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Abstract. We develop a diagrammatic approach for solving few-body problems in heteronuclear fermionic
mixtures near a narrow interspecies Feshbach resonance. We calculate s-, p-, and d-wave phaseshifts for
the scattering of an atom by a weakly-bound dimer. The fermionic statistics of atoms and the composite
nature of the dimer lead to a strong angular momentum dependence of the atom-dimer interaction, which
manifests itself in a peculiar interference of the scattered s- and p-waves. This effect strengthens with
the mass ratio and is remarkably pronounced in 40K-(40K-6Li) atom-dimer collisions. We calculate the
scattering length for two dimers formed near a narrow interspecies resonance. Finally, we discuss the
collisional relaxation of the dimers to deeply bound states and evaluate the corresponding rate constant
as a function of the detuning and collision energy.

1 Introduction

Numerous advances in the field of ultracold Fermi gases
over the past decade have enabled the exploration of novel
strongly interacting regimes in fermionic systems (see [1]
and [2] for review). The BCS-BEC crossover, extensively
studied in either potassium (40K) or lithium (6Li) homo-
nuclear systems, is now being actively pursued in the new
generation of experiments on mixtures of these two iso-
topes [3–10]. The mass ratio is thus a new parameter in-
troduced into the crossover phase diagram1. It is then nat-
ural to ask whether changing this parameter can lead to
qualitatively new crossover physics and, if so, how large
should the mass ratio be in order to see non-trivial effects?

For a very large mass ratio (of the order of several
hundreds) a crystalline phase can emerge on the BEC side
of the crossover [11]. The effect is due to a strong long-
range repulsion between the heavy fermions originating
from the exchange of their light partners. Another mass
ratio dependent change in the behavior of the system oc-
curs in the problem of two identical heavy fermions of
mass m↑ interacting resonantly with a light atom of mass
m↓. The exchange of the light atom results in an attrac-
tive potential between the heavy fermions proportional to
1/m↓R2, where R is the distance between them. This ex-
change attraction competes with the repulsive centrifugal
barrier ∝1/m↑R2 for the identical fermions. For mass ra-
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the effective mass ratio.

tiosm↑/m↓ larger than the critical value 13.6 the exchange
attraction dominates over the centrifugal barrier and the
heavy particles experience a fall to the centre in the 1/R2-
potential [12]. On resonance (interspecies scattering length
a = ∞) this leads to the Efimov effect – the existence
of an infinite number of bound heavy-heavy-light trimer
states [13–15]. For smaller mass ratios the centrifugal bar-
rier is dominant. On the one hand this effective three-body
repulsion excludes the Efimov effect. On the other it sup-
presses recombination processes requiring three atoms to
approach each other to very short distances, which is evi-
dently advantageous for the collisional stability of the gas.
The lower the mass ratio, the more stable this three-body
system is [16].

It turns out that even for m↑/m↓ < 13.6 the ↑↑↓-
system exhibits non-perturbative effects on the positive
(BEC) side of the resonance, where there is a weakly
bound heteronuclear molecular state. One of us found
that the three-body recombination to this state vanishes
for m↑/m↓ ≈ 8.6 [17]. Later, Kartavtsev and Malykh ar-
gued that this phenomenon is related to the existence of
a weakly bound not Efimovian trimer state for m↑/m↓ >
8.2 [18]. The trimer has unit angular momentum and for
smaller mass ratios turns into a p-wave atom-dimer scat-
tering resonance. We have recently shown that in the case
of a K-Li mixture (m↑/m↓ = 6.64) the K-(K-Li) atom-
dimer scattering should be dominated by this p-wave res-
onance in a wide range of collision energies [19]. Moreover,
by introducing an external quasi-2D confinement, the p-
wave atom-dimer interaction can be tuned from attractive
to repulsive, allowing for a trimer formation.
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In this paper, we develop a uniform-space diagram-
matic approach for studying few-body processes in a hete-
ronuclear fermionic mixture near an interspecies Feshbach
resonance of finite width. We calculate relevant atom-
dimer scattering phaseshifts and partial cross-sections in
the homonuclear case and in the K-Li case. Passing from
m↑/m↓ = 1 to m↑/m↓ = 6.64 we observe an increase in
the atom-dimer interaction, repulsive in even angular mo-
mentum channels and attractive in odd ones. The most
dramatic increase is found in the channel with unit angu-
lar momentum – the p-wave scattering volume changes by
more than an order of magnitude. Our exact calculations
are complemented by a qualitative explanation of the ob-
served effect based on the Born-Oppenheimer approach,
which we generalize to the case of a narrow interspecies
resonance. We predict a very strong interference between
s- and p-waves in atom-dimer scattering. Depending on
the collision energy, the scattering is dominant in back-
ward or forward directions, which can be observed exper-
imentally by colliding an atomic cloud with a cloud of
molecules. We use our diagrammatic approach to calcu-
late the dimer-dimer scattering length add as a function
of the atomic scattering length a and the width of the
interspecies resonance. Finally, we discuss the main mech-
anisms of the collisional relaxation of dimers into deep
molecular states, and calculate the corresponding atom-
dimer and dimer-dimer relaxation rate constants as func-
tions of a, the width of the resonance, and the collision
energy.

The paper is organized as follows. In Section 2, we dis-
cuss the two-body problem in the narrow resonance case
and introduce our field-theoretical approach. The main
part of the paper is structured according to the previous
paragraph – Sections 3 and 4 are devoted to the three-
and four-body problems respectively. In Section 5, we dis-
cuss the inelastic collisional relaxation in atom-dimer and
dimer-dimer collisions, and in Section 6 we conclude.

2 Two-body problem near a narrow Feshbach
resonance

We assume that all interatomic interactions in the ↑-↓
fermionic mixture are characterized by van der Waals po-
tentials. We also assume that the intraspecies interactions
are not resonant, and therefore can be safely neglected
in the ultracold regime. Let us denote the van der Waals
range of the interspecies interaction by Re and write down
the partial wave expansion of the on-shell scattering am-
plitude [12]

f(k,k′) =
∞∑

�=0

(2�+ 1)P�(cos θ)f�(k). (1)

Here k and k′ are initial and final relative momenta such
that |k| = |k′| = k, and θ = ∠k,k′ is the scattering angle.
We set � = 1. The partial wave amplitudes f�(k) can be
written in terms of the phase shifts δ�(k) as

f�(k) =
1

k cot δ�(k) − ik
. (2)

Expanding the denominator of equation (2) in powers of
kRe gives the effective range expansion. In particular, in
the s-wave channel (� = 0) we have

k cot δ0(k) ≈ −a−1 +
1
2
r0k

2 + . . . , (3)

and the corresponding expansion in the p-wave channel
(� = 1) reads

k3 cot δ1(k) ≈ −v−1 +
1
2
k0k

2 + . . . , (4)

where v is the p-wave scattering volume, and k0 is a pa-
rameter analogous to the effective range.

The scale of the scattering length a, the effective
range r0, and other expansion parameters in the higher
order terms in equation (3) are set by the length Re or its
power of suitable dimension, and the same holds for higher
partial waves. For k → 0 the partial scattering amplitudes
are proportional to (kRe)2�. Thus, in the limit kRe � 1
(ultracold regime) the s-wave scattering amplitude, which
equals f0(0) = −a, is the most important interaction pa-
rameter in the mixture.

Near a scattering resonance the scattering length can
be modified and, in particular, can take anomalously large
values (i.e. |a| 	 Re). A magnetic Feshbach resonance oc-
curs when the collision energy of the two atoms is close
to the energy of a quasidiscrete molecular state in another
hyperfine domain, which is called closed channel. The tun-
ing of the scattering amplitude is achieved by shifting the
open and closed channels with respect to each other in an
external magnetic field (hyperfine states corresponding to
the open and closed channel have different magnetic mo-
ments). The width of the resonance is determined by the
strength of the coupling between these two channels. The
narrower the resonance, the stronger the collision energy
dependence of the scattering amplitude, and, therefore,
the larger the effective range r0. We call a resonance nar-
row2, if |r0| 	 Re. In fact, near such a resonance r0 is
necessarily negative and it is convenient to use another
length parameter [20]

R∗ = −r0/2 =
1

2μabgμrelΔB
, (5)

where μ = m↑m↓/(m↑ + m↓) is the reduced mass, abg is
the background scattering length, μrel is the difference in
the magnetic moments of the closed and open channels,
and ΔB is the magnetic width of the Feshbach resonance.
All 6Li-40K interspecies resonances discussed so far are
characterized by R∗ � 100 nm [4,7], which is much larger
than the van der Waals range Re ≈ 2.2 nm.

One can imagine an interatomic potential for which the
higher order terms in equation (3) are also anomalously

2 We note that in a many-body problem, the width of the res-
onance can be characterized by comparing |r0| with the mean
interparticle separation. In particular, the narrow resonance

condition
(
n|r0|3

)−1/3 � 1 (much more strict than |r0| � Re)
allows for a perturbative expansion across the whole BCS-BEC
crossover [22].
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large. For example, we can introduce one or several ad-
ditional closed channels with quasistationary states very
close to the open-channel threshold resulting in a rather
exotic scattering amplitude3. However, in this paper we
assume a more practical and simple case in which the
terms denoted by . . . in equation (3) vanish in the limit
kRe → 0. We will also assume that scattering with � > 0
is not resonant and can be neglected in this limit. Then,
substituting equation (3) into equation (2) we get the well-
known formula for the resonant scattering at a quasidis-
crete level [12] (written as a function of momentum rather
than energy)

f(k) = − 1
1/a+R∗k2 + ik

. (6)

The ratio R∗/a measures the detuning from the resonance
and we distinguish the regime of small detuning, R∗/a�
1, and the regime of intermediate detuning, R∗/a 	 1.
The properties of a few-body system in these two limits
are qualitatively different [20].

In order to describe the ↑↓ mixture near a narrow res-
onance we use the two-channel Hamiltonian [21]

Ĥ =
∑

k,σ=↑,↓

k2

2mσ
â†k,σâk,σ +

∑

p

(
ω0 +

p2

2M

)
b̂†pb̂p

+
∑

k,p

g√
V

(
b̂†pâp

2 +k,↑âp
2 −k,↓ + b̂pâ

†
p
2 −k,↓â

†
p
2 +k,↑

)
, (7)

where a†↑,↓ and a↑,↓ are creation and annihilation operators
of the two fermionic species while b† (b) creates (annihi-
lates) a closed-channel molecule of mass M ≡ m↑ + m↓.
The atom-molecule interconversion amplitude g is taken
constant up to the momentum cut-off Λ ∝ 1/Re, and ω0

is the bare detuning of the molecule. The quantities a and
R∗ are related to the parameters of the model (7) by [22]
(see also Appendix A)

a =
μg2

2π
1

g2μΛ
π2 − ω0

, R∗ =
π

μ2g2
. (8)

The bare propagators of atoms and closed-channel mole-
cules read

G↑,↓(p, p0) =
1

p0 − p2/2m↑,↓ + i0
,

D0(p, p0) =
1

p0 − p2/2M − ω0 + i0
, (9)

where +i0 slightly shifts the poles of G and D0 into the
lower half of the complex p0-plane. A physical dimer con-
sists of a closed-channel molecule dressed by open-channel

3 In principle, the method that we develop in this paper can
be generalized to an arbitrary energy dependence of the phase
shift.

atoms. The corresponding propagator is given by (see Ap-
pendix A)

D(p, p0) =
2π/μ

2μR∗
(
p0 − p2

2M
+ i0

)
+

1
a
−√

2μ

√
−p0 +

p2

2M
− i0

.

(10)

The pole of D(0, p0) determines the dimer binding energy

ε0 = −
(√

1 + 4R∗/a− 1
)2

/8μR∗2. (11)

Equation (11) interpolates between the two limits: for
small detuning we have ε0 � −1/2μa2 and in the regime
of intermediate detuning ε0 � −1/2μR∗a.

3 Atom-dimer scattering

Knowledge of atom-dimer interaction parameters is neces-
sary for the correct description of an atom-molecule mix-
ture on the BEC side of the Feshbach resonance. The
momentum-space formalism for the three-body problem
with short-range interactions was first demonstrated in
the calculation of the neutron-deuteron scattering length
(total spin S = 3/2 in this case corresponds to our ↑-↑↓
scattering problem) [23]. The coordinate formulation can
be found in reference [17] where the atom-dimer scattering
length was obtained in the mass-imbalanced case. Here we
extend these results to higher partials waves, finite colli-
sion energies, and finite Feshbach resonance width.

Let us denote the atom-dimer scattering T -matrix by
T (k, k0;p, p0), the arguments of which imply that the in-
coming four-momenta of the atom and the molecule are
(k, k0) and (−k, E−k0), and the outgoing ones are (p, p0)
and (−p, E−p0), respectively. In Figure 1, we show the di-
agrammatic series for T , the summation of which results
in the Skorniakov-Ter-Martirosian integral equation [23]
(see also Ref. [24])

T (k, k0;p, p0) = −g2Z G↓(−k− p, E − k0 − p0)

− i

∫
d4q

(2π)4
G↑(q, q0)G↓(−p− q, E − p0 − q0)

×D(−q, E − q0)T (k, k0;q, q0). (12)

Equation (12) is formally identical to the equal-mass
wide-resonance one, the difference being hidden in the
propagators and the factor Z, which serves for correct nor-
malization of external propagators (see Appendix A). The
atom-dimer elastic scattering amplitude is proportional to
the on-shell T -matrix:

f(k,k′) = −μ3

2π
T

(
k, k2/2m↑;k′, k2/2m↑

)
, (13)

where μ3 ≡ Mm↑/(M + m↑) is the reduced mass of the
atom-dimer system, and k = |k| = |k′|. Hereafter f , f�,
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Fig. 1. Diagrammatic series contributing to the atom-dimer
T -matrix and a schematic representation of the Skorniakov-
Ter-Martirosian integral equation (12). External propagators
are included to guide the eye, they do not form part of the
T -matrix. Straight and wavy lines denote atomic and dimer
propagators, respectively.

δ�, and σ� refer to the atom-dimer scattering parameters,
the two-atom interaction being described by a and R∗.

Integration over q0 in equation (12) may be carried out
by closing the complex contour in the lower half plane.
The integration picks up the contribution from the simple
pole of G↑ at q0 = q2/2m↑. The scattering phase shifts are
on-shell quantities and we let k0 = k2/2m↑, p0 = p2/2m↑,
and the total energy E = k2/2μ3 + ε0. The remaining on-
shell condition, |p| = |k|, should be implemented at the
end of the calculations.

The kernel of the resulting three-dimensional integral
equation has a simple pole at |q| = |k| hidden in the dimer
propagator. We make it explicit by defining functions f̃
and h:

f̃(k,q)
q2 − k2 − i0

=
D(q, E−q2/2m↑)

4πg2Z
T

(
k,

k2

2m↑
;q,

q2

2m↑

)
,

h(k, q) =
(
k2 − q2

)
D

(
q, E − q2/2m↑

)
/4π. (14)

Both f̃ and h are not singular at |q| = |k|, and f̃ is chosen
such that f̃(k,k′) = f(k,k′), for |k| = |k′|. Finally, we
note that equation (12) conserves angular momentum and,
therefore, can be written as a set of decoupled equations
for each partial wave

f̃�(k, p) = h(k, p)

{
g�(k, p) +

2
π

∫ ∞

0

q2dq
g�(p, q)f̃�(k, q)
q2 − k2 − i0

}
,

(15)
where we define

g�(k, p) =
1
2

∫ 1

−1

dxP�(x)

×G↓
(
k + p, E − k2/2m↑ − p2/2m↑

)
, (16)

where x is the cosine of the angle between k and p. Partial
atom-dimer scattering amplitudes are related to solutions
of equation (15) by the equation f�(k) = f̃�(k, k), and
the corresponding phase shifts δ� are deduced from equa-
tion (2).

In Figure 2, we plot the s-, p-, and d-wave phase shifts
as functions of the collision energy Ecoll = k2/2μ3 for
different detunings R∗/a. We write the phase shifts as

Fig. 2. (Color online) Atom-dimer s, p, and d-wave scatter-
ing phase shifts vs. Ecoll/|ε0|. Solid, dashed, dot-dashed, and
dotted lines correspond to R∗/a = 0, 1/16, 1/4, and R∗ = a, re-
spectively. In the homonuclear case we show δd only for R∗ = 0.

δ0 ≡ δs, δ1 ≡ δp, and δ2 ≡ δd. The results are shown for
two mass ratios: m↑/m↓ = 6.64 (left) and m↑/m↓ = 1
(right). We keep the same vertical scale in both graphs,
and one can see that the atom-dimer interaction in the
heteronuclear case is stronger in every considered chan-
nel. Looking at the low-energy asymptotes of the phase
shifts in the wide resonance case (R∗ = 0) we see that
passing from m↑/m↓ = 1 to m↑/m↓ = 6.64 the atom-
dimer s-wave scattering length increases from aad ≈ 1.18a
to aad ≈ 1.98a, consistent with references [23] and [17]. At
the same time the p-wave scattering volume increases by
more than an order of magnitude from vad ≈ −0.95a3 to
vad ≈ −10.1a3, which is apparently due to the vicinity of
the resonance at the critical mass ratio m↑/m↓ ≈ 8.2 [18].
Although the mass ratio for the K-Li case is quite a bit
smaller, our results indicate that for sufficiently small de-
tuning one has a strongly marked p-wave K-KLi scatter-
ing resonance. Indeed, for R∗ = 0 the p-wave phase shift
reaches the unitarity value π/2 at a relatively small colli-
sion energy Ecoll ≈ 0.1|ε0|.

In Figure 2 we also see that the atom-dimer interac-
tion decreases with detuning. We attribute this to the fact
that at larger R∗/a the light atom spends more time in
the closed-channel molecular state, and consequently con-
tributes less to the atom-dimer exchange interaction. In
a sense, increasing R∗/a is similar to increasing the mass
of the light atom (decreasing the mass ratio): the heavier
the atom, the weaker the exchange interaction.

Although the p-wave resonance becomes less pronoun-
ced near a narrow resonance, in a K-Li mixture the p-wave
atom-dimer interaction can be strong, which is demon-
strated in Figure 3, where we plot the partial wave cross-
sections σ�(k) = 4π(2� + 1)k−2 sin2 δ�(k). We clearly see
that for detunings R∗/a � 1 the p-wave partial cross-
section either exceeds or is comparable to σs in a wide
range of collision energies.
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Fig. 3. (Color online) Partial K-KLi atom-dimer cross-sections
σs (solid), σp (dashed), and σd (dotted) in units of a2 vs. col-
lision energy for different detunings R∗/a.

Fig. 4. (Color online) Atom-dimer s-wave (black), p-wave
(blue), and d-wave (purple) scattering cross sections for the
homonuclear gas. Solid, dashed, dot-dashed, and dotted lines
correspond to R∗/a = 0, 1/16, 1/4, and R∗ = a, respectively.

For comparison, in Figure 4 we present partial atom-
dimer cross-sections in the homonuclear case. We see that
the s-wave contribution is always dominant and the func-
tional form of σs/a

2 is fairly insensitive to the detuning.
We have calculated the scattering parameters for sev-

eral higher partial waves. Their contributions rapidly de-
crease with � and it is worth plotting only the d-wave phase
shifts (see Fig. 2) and scattering cross-sections (Figs. 3
and 4). The d-wave contribution is comparable to the s-
and p-wave ones only in the heteronuclear case and for
relatively high collision energies ∼ |ε0|. In Figures 2 and 4
the d-wave contribution for the homonuclear case is plot-
ted only for R∗ = 0 as for finite detunings the curves are
even closer to the horizontal axis.

We have already discussed the atom-dimer scatter-
ing length and scattering volume for m↑/m↓ ≈ 6.64 and
m↑/m↓ = 1 in the case R∗ = 0. In Figures 5 and 6, we
plot these quantities and the effective range parameters
rad and kad (atom-dimer analogues of r0 and k0 defined in

Fig. 5. (Color online) Atom-dimer scattering length aad, s-
wave effective range rad, p-wave scattering volume vad, and the
p-wave effective range parameter kad in units of corresponding
powers of a vs. R∗/a for m↑/m↓ = 6.64. Solid lines are exact
and dotted lines are approximate results (17)–(20) valid in the
limit R∗ � a.

Fig. 6. (Color online) Same as in Figure 5 but for the homo-
nuclear case.

equations (3) and (4)) versus the detuning R∗/a. Dotted
lines in these graphs are obtained by using a perturbation
theory in the limit of a very narrow resonance, g → 0,
when the atom-dimer T -matrix can be obtained by sum-
ming the first few diagrams in Figure 1. This gives an
expansion in powers of

√
a/R∗ � 1. The first two terms

in the expansion of aad and vad and the leading terms for
the effective range parameters rad and kad read

aad ≈ a
μ3

μ

[
1 +

1
2

(
1 − μ3

μ

) √
a

R∗

]
, (17)

rad ≈ −4R∗ μ
μ3

(
1 − μ

2μ3

)
, (18)

vad ≈ −2
3
a2R∗ μ3

m↓

[
1 +

3
2

(
1 +

μ3

36m↓

) √
a

R∗

]
, (19)

kad ≈ 12
a

m↓
μ3

(
1 − μ

2μ3

)
. (20)
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3.1 Born-Oppenheimer approximation

It is instructive to consider the enhancement of the
atom-dimer scattering and the appearance of trimers for
sufficiently large mass ratios in the Born-Oppenheimer ap-
proximation [25]. This method was introduced in refer-
ence [14] to study Efimov physics in the system of one light
and two heavy particles. Although the Born-Oppenheimer
approximation is not exact, it serves well to illustrate the
essential physics leading to the resonant enhancement of
the p-wave scattering. Here we extend it to the case of a
resonance of finite width.

The method takes advantage of the large mass ratio by
assuming that the state of the light atom adiabatically ad-
justs itself to the distance R between the heavy fermions.
The wavefunction of the light atom can be written in the
form

ψR,±(r) ∝ e−κ±(R)|r−R/2|/R

|r − R/2| ± e−κ±(R)|r+R/2|/R

|r + R/2| . (21)

It satisfies the free-particle Schrödinger equation with the
energy

ε±(R) = −κ2
±(R)/2m↓. (22)

The singularities of ψR,±(r) at vanishing r̃ = r ± R/2
satisfy the Bethe-Peierls boundary condition [26]

[r̃ψ]′r̃/r̃ψ | r̃→0 = iκ±(R) cot δ0 [iκ±(R)]

= −1/a+R∗κ2
±(R), (23)

where the light-heavy s-wave phase shift, again denoted
by δ0, is calculated at the light-heavy collision energy
ε±(R). The equation for κ±(R) is obtained by applying
the boundary condition (23) to the wavefunction (21):

κ±(R) ∓ exp [−κ±(R)R] /R = 1/a−R∗κ2
±(R). (24)

The second step of the Born-Oppenheimer method con-
sists of solving the Schrödinger equation for the heavy
fermions by using ε±(R) as the potential energy surface.
Let us denote the corresponding heavy-fermion wavefunc-
tion by φ(R). Since the total three-body wavefunction,
proportional to the product φ(R)ψR,±(r), should be an-
tisymmetric with respect to the permutation of the heavy
fermions, the symmetry of φ depends on the choice of
sign in equation (21). As ψR,+(r) is symmetric with re-
spect to the permutation R ↔ −R, the heavy-atom wave-
function φ is antisymmetric and describes odd atom-dimer
scattering channels. Accordingly, the lower sign in equa-
tions (21)–(24) corresponds to even channels. We see how
the composite nature of the dimer leads to the �-dependent
effective atom-dimer potentials: by solving equation (24)
one arrives at a purely attractive ε+(R) for odd channels
and purely repulsive ε−(R) for even ones.

From the viewpoint of the radial Schrödinger equation
it is convenient to introduce the total effective potential
for each φ�(R):

V�(R) = ε(−1)�+1(R) − ε(∞) + �(�+ 1)/m↑R2, (25)

Fig. 7. The Born-Oppenheimer atom-dimer effective poten-
tial V1(R) (in units of 1/2m↓a2) in the wide resonance case
(R∗ = 0) for mass ratios m↑/m↓ = 5 (dashed), mK/mLi (solid),
8.2 (dash-dotted), and 13.6 (dotted).

which includes the centrifugal barrier and shifts the
threshold to zero by subtracting the dimer binding energy

ε(∞) = −
(√

1 + 4R∗/a− 1
)2

/8m↓R∗2. (26)

In the limit m↑ 	 m↓ equation (26) reduces to equa-
tion (11).

For the p-wave atom-dimer interaction the central is-
sue is the competition between the attractive exchange
potential ε+ ∝ 1/m↓ and the repulsive centrifugal barrier,
which is inversely proportional tom↑. In Figure 7, we show
V1(R) in the limit of vanishing detuning for different mass
ratios. Remarkably, for m↑/m↓ ∼ mK/mLi this potential,
being repulsive in both limits R � a and R	 a, develops
a well at distances R ∼ a. For m↑/m↓ > 8.2 the depth
of this well is enough to accomodate a trimer state with
unit angular momentum [18] and for somewhat smaller
mass ratios the presence of the well leads to the resonant
enhancement of the p-wave interaction.

The effect of finite R∗ is to decrease the strength of
the exchange potentials ε±. In Figure 8, we show V1(R) in
the K-Li case for different values of the detuning R∗/a.
One can see that the p-wave attraction becomes less
pronounced and the well eventually disappears with in-
creasing R∗/a.

It is important to distinguish the p-wave trimer for
m↑/m↓ � 8.2 from Efimov trimers. The former exists
only for a > 0 and is a result of the peculiar competi-
tion between the exchange potential and the centrifugal
force at distances of the order of a, which determines its
size. In contrast, the Efimov effect occurs at larger mass
ratios, m↑/m↓ > 13.6, when the effective potential at dis-
tances R � a is no longer repulsive. Then, in the Born-
Oppenheimer description the heavy atoms fall to the cen-
ter in an attractive 1/R2-potential. This is accompanied
by the appearance of an infinite set of Efimov states, irre-
spective of the sign of a.

Atom-dimer scattering in even channels is described by
the potential ε+(R), which is defined at distances R > a.
It has a form of a purely repulsive soft-core potential,
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Fig. 8. The Born-Oppenheimer atom-dimer effective potential
V1(R) (in units of 1/2m↓a2) in the K-Li case for R∗ = 0 (solid),
R∗ = a/16 (dashed), R∗ = a/4 (dash-dotted), and R∗ = a
(double-dot dashed). The dotted line is the centrifugal barrier.

which increases with the mass ratio and decreases with
R∗, consistent with the exact results above on s- and d-
wave atom-dimer scattering.

3.2 Interference of s- and p-waves

Now we would like to discuss one of the implications of
the channel dependent atom-dimer interaction, a pecu-
liarity, which is strongly pronounced in the K-Li mixture.
In this case the p- and s-wave phase shifts are comparable
in magnitude and can be large (see Fig. 3). It is thus not
necessary to go to very high collision energies for observing
the quantum interference between these partial waves4.

Let us consider a gedankenexperiment in which a cold
thermal cloud of KLi dimers collides with a cloud of
K atoms at collision energies below the dimer break-up
threshold. The measurable quantity is then the angular
distribution of scattered dimers (or atoms), which is pro-
portional to the differential cross-section. We can write it
in terms of the phase shifts by using equations (1) and (2):

dσ

dΩ
=

1
k2

[
sin2 δs + 6 cos(δp − δs) sin δs sin δp cos θ

+ 9 sin2 δp cos2 θ
]
+ . . . (27)

Here k is the relative atom-dimer momentum and the an-
gle θ is measured with respect to the collision axis, which
we denote by ẑ. The dots signify the contribution of higher
partial waves. We have checked that they can be safely ig-
nored.

The first term on the right hand side in equation (27)
gives the well-known spherically symmetric scattering
halo. The last term corresponds to the pure p-wave scat-
tering. It contributes equally to the forward (0 < θ < π/2)
and backward (π/2 < θ < π) directions, but vanishes in

4 Quantum interference of s- and d-waves has been observed
in collisions of 87Rb BECs at rather high collision energies,
see [27,28].

ẑ
x̂

Fig. 9. (Color online) The integrated column density for K-
KLi atom-dimer scattering in arbitrary units. The collision en-
ergies are Ecoll = 0.05|ε0 | (left) and Ecoll = 0.25|ε0| (right). In
both cases R∗ = a/4. Backward direction corresponds to neg-
ative z. For presentation purposes we imitate a small thermal
smear.

Fig. 10. The contrast vs. collision energy for detuning R∗/a
equal to 0 (solid), 1/16 (dashed), 1/4 (dot-dashed), and 1
(double-dot dashed). Dotted line is the homonuclear case result
for R∗ = 0.

the direction perpendicular to ẑ. The second (interference)
term favors either backward or forward scattering. In Fig-
ure 9 we simulate an absorption image (column density)
of scattered particles that initially moved in the positive
z direction. In the K-Li case backward scattering domi-
nates at small collision energies while forward scattering
is favored at higher energies, when δp − δs > π/2.

In Figure 10, we plot the contrast, defined as the nor-
malized difference between the numbers of particles scat-
tered forward, N+, and backward, N−, as a function of
collision energy for different detunings R∗/a. For compar-
ison we also present the homonuclear wide-resonance case
(dotted line). We see that in this case backward scatter-
ing always dominates, the highest contrast achieved for
Ecoll ≈ |ε0|/3.

The collision experiment described above requires the
ability of manipulating atoms and molecules individually,
which points to an advantage of heteronuclear mixtures
– in the heteronuclear case different atomic species feel
optical potentials in a different manner, and this obviously
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holds for the two components of the corresponding atom-
molecule mixture.

As far as the energy scale is concerned, in the K-Li case
with R∗ = a = 100 nm the dimer binding energy given
by equation (11) equals |ε0| ≈ 1.8 μK, and it decreases to
200 nK when a = 400 nm. We also mention, for reference,
that the relative atom-dimer velocities corresponding to
the collision energy Ecoll = |ε0| in these two cases equal
3.7 cm/s and 1.2 cm/s respectively.

4 Dimer-dimer scattering

Dimer-dimer interaction parameters are crucial for the de-
scription of the BCS-BEC crossover in the BEC-limit, i.e.
when the gas of molecules is dilute. In the lowest order
the chemical potential, condensate depletion, and speed
of sound in the BEC of dimers are determined from the
density and dimer-dimer scattering length add in the same
manner [29] as in the usual Bogoliubov theory of dilute
Bose gases.

In the case of a homonuclear mixture near a wide reso-
nance the dimer-dimer scattering length equals add ≈ 0.6a.
This number was obtained in reference [30] by solving
an integral equation derived directly from the four-body
Schrödinger equation in coordinate space. Later the result
was confirmed by diagrammatic approaches [29,31] and by
Monte-Carlo and variational techniques [32,33]. In the he-
teronuclear case the molecule-molecule scattering length
was also calculated in the case of a wide interspecies res-
onance [33–35]. Von Stecher et al. [33] also computed the
dimer-dimer effective range. The inelastic scattering and
the formation of Efimov trimers in dimer-dimer collisions
for m↑/m↓ > 13.6 is discussed in reference [36].

A qualitative summary of the results cited above is
that the dimer-dimer interaction can be thought of as
a soft-core repulsion. It strengthens with the mass ratio,
but is always weaker than the s-wave repulsion between a
dimer and a heavy atom. This picture can be understood
from the Born-Oppenheimer analysis, when one assumes
that the wavefunction of the two light fermions is given by
the antisymmetrized product of ψR,+(r1) and ψR,−(r2)
(see Eq. (21)), which is antisymmetric under the permu-
tation of the heavy fermions. Accordingly, the heavy-atom
part of the wavefunction should be symmetric, consistent
with the fact that only even scattering channels are al-
lowed between identical bosons. The Born-Oppenheimer
potential energy surface is given, independent of the an-
gular momentum, by the sum ε+(R) + ε−(R). It increases
with decreasing the mass of the light atom and is repul-
sive, but not as strong as the atom-dimer s-wave potential
ε−(R).

As far as we know, higher partial waves in scatter-
ing of bosonic dimers have not been studied, but it has
been shown that the ground state of four ↑ − ↑ − ↓ − ↓
fermions in an anisotropic harmonic potential has zero
angular momentum, independent of a and the mass ra-
tio [33,37]. Besides, the qualitative Born-Oppenheimer
analysis does not provide arguments for any resonant

Fig. 11. Diagrammatic representation of the integral equa-
tion (28), which relates the dimer-dimer T -matrix with the
sum of all the two-dimer irreducible diagrams, Γ .

enhancement of higher partial waves. We thus conjec-
ture that the s-wave channel should dominate the dimer-
dimer interaction, at least for sufficiently small collision
energies.

The aim of this section is to compute the dimer-dimer
s-wave scattering length add for the homonuclear and hete-
ronuclear cases (having in mind the Li-K mixture) taking
into account the finite width of the Feshbach resonance.
Our derivation follows references [29,35] where the prob-
lem was studied in the regime of small detuning.

We consider the scattering of two dimers with four-
momenta (0, ε0) into dimers with (±p, ε0±p0) and project
onto the s-wave (average over directions of p). The four-
body T -matrix with these kinematics is denoted T (p, p0).
Similarly to the three-body case the four-body T -matrix
consists of an infinite sum of diagrams, which may again
be reduced to integral equations. In order to perform this
summation, we first construct the sum of two-dimer ir-
reducible diagrams beginning and ending in two dimer
propagators. These are the diagrams that cannot be di-
vided in two by cutting only one pair of dimer propaga-
tors (external lines are excluded from the summation).
The corresponding s-wave averaged sum is denoted by
Γ (q, q0; p, p0), where the four-momenta of the incoming
[outgoing] dimers equal (±q, ε0 ± q0) [(±p, ε0 ± p0)]. The
equation for the T -matrix then reads

T (p, p0) = g4Z2Γ (0, 0; p, p0) +
i

4π3

∫
q2dq dq0 T (q, q0)

× Γ (q, q0; p, p0)D(q, ε0 + q0)D(q, ε0 − q0) (28)

and is illustrated in Figure 11. As in the three-body case,
the prefactor of the first term on the right hand side
serves for the correct normalization of external propaga-
tors. In order to avoid poles and branch cuts we solve
equation (28) by rotating the contour of the q0-integration
to the imaginary axis [29].

The sum of the two-dimer irreducible diagrams is cal-
culated as follows. We first sum the two-dimer irreducible
diagrams which end in a dimer and two fermionic atoms.
We denote the sum of such two-dimer irreducible diagrams
by χ(q, q0;p1,p2), where the two incoming dimers have
four-momenta (±q, ε0 ± q0), and the outgoing ↑ [↓] atom
may be put on-shell with four-momentum (p1, p

2
1/2m↑)

[(p2, p
2
2/2m↓)]. By energy-momentum conservation the

outgoing dimer then has four-momentum (−p1−p2, 2ε0−
p2
1/2m↑−p2

2/2m↓). In Figure 12, we illustrate the integral
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(         )+χχ +=

Fig. 12. The integral equation satisfied by χ, the sum of the
two-dimer irreducible diagrams, in which one of the outgoing
dimers is split into its constituent parts.

Fig. 13. Γ expressed in terms of χ (see text).

equation satisfied by χ. The equation itself reads

χ(q, q0;p1,p2) = −
∫
dΩq

4π

{
G↓

(
q − p1, ε0 + q0 − p2

1

2m↑

)

×G↑

(
−q − p2, ε0 − q0 − p2

2

2m↓

)
+ [(q, q0) ↔ −(q, q0)]

}

−
∫

d3Q

(2π)3

{
G↑

(
Q + p1 + p2, 2ε0 − Q2

2m↓
− p2

1

2m↑
− p2

2

2m↓

)

×D

(
Q + p1, 2ε0 − Q2

2m↓
− p2

1

2m↑

)
χ(q, q0;p1,Q)

+G↓

(
Q + p1 + p2, 2ε0 − Q2

2m↑
− p2

1

2m↑
− p2

2

2m↓

)

×D

(
Q + p2, 2ε0 − Q2

2m↑
− p2

2

2m↓

)
χ(q, q0;Q,p2)

}
,

(29)

where the frequency integration in the closed loop of the
iterated term is already performed. The configurational
space of equation (29) is in fact three-dimensional. It con-
sists of the moduli of the vectors p1 and p2, and the angle
between them. The pair (q, q0) enters parametrically. In
order to express Γ in terms of χ, it is advantageous to
separate out the simplest diagram, in which the dimers
exchange identical atoms. Then, the remaining diagrams
in Γ are obtained by closing the fermionic loop in χ (see
Fig. 13).

The relation between Γ and χ is

Γ (q, q0; p, p0) = Γ (0)(q, q0; p, p0) − 1
2

∫
d3p1

(2π)3
d3p2

(2π)3

×
{
G↓

(
p− p1, ε0 + p0 − p2

1

2m↑

)

×G↑

(
p + p2, ε0 − p0 − p2

2

2m↓

)
+ [(p, p0) ↔ −(p, p0)]

}

×D

(
p1 + p2, 2ε0 − p2

1

2m↑
− p2

2

2m↓

)
χ(q, q0;p1,p2), (30)

where the factor 1
2 is needed for correct counting of dia-

grams. The quantity Γ (0) is the first diagram on the right
hand side of Figure 13 and is given in Appendix B.

Fig. 14. The dimer-dimer scattering length vs. R∗/a for equal
masses (solid line) and for the Li-K mixture (dashed). The
dotted lines correspond to the asymptote (34) valid in the limit
R∗ � a.

The dimer-dimer scattering length is related to the T -
matrix by

add =
M

4π
T (0, 0). (31)

Figure 14 shows our results for the dimer-dimer scatter-
ing length in the equal mass case and for the Li-K mix-
ture. In the limit of small detuning we recover the re-
sults [30,33–35]

add = 0.60, m↑/m↓ = 1, (32)

add = 0.89, m↑/m↓ = mK/mLi. (33)

In the opposite limit the diagrammatic expansion becomes
perturbative as is the case for the atom-dimer problem
discussed in Section 3. The dominant contribution to the
dimer-dimer T -matrix is provided by Γ (0). Including also
the next order, we find5

add

a
=
M

8μ

√
a

R∗ +
a

R∗

{
0.13, m↑ = m↓

0.23, m↑/m↓ = 6.64
, R∗ 	 a.

(34)
The first term on the right hand side of equation (34) has
been derived in the equal-mass case in reference [22].

5 Relaxation rates

The weakly bound dimers that we are considering are in
fact molecules in the highest rovibrational state. They can
undergo relaxation into deep bound states in collisions
with each other or with unbound atoms. The process is
local as it requires at least three atoms to approach each
other to a distance comparable to the size of the future

5 The second term in equation (34) can be cast in the form
of an integral. Its analytic integration is not possible, but nu-
merically the result can be obtained with a very well controlled
accuracy.
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molecular state, i.e. ∼Re. The released binding energy is
of the order of 1/m↓R2

e and is much larger than all other
energy scales in the problem including the height of the
trapping potential. Thus, the relaxation products are lost.

Although the relaxation is a short-range phenomenon,
it can be treated in the zero-range approximation. For
wide resonances in the Efimov case, i.e. for bosons or for
fermions with m↑/m↓ > 13.6, the Efimov physics is well
described by the motion of three atoms in an effective at-
tractive 1/R2 potential [38,39]. The three-body wavefunc-
tion can be separated in an incoming wave and an outgo-
ing one, and the relaxation process is taken into account
by adding an imaginary part to the three-body parame-
ter [40]. It fixes the ratio of the corresponding incoming
and outgoing fluxes. The physical range of the potential
Re does not enter the resulting relaxation rate constant.

The suppression of relaxation in the non-Efimovian
cases (i.e. the ↑↑↓ system of fermions with m↑/m↓ <
13.6) originates from the centrifugal barrier for identical
fermions, which, in turn, leads to the repulsive effective
three-body 1/R2 potential [13,41]. In order to recombine,
the atoms have to tunnel under this barrier to distances
∼Re. The zero-range approach in this case is perturba-
tive. It uses the unperturbed few-body wavefunction to
predict the probability of finding three atoms at small
distances and gives the functional dependence of the re-
laxation rate constant on the scattering length for a given
mass ratio [16,34]. If the relaxation rate constant is known
for a certain a, one can predict its value for any other
a	 Re.

To be more specific, let us demonstrate how one can es-
timate the atom-dimer relaxation rate in the case of a wide
resonance, for example in s-wave collisions. For an atom
and a molecule in a unit volume, the probability of find-
ing them within the distance a from each other equals a3

(we assume that there is no s-wave atom-dimer reso-
nance). At distances smaller than a, the three-body wave-
function (in the center-of-mass reference frame) factorizes
into Ψ(R1,R2, r) ∝ ρνs−1Φ(Ω̂), where the hyperradius is
ρ =

√
(R1 − R2)2 +m↓/(2m↓ +m↑)(2r − R1 − R2)2, Ω̂

is a five-dimensional set of all the remaining coordinates
(hyperangles), and Φ is a normalized hyperangular wave-
function. The power νs for the ↑↑↓-system is given by the
root of the transcendental equation [13]

(νs + 1) tan
πνs

2
− 2

sin[φ(νs + 1)]
sin(2φ) cos(πνs/2)

= 0 (35)

in the interval −1 < Re νs < 3. In equation (35) φ is
defined as φ = arcsin [m↑/(m↑ +m↓)]. For m↑/m↓ = 1 we
obtain νs ≈ 1.166 and for m↑/m↓ = 6.64 we get νs ≈ 2.02.

The probability of finding the three atoms at hyper-
radii smaller than ρ scales with ρ as P (ρ) ∝ |ρνs−1|2ρ6.
The last term is the volume factor of the six-dimensional
configurational space of the three-body problem (in the
center-of-mass reference frame). Thus, the total proba-
bility of finding the three atoms in the relaxation region
is ∼a3P (Re)/P (a) ≈ a3(Re/a)2νs+4. The relaxation rate
constant is obtained by multiplying this probability by the
frequency with which the relaxation process takes place

once the atoms are within the range of the potential. It
can be estimated as ∼1/m↓R2

e. Finally, for the rate con-
stant we obtain

αad
s ∼ Re

m↓

(
Re

a

)2νs+1

. (36)

In the case of a narrow resonance the three atoms can
approach the recombination region either as free atoms or
as a closed-channel molecule and an atom. One can show,
however, that in this case the probability of the former is
much smaller than the probability of the latter. Indeed,
let us consider two atoms, ↑ and ↓, in the center-of-mass
reference frame. The state of the system is given by

|Ψ〉 =

(
∑

k

ψkâ
†
k,↑â

†
−k,↓ + φ0b̂

†
0

)
|0〉. (37)

Demanding that equation (37) be an eigenstate of the
Hamiltonian (7) with energy E we get two coupled equa-
tions for ψk and φ0, one of which in coordinate space reads

−∇2
R

2μ
ψ(R) + gφ0δ(R) = Eψ(R). (38)

From equation (38) one can see that the singularity of
ψ(R) at the origin is related to φ0 by

ψ(R → 0) = φ0/
√

4πR∗R, (39)

where we have used the second of equations (8) to ex-
press g in terms of R∗.

Using equation (39) it is straightforward to show that
the wavefunction of the weakly bound molecular state is
given by

φ0,b =
√
Z =

√
1 − 1/

√
1 + 4R∗/a (40)

and
ψb(R) =

√
1 − Z

√
κ/2π exp(κR)/R, (41)

where κ =
√

2με0 (see equation (11)) and Z is defined in
equation (A.10). We see that the probability of finding the
atoms in the open channel equals 1−Z and is small in the
regime of intermediate detuning. Therefore, as R∗/a→ ∞
the relaxation rate constant tends to a constant value6

αad
s,bare ∼ Re/m↓, (42)

which corresponds to the relaxation in collisions of atoms
and bare molecules.

Equation (39) can be used in a more general situa-
tion as it applies to a pair of atoms when they are very
close to each other. Even in a system of more than two
atoms and/or in an external potential we can look at a

6 In reference [42] the atom-dimer relaxation in s-wave col-
lisions in the case m↑ = m↓ is considered by using a different
method. Equation (42) disagrees with the power law stated in
that article. We think that the authors do not reach sufficiently
large values of R∗/a.
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particular pair of atoms and observe that the probability
of finding them in the open channel at separations smaller
than R equals

∫ R

0
|ψ(R′)|24πR′2dR′ = |φ0|2R/R∗, i.e. in

the case R� R∗ it is much smaller than the probability of
finding them in the closed channel. In particular, we can
conclude that locally, when three atoms are at the hyper-
radius ρ � R∗, they can be considered as an atom and
a closed-channel molecule. The bare interaction between
them is neglected in equation (7) as it is assumed non-
resonant. Their induced interaction (via the exchange of
the open-channel atoms) has a Coulomb form [20,42] and
can also be neglected at very small distances.

In order to estimate αad
s for narrow resonances in the

regime of small detuning, R∗ � a, we should slightly mod-
ify the speculations that lead us to equation (36). At dis-
tances ρ	 R∗ the three-body wavefunction behaves prac-
tically in the same manner as in the wide resonance case.
The deviation is important at distances smaller than R∗,
where, as we have just mentioned, the three-body wave-
function describes a non-interacting atom and a bare mo-
lecule. The rate constant reads

αad
s ∼

[
αad

s,bare

(
1
R∗

)3
][(

R∗

a

)2νs+4

a3

]
, (43)

where the first factor is the relaxation rate for an atom
and a bare molecule confined to a volume of size R∗3 and
the second factor is the probability to find three atoms
in this volume. We see that the ratio ηs = αad

s /αad
s,bare

interpolates between ηs ∼ (R∗/a)2νs+1 for small R∗/a to
ηs = 1 for large R∗/a.

The atom-molecule relaxation rate in the p-wave chan-
nel can be estimated in the same fashion. The difference
from the s-wave case is the additional factor (ka)2, where k
is the relative atom-molecule momentum. It enters due to
the unit angular momentum when we calculate the prob-
ability to find the atom and the molecule at distances ∼a.
For the same reason the relaxation rate constant in the
collision of an atom and a bare molecule is now momen-
tum dependent, i.e.

αad
p,bare(k) ∼ R3

ek
2/m↓. (44)

We also have to take into account the angular momentum
when we calculate the relaxation rate of an atom and a
bare dimer confined to distances R∗. It now equals
∼αad

p,bare(k)/k
2R∗5, where we use the fact that

αad
p,bare(k)/k

2 is momentum independent in the ul-
tracold limit, kRe � 1. One can show that the ratio
ηp = αad

p (k)/αad
p,bare(k) should behave as (R∗/a)2νp−1 for

small R∗/a and should tend to 1 for large R∗/a. The
power νp is given by the root of the equation [17]

νp(νp + 2)
νp + 1

cot
πνp

2
+
νp sinφ cos[φ(νp + 1)]−sin(νpφ)
(νp+1) sin2 φ cosφ sin(πνp/2)

=0

(45)
in the interval −1 < Re νp < 2. For m↑/m↓ = 1 equa-
tion (45) gives νp ≈ 0.773 and for m↑/m↓ = 6.64 we get
νp ≈ 0.198.

Fig. 15. The diagrams leading to the first order corrections to
the atom-dimer T -matrix, equation (47).

The qualitative analysis of the relaxation rates pre-
sented above is valid in the limits of small or large de-
tunings. However, from the practical viewpoint the most
interesting is the crossover region, R∗/a ∼ 1. To calcu-
late the inelastic rates in the general case we add to the
Hamiltonian (7) a weak imaginary short-range interaction
potential between the heavy atoms and bare molecules,

H ′
ad = −i

∑

Q,k,p

Δad
s + 3Δad

p k · p√
V

b†pa
†
↑,Q−pbka↑,Q−k, (46)

where the parameters Δad
s and Δad

p are chosen such that in
the extreme limit R∗/a	 1 the corresponding relaxation
rate constants tend to their bare values αad

s,bare = 2Δad
s

and αad
p,bare(k) = 6Δad

p k
2.

We can now calculate the ratios ηs and ηp for fi-
nite atom-dimer collision energy and for arbitrary R∗/a
by treating equation (46) as a perturbation to the
Hamiltonian (7). In Figure 15, we use the unperturbed
(elastic) T -matrix found in Section 3 to construct the first
order digrams contributing to the inelastic correction δT .
The explicit on-shell expression reads

δTs(k) = −iZΔad
s

∣∣∣∣
1 + γs(k)

1 − i tan δs(k)

∣∣∣∣
2

≡ −iΔad
s ηs(k)

δTp(k) = −iZΔad
p k

2

∣∣∣∣
1 + γp(k)

1 − i tan δp(k)

∣∣∣∣
2

≡ −iΔad
p k

2ηp(k),

(47)

where we define

γs(k) =
2
π
P

∫
q2dq

Ks(k, q)
q2 − k2

, (48)

γp(k) =
2
πk

P
∫
q3dq

Kp(k, q)
q2 − k2

. (49)

These integrals should be performed by taking the prin-
cipal value, and K�(k, q) = f̃�(k, q)/[1 + ikf̃�(k, k)] is the
solution of equation (15) obtained by using the principal
value prescription.

Results of our calculation are summarized in Fig-
ures 16 and 17. In Figure 16 we present the collision en-
ergy dependence of ηs and ηp, and Figure 17 shows their
zero energy values versus the detuning R∗/a. According
to their definition these parameters are the suppression
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Fig. 16. (Color online) The ratios ηs (left) and ηp (right) ver-
sus collision energy for various detunings: R∗/a = 4 (dotted),
1 (solid), 1/4 (dashed), and 1/16 (dot-dashed).

Fig. 17. (Color online) The ratios ηs (top) and ηp (bottom) at
zero collision energy versus R∗/a for the equal mass case (solid)
and the Li-K mixture (dashed). We also show with dotted lines
the corresponding power scalings in the limit of small R∗/a (see
text).

or enhancement factors of the relaxation rate constants
αad

s and αad
p (k) compared to their bare values αad

s,bare and
αad

p,bare(k). Note that in the ultracold limit the s-wave re-
laxation is much more dangerous than the p-wave one
(compare Eqs. (42) and (44)). Figure 17 thus suggests
that the atom-dimer collisions in the heteronuclear case
are much less prone to relaxation than in the homonuc-
lear one. Indeed, in the Li-K case already for R∗/a = 1
the s-wave relaxation is suppressed by three orders of mag-
nitude. We think that this is promising for the system’s
longevity even though the p-wave relaxation for this R∗/a
is enhanced by an order of magnitude. At this point we
can also make the following observation: in order to sup-
press collisional relaxation in the homonuclear case one
should make the detuning as small as possible, whereas
in the Li-K case there exists an optimal detuning where
the inelastic atom-dimer collisional losses reach their min-

Fig. 18. The diagrams leading to the first order correction to
the dimer-dimer T -matrix, equation (51).

imum. The exact value of such optimal detuning depends
on the average momentum k and on the actual values of
the bare relaxation rates αad

s,bare and αad
p,bare(k).

5.1 Relaxation in dimer-dimer collisions

The dimer-dimer scattering problem is more complicated
than the atom-dimer one in many respects. In particular,
one has to deal not only with the relaxation channel which
requires two heavy and one light fermion to approach each
other to short distances but also with analogous processes
in the heavy-light-light subsystem. In fact, in the regime of
intermediate detuning (R∗/a 	 1) the occupation of the
bare molecular states is dominant, and the above men-
tioned “three-body” channels are suppressed as they re-
quire one of the atoms to be in the open channel. Then
the dominant decay scenario is the relaxation in collisions
of bare molecules. In this case the perturbation is

H ′
dd = −i

∑

Q,k,p

Δdd
s√
V
b†pb

†
Q−pbkbQ−k, (50)

and we treat it in the same fashion as (46). Equation (50)
correctly describes the relaxation in the limit R∗/a	 1 if
we set Δdd

s = αdd
bare/4. The diagrams leading to the lowest

order correction to the dimer-dimer T -matrix are depicted
in Figure 18. The on-shell δT at vanishing collision energy
equals

δT (0) = −2iZ2Δdd
s

∣∣∣∣1 +
i

g4Z2

∫
d4q

(2π)4
D(q, ε0 + q0)

× D(−q, ε0 − q0)T (q, q0)
∣∣∣∣
2

≡ −2iΔdd
s η

dd
s , (51)

where T (q, q0) is the solution of the dimer-dimer integral
equation (28), and ηdd

s is the ratio of the actual relax-
ation rate constant at a given R∗/a to its bare value (at
R∗/a = ∞). This parameter is plotted in Figure 19 versus
the detuning R∗/a and we see that this “four-atom” re-
laxation mechanism is suppressed for small detunings. The
power law dependence in this limit can be understood in
a similar fashion as in the atom-dimer case. We start with
two molecules in a unit volume. The probability to find
them within the distance ∼a equals a3. Then, at shorter
distances the four-body wavefunction is proportional to



J. Levinsen and D.S. Petrov: Scattering in fermionic mixtures near a narrow Feshbach resonance 79

Fig. 19. The relaxation rate in dimer-dimer collisions for the
equal mass case (solid) and the Li-K mixture (dashed).

ρν4body−1, where ρ is the four-body hyperradius. Thus,
given that the four atoms are confined to the volume ∼ a3,
the probability to find them at hyperradii ρ � R∗ equals
(R∗/a)2ν4body+7, where we take into account that the four-
body configurational volume in the center-of-mass frame
scales as ρ9. At hyperradii ρ � R∗ we deal with two bare
molecules and the relaxation rate is given by αdd

bare/R
∗3.

Finally, for the dimer-dimer relaxation rate constant asso-
ciated with the “four atom” relaxation mechanism in the
limit R∗/a� 1 we obtain

αdd = αdd
bare(R

∗/a)2ν4body+4. (52)

The power ν4body may be obtained by calculating the
ground state energy of the four-body system in the uni-
tarity limit in a harmonic potential which has been car-
ried out in reference [43] for various mass ratios. We cite
the following results [43]: ν4body ≈ 0.0 for m↑/m↓ = 1,
ν4body ≈ 0.3 for m↑/m↓ = 4, and ν4body ≈ 0.5 for
m↑/m↓ = 8. Our numerical calculations for the dimer-
dimer relaxation in the limit R∗/a � 1 are consistent
with equation (52) with these powers.

Figure 19 only shows the result corresponding to the
“four-body” mechanism of dimer-dimer relaxation (dom-
inant at intermediate detunings) and thus presents a
lower bound for the relaxation rate constant. We see that
for R∗/a ∼ 1 the dimer-dimer relaxation is less sup-
pressed compared to the atom-dimer case. Consequently,
this region of detunings is more suitable for studies of
atom-dimer mixtures with low concentration of molecu-
les. Otherwise, if one wants to study mixtures with higher
molecular concentrations, it is necessary to decrease the
detuning as much as possible.

In the regime of small detuning the “three-body”
mechanisms of dimer-dimer relaxation can be as im-
portant as the “four-body” one. For wide resonances
the “three-body” cases are described in detail in refer-
ences [16,34]. These results can be easily generalized to
the regime of small detunings near a narrow resonance by
counting probabilities as we did earlier in this section in
order to estimate the atom-dimer relaxation rates. Let us
present the final results. The dimer-dimer relaxation rate
constant originating from the s-wave atom-dimer relax-

ation mechanism equals (up to a numerical prefactor) the
one for the atom-dimer collisions given by equation (43).
Namely,

αdd
s−ad ∼ αad

s,bare(R
∗/a)2νs+1. (53)

The dimer-dimer relaxation rate constant originating from
the p-wave atom-dimer relaxation mechanism equals

αdd
p−ad ∼ αad

p,bare(1/a) (R∗/a)2νp−1

∼ (
R3

e/m↓a2
)
(R∗/a)2νp−1

. (54)

Equations (53) and (54) can be modified to describe the
light-light-heavy relaxation mechanism. In this case the
bare rates αad

s,bare and αad
p,bare(k) should be taken for

the collisions of light atoms and bare molecules, and the
powers νs and νp should correspond to the light-light-
heavy three-body system with zero and unit angular mo-
menta respectively. For m↑/m↓ = mK/mLi they equal
νs ≈ 1.01 and νp ≈ 0.945.

6 Concluding remarks

Concluding the paper, we would like to discuss several is-
sues, which, from our viewpoint, are important for future
studies. We believe that the p-wave atom-dimer resonance
should significantly influence the behavior of a mixture of
weakly bound K-Li molecules and K atoms. The “sim-
plest” many-body problem in which the effect of the res-
onance should be visible is the problem of a single atom
immersed in a BEC of molecules or a single molecule im-
mersed in a Fermi sea of atoms. Let us consider, for ex-
ample, the former case. In the limit vadn � 1, where n
is the BEC density, we compute the correction to the dis-
persion curve of the polaron due to the p-wave interaction
with molecules. By using the standard diagrammatic tech-
niques, the dispersion is found to be

εK(q) � q2

2m↑
+

3πnvadq2

2μ3
. (55)

We see that in the case of a negative and large p-wave
scattering volume vad, the effective mass of the polaron
increases, which can be measured in an experiment sim-
ilar to the one performed recently at ENS on collective
modes of a homonuclear 6Li spin-mixture [44]. Most in-
teresting seems to be the regime |vad|n ∼ 1, where the
validity of the mean-field approach is not guaranteed even
on the qualitative level and a non-perturbative analysis is
required. Our few-body results suggest that the crossover
phase diagram in the K-Li case should be less “mean-
field friendly” than the one in the homonuclear case. The
same holds for the case of a single heavy-light molecule
immersed in a Fermi sea of the heavy species. Variational
analysis [45] suggests that such molecules can form a BEC
with finite momentum (an analog of the FFLO phase). In
a related work [46], it was demonstrated that the phase
diagram of a two-species bosonic mixture near a p-wave
interspecies Feshbach resonance is quite rich and features,
in particular, a finite-momentum superfluid phase.
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In this paper, we have shown that the atom-dimer scat-
tering is characterized by a very strong dependence on the
angular momentum, the effect being remarkably pronoun-
ced for the K-Li mass ratio. To observe the interference
between the s- and p-waves we have proposed a scattering
experiment in which one collides a cloud of atoms with a
cloud of molecules. Depending on the collision energy the
scattering goes predominantly in the forward or backward
directions. The contrast in this experiment is limited to
approximately 75% due to the fact that only two partial
waves are involved. We believe that a similar experiment
in a quasi-1D geometry would show a complete destruc-
tive or constructive interference, i.e. transmissionless or
reflectionless 1D scattering at certain values of the colli-
sion energy. The control over the atom-dimer scattering
properties provided by the external quasi-1D confinement
opens up interesting perspectives for observing rather ex-
otic effects. For example, in the case of a vanishing trans-
mission coefficient the propagation of a molecule immersed
in a quasi-1D gas of heavy fermions is suppressed, lead-
ing to degeneracies in its excitation spectrum and an un-
usual dynamical correlation function [47]. Besides, as in
the quasi-2D case [19], the quasi-1D confinement can push
the trimer state below the atom-dimer threshold, i.e. make
it bound. The quasi-1D confinement of only one of the
species leads to similar effects and can be used to control
the atom-dimer scattering amplitude [48,49].

In the present paper, we focus on the 6Li-40K mixture
in which the Feshbach molecule is bosonic and the en-
hanced p-wave interaction occurs between a boson and a
fermion. On the other hand, our approach applies equally
well to the case of light bosonic atoms. If, for exam-
ple, the light particle is chosen to be 7Li, the enhanced
interaction takes place between a fermionic atom and
a fermionic dimer. In this case, however, relaxation in
molecule-molecule collisions is not suppressed by the Pauli
exclusion principle as two bosons and one fermion can
easily approach each other. Nevertheless, the fact that
the molecules are identical fermions is advantageous for
the system’s longevity. Such a mixture of fermionic atoms
and molecules can be seriously considered for studies of
the BCS-BEC crossover with resonant p-wave interspecies
interactions.

We acknowledge support by the EuroQUAM-FerMix program,
by the IFRAF Institute, and by the Russian Foundation for
Fundamental Research. One of us (J.L.) acknowledges support
by a Marie Curie Intra European Fellowship within the 7th
European Community Framework Programme. LPTMS is a
mixed research unit No. 8626 of CNRS and Université Paris
Sud.

Appendix A: Two-body scattering amplitude
and propagator of dimers

In this appendix we obtain the dressed dimer propaga-
tor and relate the bare parameters of the Hamiltonian,
equation (7), to the physical observables of the scattering

Fig. A.1. The propagator of dimers consists of an admixture
of closed channel Feshbach molecules (thin wavy lines) and
open channel fermionic loops.

process between a heavy and a light fermionic atom. The
propagator of the bare (closed-channel) molecule is

D0(p, p0) =
1

p0 − p2/2M − ω0 + i0
. (A.1)

The dressed propagator is obtained by resumming the di-
agrams of Figure A.1, resulting in

D(p, p0) =
g2

D−1
0 (p, p0) − g2Π(p, p0)

. (A.2)

The fermion loop Π is

Π(p, p0) ≡ i

∫
d4Q

(2π)4
G↑(p+Q)G↓(−Q) (A.3)

= −μΛ
π2

+
μ3/2

√
2π

√
−p0 + p2/2M − i0. (A.4)

The cut-off at large momenta, Λ, is the inverse van der
Waals range of the potential. We have chosen to include
an extra factor g2 in the dressed dimer propagator. This
is purely for bookkeeping purposes, as this propagator al-
ways appears along with a factor of g2 in Feynman dia-
grams, providing an easy manner of keeping tracks of pow-
ers of the coupling constant. The dressed propagator is

D(p, p0) = g2

[
p0 − p2

2M
− ω0 +

g2μΛ

π2

−g
2μ3/2

√
2π

√
−p0 +

p2

2M
− i0

]−1

. (A.5)

Let us now relate the bare parameters, g and ω0, to
the physical parameters a and R∗ of equation (3). To
this end we calculate the amplitude of elastic heavy-light
atom scattering in the model equation (7). Let the heavy
atom have four-momentum (k, k2/2m↑) and the light have
(−k, k2/2m↓). The scattering is depicted in Figure A.2.
The summation of diagrams takes the same form as above,
equation (A.3), and recalling that g2 has been absorbed
into the dimer propagator, the scattering amplitude is

T2(k,−k) = D(0, k2/2μ)

=
2π
μ

1
2π
μg2

(
−ω0 +

g2μΛ

π2

)
+

π

μ2g2
k2 + ik

.

(A.6)
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Fig. A.2. The relationship between the scattering amplitude
for elastic heavy-light atom scattering and the dressed dimer
propagator.

Comparing with the scattering amplitude at low mo-
menta, k � a−1,

T2(k,−k) ≡ −2π
μ
f(k,−k) ≈ 2π

μ

1
a−1 +R∗k2 + ik

(A.7)

the scattering length and effective range are found to be

a =
μg2

2π
1

g2μΛ
π2 − ω0

, R∗ =
π

μ2g2
. (A.8)

In terms of the physical observables, the dimer propaga-
tor (A.5) then takes the form (10).

The binding energy of the heteronuclear molecule is
found as the energy pole of the propagator and is

ε0 = −
[√

1 + 4R∗/a− 1
]2

8μR∗2 . (A.9)

Since R∗ ≥ 0 there is only one such pole on the physical
sheet. The residue at the energy pole is needed for proper
renormalization of the three- and four-body T-matrices,
and is

g2Z =
π

μ2R∗

(
1 − 1√

1 + 4R∗/a

)
. (A.10)

Each external dimer propagator acquires a factor
√
Z in

the few-body scattering problems.

Appendix B: The kernel of the 4-body
integral equation

Γ (0) is the result of calculating the Born diagram,

Γ (0)(q, q0;p, p0) = −i
∫
dΩq

4π

∫
d4Q

(2π)4

×G↑
(
Q +

p
2

+
q
2
,
ε0
2

+Q0 +
p0

2
+
q0
2

)

×G↑
(
Q− p

2
− q

2
,
ε0
2

+Q0 − p0

2
− q0

2

)

×G↓
(
−Q− p

2
+

q
2
,
ε0
2

−Q0 − p0

2
+
q0
2

)

×G↓
(
−Q +

p
2
− q

2
,
ε0
2

−Q0 +
p0

2
− q0

2

)

= −2
∫
dΩq

4π

∫
d3Q

(2π)3
A

(A2 −B2)(A2 − C2)
,

(B.1)

with

A = ε0 − Q2

2μ
− p2

8μ
− q2

8μ
− p · q

4m↑
+

p · q
4m↓

,

B = p0 − Q · p
2m↑

+
Q · p
2m↓

− Q · q
2μ

,

C = q0 − Q · q
2m↑

+
Q · q
2m↓

− Q · p
2μ

. (B.2)
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