the correlation functions ⟨F (t1) · · ·F (tn)⟩ and the
derivations ofW [ϕ] = lnG[ϕ] generate the connex correlation functions, i.e. ⟨F (t)⟩, ⟨F (t)F (t′)⟩c

def
=

⟨F (t)F (t)′⟩ − ⟨F (t)⟩ ⟨F (t)′⟩, etc. Deduce these latter.

4/ Application : Classical theory of shot noise (Shottky noise).– Some current i(t) flows
through a conductor. Due to the discrete nature of the charge carriers, the current presents some
fluctuations (noise) known as “shot noise”, which we aim to characterize here (not to be confused
with the thermal fluctuations, i.e. the Johnson-Nyquist noise). We assume that the current can

1i.i.d. = independent and identically distributed.

11



be written under the form of independent implulses i(t) = q
∑

n δ(t− tn). The average rate is λ.
Express the two first cumulants of current, ⟨i(t)⟩ and ⟨i(t) i(t′)⟩c. Deduce the power spectrum

S(ω)
def
=

∫
d(t− t′) eiω(t−t′)⟨i(t) i(t′)⟩c (2.15)

and express the relation between the shot noise and the averaged current ⟨i⟩.
Remark : This result has permitted to demonstrate the existence of charge carriers with fractional charge

in the regime of the fractional quantum Hall effect (strong magnetic field, low temperature) :
• L. Saminadayar, D. C. Glattli, Y. Jin & B. Etienne, Observation of the e/3 Fractionally
Charged Laughlin Quasiparticle, Phys. Rev. Lett. 79 (1997) 2526.
• M. Reznikov, R. de Picciotto, T. G. Griffiths, M. Heiblum & V. Umansky, Observation of
quasiparticles with 1/5 of an electron’s charge, Nature 399 (May 1999) 238.

5/ Transfered charge (Poisson process).– We consider the stochastic differential equation

dQ(t)

dt
= i(t) (2.16)

a) Draw a typical realisation of the process Q(t). Deduce the cumulants of the charge ⟨Q(t)n⟩c.
b) Argue that on the large time scale λt≫ 1, the cumulants with n > 2 can be neglected. What
is then the nature of the process Q(t) ?
c) We introduce the distribution of the charge P (Q; t) = ⟨δ(Q−Q(t))⟩ describing the evolution
of the process with a drift

dQ(t)

dt
= I(Q(t)) + i(t) . (2.17)

Consider separatly the effect of the drift and the jumps to relate P (Q; t+ dt) to P (Q; t). Show
that the distribution obeys

∂tP (Q; t) = −∂Q [I(Q)P (Q; t)] + λ [P (Q− q; t)− P (Q; t)] . (2.18)

6/ Compound Poisson process.– We now consider an arbitrary distribution w(κ) and intro-
duce the generating function g(k) =

〈
ekκn

〉
.

a) Find the new expression of the generating functional G[ϕ].
b) Show that it is possible to define a limit (changing λ and w(κ)) where the noise becomes a
Gaussian white noise.
c) Show that the generalisation of (2.18) is

∂tP (Q; t) = −∂Q [I(Q)P (Q; t)] + λ

∫
dq w(q) [P (Q− q; t)− P (Q; t)] (2.19)

Check the conservation of probability. Express the probability current J (Q; t) related to the
distribution by the conservation law ∂tP (Q; t) = −∂QJ (Q; t). Consider the limit of small jumps
q → 0, i.e. when w(q) is concentrated at the origin. Assuming ⟨q⟩ = 0, show that (2.19) leads to
a Fokker-Planck like equation of the form ∂tP (Q; t) = −∂x[a1(Q)P (Q; t) + 1

2∂xx[a2(Q)P (Q; t)]],
and express the diffusion constant D of the charge diffusion.

12



Tutorial 3

Correlations and fluctuations

3.1 Generalised Langevin equation – Wiener-Khintchine theorem

We consider a small particle in a fluid whose velocity can be analysed thanks to the generalised
Langevin equation

m
d

dt
v(t) = −

∫
dt′ γ(t− t′) v(t′) + F (t) (3.1)

(set m = 1). The Langevin force F (t) is correlated over a short “microscopic” time τc. The
integral term comes from damping.

1/ Show that the correlation function of the velocity is

Cvv(τ) =

∫ +∞

−∞

dω

2π

C̃FF (ω)

|γ̃(ω)− iω|2 e
−iωτ (3.2)

2/ We first consider the limiting case where γ(t) = λ δ(t) and CFF (τ) = σ δ(τ). Compute the
correlator Cvv(τ) and express σ in terms of the diffusion constant D def

= limt→∞
1
2t

〈
x(t)2

〉
.

3/ We now consider CFF (t) = 2Dλ2 1
2τc

e−|t|/τc with τc ≪ 1/λ. Show that∫
R

dω

2π

e−iωt

(ω2 + a2)(ω2 + b2)
=

1

2(b2 − a2)

(
1

a
e−a|t| − 1

b
e−b|t|

)
(3.3)

and deduce Cvv(t). Analyze its limiting behaviors.

4/ We can assume that damping occurs over a finite memory time τm ≫ τc, so that γ(τ) is a
causal function decaying fast over this time scale, like γ(τ) = θH(τ) (λ/τm) e−τ/τm .
Discuss the hypothesis γ(t) = λ δ(t) in this case.
For a finite τm, give a physical argument to express the correct hierarchy of times 1/λ, τm and
τc.
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3.2 Response function for the Ornstein-Uhlenbeck process

We consider a small ball bound to a substrated by a polymer and submitted to a time dependent
external force fext(t). The position of the particle is described by the Langevin equation

d

dt
x(t) = −λx(t) + fext(t) + F (t) (3.4)

where F (t) is the Langevin force. We choose to model the force as a Gaussian white noise,
⟨F (t)F (t′)⟩ = 2D δ(t− t′).

x

Figure 3.1: A small particle is bound to a surface thanks to a polymer which acts like a spring.

1/ Correlations at equilibrium.– We consider the case fext(t) = 0. Compute de correlation
function C(t − t′)

def
= ⟨x(t)x(t′)⟩eq. Deduce what is the stationary distribution Peq(x) of the

process. Assuming equipartition theorem, relate D to the temperature.

2/ Response (out of equilibrium).– Show that we can easily determine the response function
χ for this linear problem. We recall that it is defined by

⟨x(t)⟩out of eq. = ⟨x⟩eq +
∫

dt′ χ(t− t′) fext(t
′) +O(f2ext) (3.5)

3/ Fluctuation dissipation theorem.– Check that the two functions satisfy the FDT

χ(t) = −β θH(t)
d

dt
C(t) (3.6)

where β = 1/(kBT ).
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Tutorial 4

Fokker-Planck approach

4.1 The moments for a linear drift

We study a diffusion on R for a linear drift, described by the Fokker-Planck equation

∂tPt(x) = −∂x
[
(a+ b x)Pt(x)

]
+ ∂2x

[
D(x)Pt(x)

]
. (4.1)

1/ Express d
dt ⟨x(t)⟩ in terms of Pt(x). Deduce that ⟨x(t)⟩ obeys a simple differential equation.

Solve this differential equation for initial condition x(0) = 0. Discuss the solution briefly :
assuming a > 0, plot neatly ⟨x(t)⟩ for b > 0 and b < 0.

2/ Consider now d
dt ⟨x(t)n⟩. Under what condition on D(x) would it be possible in principle to

solve a differential equation for ⟨x(t)n⟩ ? (do not solve it yet).

3/ We choose D(x) = D0+D1 x+D2 x
2 (> 0 ∀x). Show that the variance ⟨x(t)2⟩c = ⟨x(t)2⟩−

⟨x(t)⟩2 obeys a linear differential equation with a source term D(⟨x(t)⟩). Solve the equation
for x(0) = 0. Estimate the main behaviour for large t (for b > 0 and D2 > 0). Prefactor not
asked. Discuss

√
⟨x(t)2⟩c/ ⟨x(t)⟩ in this limit.

4.2 Ornstein-Uhlenbeck process and the Fokker-Planck equation

We study the Ornstein-Uhlenbeck process, the only Markovian, stationnary and Gaussian ran-
dom process. It describes the motion of the particle submitted to a spring force in the over-
damped regime. It obeys the Langevin equation

d

dt
x(t) = −λx(t) + F (t) (4.2)

where F (t) is the Langevin force, a Gaussian white noise ⟨F (t)F (t′)⟩ = 2D δ(t− t′). Our aim is
here to determine the stationnary distribution Peq(x) and the conditional probability Pτ (x|x0).

1. Method 1.– Recall the expression of ⟨x(t)⟩ and Var(x(t)) obtained with the Langevin
approach. Deduce the expression of the conditional probability Pτ (x|x0). What is its
τ → ∞ limit ?
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2. Method 2.– Write the corresponding Fokker-Planck equation.

In order to solve this partial differential equation, we can use its equivalence with the
Schrödinger equation. Indeed, the Fokker-Planck equation

∂tP (x, t) = ∂x
[
D∂x − F (x)

]
P (x, t) (4.3)

can be mapped onto the imaginary time Schrödinger equation

−∂tψ(x, t) = H+ψ(x, t) where H+ = −D d2

dx2
+

1

4D
F (x)2 +

1

2
F ′(x) (4.4)

thanks to the transformation P (x, t) = ψ0(x)ψ(x, t) with ψ0(x) =
√
Peq(x) ∝ exp[−U(x)/2D]

where U(x) = −
∫ x

dξ F (ξ) is the potential.

3. Demonstrate the formula (4.4) and give the corresponding supersymmetric Schrödinger
operator H+ associated with the Fokker-Planck equation of the over-damped regime. Give
the spectrum of its eigenvalues.

4. We recall the expression of the quantum mechanical propagator for the harmonic oscillator

⟨x |e−tHω |x0 ⟩ =
√

mω

2π sh(ωt)
exp− mω

2 sh(ωt)

[
ch(ωt) (x2 + x20)− 2xx0

]
(4.5)

where Hω = − 1
2m

d2

dx2 + 1
2mω

2x2.
Recover the expression of the propagator of the Ornstein-Uhlenbeck process.

4.3 To go further : Diffusion on a ring

4.3.1 Free diffusion

We consider the free diffusion in a ring

∂tP (x, t) = D∂2xP (x, t) for x ∈ [0, L] (4.6)

with periodic boundary conditions

P (0) = P (L) (4.7)
P ′(0) = P ′(L) (4.8)

(time dependence is omitted).

1/ Analyze the spectrum of the diffusion operator D∂2x. Deduce a first series representation
of the propagator P (x, t|x0, 0). Is it convenient to analyze short or large time ? Identify the
characterisitic time τD (Thouless time) separating the "short" and "long" time regimes.

2/ Using the Poisson formula (appendix), deduce another series representation for P (x, t|x0, 0)
convenient to analyze the other limit in time.
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4.3.2 Effect of a drift

Same question when a constant drift is introduced :

∂tP (x, t) =
(
D∂2x − v ∂x

)
P (x, t) for x ∈ [0, L] (4.9)

In particular, discuss the stationary limit t→ ∞. Compute the stationary current Jv.

4.3.3 Boundary conditions induced current

We now come back to the analysis of the free diffusion (4.6), however we now study the problem
for a new set of boundary conditions :

P (L) = 0 (4.10)
P ′(0) = P ′(L) (4.11)

Interpret the two boundary conditions. Found the stationary state and deduce a formula for the
current JD. Discuss the L dependence (compare with Jv).

Remark : the spectral analysis is more tricky in this case because the Fokker-Planck operator in not self
adjoint (due to the choice of boundary conditions), which makes it non diagonalisable. The eigenvalues
are doubly degenerated and in each subspace the operator must be written under the form of an upper
triangular 2× 2 matrix.

Appendix : a Poisson formula∑
n∈Z

e2iπnη e−π2(n+α)2y =
1√
πy

∑
n∈Z

e2iπ(n−η)α e
− (n−η)2

y . (4.12)

Proof : apply
∑

n∈Z f(n) =
∑

n∈Z f̂(2πn) where f̂(k) =
∫
R dx f(x) e−ikx.
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Tutorial 5

Random walks

5.1 The Gaussian model of polymer

We discuss a simple model of polymer. We consider a sequence of N monomers attached at point
r⃗0. We denote by r⃗n the end of the n-th monomer.

r
r

r

r

...

...

0

n

N

1

Figure 5.1: The “Gaussian polymer” : N independent monomers.

We assume that the n-th monomer u⃗n = r⃗n − r⃗n−1 has a fixed length a and its direction is
uniformly distributed in space, independently of the other monomers.

We introduce the probability to find the end of the polymer at r⃗ given that the other end is
fixed at r⃗0.

1. Justify the recurrence

PN (r⃗ | r⃗0) =
∫

ddu⃗

Sdad−1
δ(||u⃗|| − a)PN−1(r⃗ − u⃗ | r⃗0) . (5.1)

where Sd being the surface of the unit sphere in dimension d (e.g. S3 = 4π).

2. Solve the equation by using the Fourier transform in the d = 3 case.

3. We define the "giration radius" as R2
G =

∫
ddr⃗ PN (r⃗ | 0) r⃗ 2. By studying the small wavevec-

tor expansion of the Fourier transform, deduce RG.
Compare RG (in unit of a) with the length of the polymer LN = Na.

4. Study the continuum limit a→ 0 and N → ∞ with t = Na2 fixed.
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5.2 Few properties of the free diffusion on the line

We illustrate how powerful is the Fokker-Planck approach by considering several properties of
the Brownian motion.

1. Propagator on the half line. We consider the free diffusion on R+ with a Dirichlet
boundary condition at the origin. We write P0(x) the initial condition P0(x) = P (x, t = 0).
Construct the solution of the diffusion equation

∂tP (x, t) = D∂2xP (x, t) for x > 0 with P (0, t) = 0 (5.2)

(use the image method). Apply the method to the propagator, denoted P+
t (x|x0).

2. Survival probability. Dirichlet boundary condition describes absorption at x = 0. Com-
pute the survival probability for a particle starting from x0 :

Sx0(t) =

∫ ∞

0
dxP+

t (x|x0) (5.3)

Remark : what would have been the result if P+
t (x|x0) would have satisfied a Neunmann

boundary condition ?

3. First passage time. We denote by T the first time at which the process starting from
x0 > 0 reaches x = 0 (it is a random quantity depending on the process), and Px0(T )
is distribution. The survival probability is the probability that the process did not reach
x = 0 up to time t :

Sx0(t) =

∫ ∞

t
dT Px0(T ) (5.4)

Deduce Px0(T ) and plot it.

4. Maximum. We now consider another property of the Brownian motion X(τ) with τ ∈
[0, t] starting fromX0 = 0 : we denote bym ⩾ 0 its maximum and Qt(m) the corresponding
distribution. Justify the following identity∫ m

0
dm′Qt(m

′) = Sm(t) (5.5)

Deduce the expression of Qt(m). What does Qt(0) represent ? The exponent of the power
law t−θ is called the persistence exponent. Give θ for the Brownian motion.

Appendix : the error function

erf(z)
def
=

2√
π

∫ z

0
dt e−t2 (5.6)

and erfc(z) = 1− erf(z). Asymptotics :

erfc(z) ≃
z→∞

e−z2

√
π

N∑
n=0

(−1)n
(
1

2

)
n

1

z2n+1
+RN (z) (5.7)

where (a)n
def
= a(a+ 1) · · · (a+ n− 1) = Γ(a+ n)/Γ(a) is the Pochhammer symbol.
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Tutorial 6

Fokker-Planck and Stochastic
Differential Equations

6.1 Connection between stochastic and Fokker-Planck equations

We consider the stochastic differential equation (SDE)

dx(t) = a[x(t)] dt+ b[x(t)] dW (t) (Itô). (6.1)

A simple manner to make the connection between stochastic equations and Fokker-Planck equa-
tion (FPE) is to use the independence of x(t) and dW (t) at coinciding times and ⟨dW (t)2⟩noise =
dt (physicist’s notation). Thus, the drift and the "diffusion" terms in the related FPE

∂tPt(x) =

[
−∂xa(x) +

1

2
∂2xb(x)

2

]
Pt(x) (6.2)

are given by

a(x) =
⟨dx⟩noise

dt
and b(x)2 =

⟨dx2⟩noise
dt

(6.3)

1. We consider the multidimensional case

dxi(t) = ai(x⃗) dt+ bij(x⃗) dWj(t) (Itô). (6.4)

with ⟨dWi(t)⟩noise = 0 and ⟨dWi(t)dWj(t)⟩noise = δijdt. Show that the related FPE is

∂tPt(x⃗) =

[
−∂iai(x⃗) +

1

2
∂i∂jbik(x⃗)bjk(x⃗)

]
Pt(x⃗) (6.5)

(with implicit summation over repeated indices).

2. Application : Kramers equation.— Consider the equations{
dx = v dt

dv =
(
− v

τ + F (x)
m

)
dt+ 1

m

√
2kBTγ dW (t)

(6.6)
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Consider (x(t), v(t)) as 2D random process. What are the drift ai(x, v) (i.e. ax and av)
and the diffusion matrix (bxx, bxv, bvx, bvv) ? Deduce that the FPE equation is(

∂t + v ∂x +
F (x)

m
∂v

)
Pt(x, v) =

1

τ
∂v

(
v +

kBT

m
∂v

)
Pt(x, v) (6.7)

This equation is called the Kramers equation.

3. Smoluchowski equation.— The Smoluchowski equation is the overdamped limit of the
Kramers equation. The treatment at the level of FPE is complicated. It is more simple
to start from SDE. Remembering that the overdamped limit corresponds to neglect the
acceleration term in the Newton equation, show that the equation for the distribution
Pt(x) =

∫
dv Pt(x, v) in the limit of strong friction is

∂tPt(x) ≃
1

γ

[
−∂xF (x) + kBT∂

2
x

]
Pt(x) (6.8)

6.2 Escape from a metastable state : Arrhenius law

We consider the first passage time problem : a particle starts at x(0) = x0 and reaches the
point b for the first time at a (random) time Tx0 : x(Tx0) = b with x(t) < b for t ∈ [0, Tx0 ]. In
the lectures, we have obtained a formula for the average time, assuming a reflecting boundary
condition at a < x0 :

⟨Tx0⟩ =
1

D

∫ b

x0

dx eV (x)/D

∫ x

a
dx′ e−V (x′)/D . (6.9)

We have applied this formula to the case where the potential presents a well at x1 and a barrier
at x2 (escape from a metastable state) and have obtained the formula

⟨Tx0⟩ ≃
2π√

−V ′′(x1)V ′′(x2)
exp

{V (x2)− V (x1)

D

}
(6.10)

in the D → 0 limit. This formula describes a smooth potential ∈ C 2(R).
Consider the potentials of the figure 6.1 and derive analogous formulae for the averaged

escape time.

Figure 6.1: Two other types of trapping potentials.
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Tutorial 7

Phase separation

7.1 The critical point of the van der Waals model

The Van der Waals model is a model for a real fluid, with a strong repulsion between atoms (or
molecules) and a weak attraction. It is characterised by two parameters : the first one is related
to the exclusion volume around each atom/molecule : b ∼ r30, where r0 is the interaction range.
The second is the typical potential energy averaged in the volume a ∼ u0r

3
0, where −u0 is the

depth of the potential well. The van der Waals equation reads(
p+

N2

V 2
a

)
(V −Nb) = NkBT (7.1)

1/ Using dimensionless analysis, relate the three coordinates (Tc, Vc, pc) of the critical point to
a and b.

2/ At the critical temperature Tc, the isotherm presents a vanishing slope and an inflexion point
at point C. Write the three equations determining (Tc, Vc, pc). Solve them.

3/ Give the value of the dimensionless ratio pcVc/(NkBTc). Compare with the experimental
data of the table

Tc (K) Vc (cm3) pc (atm) pcVc

NkBTc

He 5.2 57.8 2.26 0.30
H2 33.1 65.0 12.8 0.31
N2 126.1 90.1 33.5 0.29
O2 154.4 74.4 49.7 0.29
CO2 304.2 94.0 72.9 0.27
H2O 647.4 56.3 218.3 0.23

4/ We now study the vicinity of the critical point C. We introduce the dimensionless variables
v

def
= V

Vc
− 1, π def

= p
pc

− 1 and t def
= T

Tc
− 1. Write the VdW equation with the new variables and

show that its expansion in the vicinity of the critical point is

π ≃ 4t− 6vt− 3

2
v3 (7.2)
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(justifiy that we can stop at order v3 and can neglect the term v2t and higher).

5/ For T < Tc, discuss explicitly the Maxwell construction with the simplified isotherm. What
are the values of the volume of the liquid vL and of gas vG, defining the two ends of the
liquefaction plateau ? What is the value of the saturation pressure πs(t) ?

Deduce the critical exponent βVdW (controlling the order parameter). In a famous set of
experiments on various fluids, Guggenheim has plotted the ratio T/Tc as a function of the
two densities (liquid and gas) : cf. Fig.7.1. Comment the figure.
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FIG. 2. 

these formulae should be used for computing 
values of pg. There are however occasions when 
one requires relatively accurate values not of pg 
itself but of (Pl- pg) / pc; on such occasions formula 
(6.4) . in view of its extreme simplicity and 
surprisingly high accuracy has much to recom-
mend it. An example of its use will occur in 
Section 16. 

7. VAPOR PRESSURE 

At temperatures considerably below the critical 
temperature, say T<0.65Tc, when formula (6.2) 
for Pu becomes inaccurate it is convenient to con-
sider the equilibrium vapor pressure Prather 
than pg. According to the principle of corre-
sponding states one should expect P fPc to be a 
universal function of T /Tc• In particular the 
temperatures T8 at which the equilibrium pres-

sure P is one-fiftieth of the critical pressure 
should be corresponding temperatures for differ-
ent substances and the ratio of T. to Tc should 
have a universal value. On the other hand Tb the 
boiling points at a pressure of one atmosphere are 
not corresponding temperatures for different 
substances. In rows 9 and 10 of Table I are given 
Tb the boiling point at a pressure of one atmos-
phere, and T. the boiling point at a pressure one-
fiftieth the critical pressure. In rows 11 and 12 
are given the ratios To/Te and T./Tc. It will be 
seen that the values of the latter are, as expected, 
more nearly the same than the values of the 
former. 

8. ENTROPY OF EVAPORATION 

According to Trouton's rule the molar entropies 
of evaporation for different substances have 
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Figure 7.1: Figure from : E. A. Guggenheim, “The principles of corresponding states”, J. Chem.
Phys. 13(7), p. 253 (1945).

6/ Analyze the critical isotherm. Deduce the critical exponent δVdW.

7/ The isothermal compressibility is defined as χT
def
= − 1

V

(
∂V
∂p

)
T
. What is the behaviour of χT

in the vicinity of the critical point ? Deduce the critical exponent γVdW.

8/ The spinodal is the curve corresponding to the end of metastability (i.e. the set of points
where ∂π

∂v = 0 in the Clapeyron diagram). Deduce the expression of the spinodal curve.

9/ Plot neatly the phase diagram in the Clapeyron representation and indicate the region of
metastability.
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Tutorial 8

Mean field - Demixing transition

8.1 Lattice gas model for the demixing transition

We study a lattice gas model for mixing of a solute (dissolved material) in a solvent (liquid).
The lattice is made of N elementary cells, which each contains one molecule : the solute or the
solvent. We denote by Np the number of solute molecules (particles in the fluid) and Ns the
number of solvent molecules. We denote by z the coordination number of the lattice (z = 2d for
a square lattice in dimension d).

Figure 8.1: Two types of molecules on a lattice : solute particles (•) and solvent molecules (◦).

We introduce the concentration of solute

ϕ =
Np

N
. (8.1)

The molecules interact through the following rules (for neighbour molecules):
•• : εpp

◦• : εps

◦◦ : εss

(8.2)

We denote by E(C) the energy of a configuration C, which can be written as

E(C) = Npp(C) εpp +Nps(C) εps +Nss(C) εss (8.3)
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where Npp(C), Nss(C) and Nps(C) are the numbers of bonds between two solute molecules, solvent
molecules and solute/solvent molecules, respectively. Npp(C) + Nss(C) + Nps(C) = Nbonds with
Nbonds = zN/2.

In a first time, we compute the partition function

Z =
∑
C

e−βE(C) (8.4)

with a mean field approximation.

1/ Justify the three following expression for the mean values :
Npp =

1
2Nzϕ

2

Nps = Nzϕ(1− ϕ)

N ss =
1
2Nz(1− ϕ)2

(8.5)

Deduce the mean value of the energy E as a function of ϕ. Show that it is of the form

1

N
E = ε0 + c1 ϕ+

z

2
∆ε ϕ2 (8.6)

The energy ∆ε is the effective interaction energy between solute molecules in the solvent
(think at the energy of the Ising model). Discuss physically its dependence in εps.

2/ What is the number of microstates of the fluid Ω(NP ) =
∑

C 1 for a given Np (and Ns) ?
Compute the entropy per site s(ϕ) def

= kB limN→∞
1
N lnΩ.

3/ Partition function : The mean field approximation corresponds to Z =
∑

C e
−βE(C) ≡

Ω
〈
e−βE

〉
≈ Ωe−βE . Show that

Z ∼ e−NβfL(ϕ) (8.7)

and give the expression of fL(ϕ), the Landau free energy per unit volume (remember that N
is the volume in cell unit).

In the following, we simplify the analysis and adjust the coefficient c1 in E so that the energy
is symmetric with respect to ϕ↔ 1−ϕ. Give the expression of fL(ϕ) (disregard the constant).

4/ Analyze fL(ϕ) for different temperatures (plot the function). Interpret the behaviour. Show
that there is a first order phase transition below a certain critical temperature Tc. Introduce
the parameter η = −z∆ε/(2kBT ) : what is the critical value ηc corresponding to Tc ?

5/ We consider T < Tc. We denote by ϕ1 and ϕ2 the concentrations of the two phases. Give
the equation for ϕ1,2. Plot T as a function of ϕ1,2. Analyzing the limit T → T−

c , give the
critical exponent δϕ = ϕ2 − ϕ1 ∼ (Tc − T )β .

6/ Osmotic pressure : is the force per unit surface when a solution (solvent+solute) is in
contact with pure solvent through a semi-permeable membrane (figure 8.2).
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Figure 8.2: The left volume contains solute+solvent and the right volume only solvent. The two
volumes are separated by a semi-permeable wall allowing only sovent to pass through.

The volume of the solution is N (in appropriate units) and the total volume Ntot. The total
free energy is thus Ftot(N) = N fL(ϕ) + (Ntot −N) fL(0). Express the osmotic pressure

Π(ϕ) = −∂Ftot(N)

∂N
(8.8)

as a function of ϕ (be careful that ϕ depends on the volume N).

Plot Π(ϕ). Discuss the cases η < ηc and η > ηc.
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Tutorial 9

Charged fluids

9.1 The mean-field Debye-Hückel theory for charged fluids

We will study the mean-field theory relevant at equilibrium for classical plasmas made of mobile
charges of opposite signs, that is referred to as Debye-Hückel theory. This theory may be applied
to dilute electrolytes where various charged ions are in solution or to the free carriers in semi-
conductors. It is also used to describe the disorder phase of two-dimensional xy-models where
topological point defects called vortices interact via a Coulomb potential.

We will consider plasmas made of only two types of charge carriers, one with positive charge
q+ with density n+, and one with negative charge q− and density n−. One may show that
equilibrium may occur only when the global electroneutrality is satisfied, q+n+ + q−n− = 0. In
presence of an external potential ϕext(r), the Hamiltonian of the system is

Hint =
1

2

∑
(i,σ) ̸=(j,τ)

qσqτvC(r
σ
i − rτj ) +

∑
i,σ

qσϕ
ext(rσi ) , (9.1)

where the Coulomb potential satisfies ∆rvC(r, r
′) = −4πδ(r − r′). We introduce the local

densities ⟨nσ(r)⟩ = ⟨∑i δ(r− rσi )⟩ and the charge density ⟨ρq(r)⟩ = q+⟨n+(r)⟩+ q−⟨n−(r)⟩. We
recall that the free energy density for a monoatomic ideal gas of density n at temperature T is
f = kBTn

[
ln(nλ3)− 1

]
with the de Broglie wavelength λ = h/

√
2πmkBT . We consider the local

densities ⟨n+(r)⟩ and ⟨n−(r)⟩ as variational functions and look for their solutions at equilibrium.

1. Argue that the mean-field free energy of the system is

F =
1

2

∫
dr dr′ ⟨ρq(r)⟩vC(r− r′)⟨ρq(r′)⟩+

∫
dr ⟨ρq(r)⟩ϕext(r)

+ kBT

∫
dr⟨n+(r)⟩ ln[⟨n+(r)⟩λ3] + kBT

∫
dr⟨n−(r)⟩ ln[⟨n−(r)⟩λ3] (9.2)

in terms of ⟨ρq(r)⟩ together with ⟨n+(r)⟩ and ⟨n−(r)⟩ ?

2. What are the constraints on ⟨n−(r)⟩ and ⟨n+(r)⟩ ? By introducing Lagrange multipliers,
the local densities at equilibrium are given by

δ

δ⟨n+(r)⟩

[
F − µ+

∫
dr ⟨n+(r)⟩ − µ−

∫
dr ⟨n−(r)⟩

]
= 0 (9.3)
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Show that the solution is
⟨nσ(r)⟩ = Aσ exp [−βqσϕ(r)] , (9.4)

with some constants Aσ and the total electric potential

ϕ(r) = ϕext(r) +

∫
dr′ vC(r− r′) ⟨ρq(r′)⟩ , (9.5)

that is the sum of the external potential and the induced part arising from the induced
charge ⟨ρq(r)⟩. What are the values of the constants Aσ ? In the special case where
ϕext = 0, what are the values of the different densities ?

We consider the charge-density response function χρ ρ(r, r
′) = − δ⟨ρq(r)⟩

δϕext(r′)

∣∣∣
ϕext=0

.

3. Show that its Fourier transform is, for non-zero k,

χ̃ρ ρ(k) =
κ2

4π

δ̃ϕ

δϕext
(k) , (9.6)

where we introduce the inverse Debye-Hückel length κ2 = 4πβ
(
q2+n+ + q2−n−

)
. What is

its value for k = 0 ?

4. Considering the definition of ϕ(r), show that

χ̃ρ ρ(k) =
κ2

4π

k2

k2 + κ2
. (9.7)

We consider a point charge of charge Q placed at the origin.

5. What is thence the electric potential induced by this charge in the whole system ? What
is the charge density ? Comments ?

We investigate the validity of the mean-field approximation.

6. What is the condition of its validity regarding the balance between the kinetic vs potential
energy ? What is the condition on kBT , n and q2 ?

7. Argue that the mean-field approximation is valid when ⟨δρq(r)δρq(r′)⟩ ≪ q2n2, where
δρq(r) = ρq(r) − ⟨ρq(r)⟩. What is the link between ⟨δρq(r)δρq(r′)⟩ and χρ ρ(r, r

′) ? What
is then the condition of validity of the mean-field approximation ?

We will expand the mean-field free energy (9.2) in terms of the fluctuations in the densities.
Hence we decompose the local densities as ⟨n±(r)⟩ = n± + δn±(r).

8. Expand the free energy (9.2) up to and including the second order δn. We introduce the
auxiliary fields ⟨ρq(r)⟩ = q+δn+(r) + q−δn−(r) and

ψ(r) = −q−
√
n−
n+

δn+(r) + q+

√
n+
n−

δn−(r) (9.8)
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Give δn±(r) as a function of ⟨ρq(r)⟩ and ψ(r). Show that eventually

F =
1

2

∫
dr dr′ ⟨ρq(r)⟩U(r− r′)⟨ρq(r′)⟩+

∫
dr⟨ρq(r)⟩ϕext(r) +

2π

κ2

∫
drψ(r)2 , (9.9)

where U(r− r′) = vC(r− r′) +
4π

κ2
δ(r− r′).

9. Deduce that
1

V
⟨ρ̃q(k)ρ̃q∗(k)⟩ = kBT/Ũ(k)

10. Retrieve the previous results for χρ ρ.

Bonus Consider the case of a charged particle located at a distance d from a perfect conducting
wall embedded in an electrolyte. What is the electric potential ? Comment ?
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Tutorial 10

Ginzburg-Landau mean field approach

10.1 Cost of an interface

We study the interface between two domains where the order parameter takes opposite values
(ex: between positive and negative magnetization, or between liquid and gas, etc). We consider
the Ginzburg-Landau functional

FL[ϕ] =

∫
ddr⃗

{
g
(
∇⃗ϕ(r⃗)

)2
+ fL (ϕ(r⃗))

}
with fL(ϕ) ≃ f0(T ) +

a(T )

2
ϕ2 +

b

4
ϕ4 (10.1)

for a(T ) = ã (T − Tc) and b > 0.

Figure 10.1: Interface between two regions of opposite magnetization.

1/ Preliminary : 1D Newton equation. Consider mẍ = F (x) with F (x) = −V ′(x).

a) Recall the expression of the conserved quantity.

b) We consider a confining potential V (x). Use the conservation law to find a representation
of the period of oscillation T (E) as an integral, where E is the energy of the particle.
Check your result for the harmonic potential V (x) = 1

2mω
2x2.

c) If the potential grows faster than the harmonic potential, for example V (x) = 1
2mω

2x2+
λx4, plot a sketch of T (E).

d) Optional: Same question if the potential grows slower, for example V (x) = 1
2mω

2 sin2 x.
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2/ Derive the field equation (condition that FL[ϕ] is minimum). Simplify the equation by
assuming translation invariance in two directions : ϕ(r⃗) → ϕ(x).

3/ The equation is solved by analogy with the 1D Newton equation : identify the conserved
quantity.

4/ Remark : The resolution of the field equation is a boundary problem (for the interface
problem the values at ±∞ are fixed), while the resolution of the Newton equation is an
initial value problem (x(0) and ẋ(0) are fixed). In this latter case, the energy is a parameter
of the problem (related to the initial conditions), while in the first case, the "energy" is fixed
by the requirement to satisfy the boundary conditions.
We consider T < Tc. Recall the solution in bulk, denoted ϕ0. Find the solution of the
field equation which statisfy ϕ(x → ±∞) = ±ϕ0. Express the solution as a function of the
correlation length ξ =

√
g/(−a).

5/ The aim is here to find a formula for the cost of the interface :

σ =
F[ϕ(x)]− F[ϕ0]

Surf
(10.2)

Show that

σ = 2g

∫ +∞

−∞
dx

[
ϕ′(x)

]2 (10.3)

Compute explicitly the integral. Comment on the temperature dependence.
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Tutorial 11

Real space renormalization of an Ising
model

11.1 The Niemeijer-Van Leeuwen decimation procedure

The purpose of this problem is to learn how to implement the renormalization group ideas
on simple physical systems, such as interacting spins, see Leo P. Kadanoff [Statistical Physics:
Statics, Dynamics, and Renormalization, World Scientic, Singapore, (2000)]

In the early days of the renormalization, Niemeijer and Van Leeuwen [Phys. Rev. Lett. 31,
1411 (1973)] came up with an explicit, albeit approximate, procedure to integrate out a fraction
of the degrees of freedom in a two-dimensional spin system. We consider a 2D Ising model
with N spins living on a triangular lattice with spacing a. The normalized exchange energy is
K = J/kBT .

Figure 11.1: The original spins σi lie at the black bullets while the plaquette lie at the empty
circles. They form a triangular lattice.

1. The lattice is divided into triangular plaquettes as shown in Figure 11.1. A spin variable
SI = ±1 is associated to each plaquette I = {i1, i2, i3} via a majority rule: SI = signσi1 +
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σi2 +σi3 . What is the number N ′ of plaquettes and what is the spacing a′ of the triangular
lattice the plaquettes make up ?

2. The Hamiltonian H = −J
∑
⟨i,j⟩

σiσj involves interactions of all the nearest neighbors. We

gather on one hand interactions between spins σi that belong to the same plaquette I, and
on the other hand, interactions between spins σi and σj that belong to different nearest
neighbor plaquettes I and J . We thus split the Hamiltonian into two parts, H = H1 +
H2, where H1 =

∑
I h1(I) encompass all the nearest-neighbor interactions of spins that

belong to same plaquettes, and H2 =
∑

⟨I,J⟩ h2(I, J), that describes interactions of spins of
different plaquettes. For a given triangular plaquette I = i1, i2, i3 and J = j1, j2, j3, write
h2(I, J) as a function of σi1 , σi2 , σi3 and σj1 , σj2 , σj3 .

3. We would like to rewrite the original partition function Z in terms of a summation over
the {SI} configurations rather than over the {σi} configurations, be it at the expense of
modifying the Hamiltonian. As a step in that direction, we note that

Z(K,N, a) =
∑
{SI}

∑
{σi}

′
e−βH(σi) , (11.1)

where Σ′ denotes a summation over all the {σi} configurations at fixed plaquette configura-
tions SI = sign

(∑
i∈I σi

)
. Let Z({SI}) =

∑′
σi
e−βH(σi). Give the approximate expression

of Z({SI}), denoted Z1 in the following, when the plaquette-plaquette interactions are
discarded.

4. Show that
Z(K,N, a) =

∑
{SI}

Z1

〈
e−βH2

〉
1

(11.2)

where ⟨O⟩1 = 1
Z1

∑′
{σi} e

−βH1 O

5. Let σi be a spin belonging to a plaquette I. Show that

⟨σi⟩1 = SI
e3K + e−K

e3K + 3e−K
. (11.3)

6. In general, computing ⟨e−βH2⟩1 is a formidable task. Express the latter average in terms
of the cumulants of H2 with respect to the measure ⟨. . .⟩1.

We now implement the Niemeiher-Van Leeuwen approximation which consists in dropping
all cumulants of order ⩾ 2.

7. What is the physical content, in terms of plaquette-plaquette interactions, of the second
cumulant that is neglected ?

8. Within this approximation, show that

Z(K,N, a) =
(
e3K + 3e−K

)N ′
Z(K ′, N ′, a′) , (11.4)

where K ′ = f(K) is a function to be identified.
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9. Find the fixed points of f(K). Discuss their stability and their physical meaning. Find
the critical temperature within this approximation scheme. Compare its value with the
mean-field value and with the exact value that is close to 3.6J/kB as found by Onsager.

10. Let ν be the exponent governing the divergence of the correlation length as criticality is
approached. Find the value predicted by the Niemeijer-Van Leeuwen approximation and
compare it with both its mean-field and exact values (νexact = 1).

A few years later, Van Leewen and collaborators [Phys. Rev. Lett. 40, 1605 (1978)] came
up with a new decimation scheme that is exact in the limit of very large systems. While the
specifics of the calculation itself are tedious, the idea was to begin with a system of N spins and
to eliminate at each step of the decimation procedure, an infinitesimal fraction of spins.
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