
Supplemental material: Five-body Efimov effect and universal pentamer in Fermionic
mixtures

DIFFUSION METHOD FOR SOLVING THE STM
EQUATION

In this section we describe the diffusion process in de-
tail in the case N = 4 (pentamer), the other cases being
treated in the same manner. We write

F (q1,q2,q3) = g(q1,q2,q3)f(q1,q2,q3), (S1)

and choose g in the form

g(q1,q2,q3) =
q1 · q2 × q3
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where κ2q1,q2,q3

= − 2µE
~2 + µ

M (q21 + q22 + q23) + µ
M+m (q1 +

q2+q3)2 and α and β are parameters, the choice of which
is discussed below.

The function f(q1,q2,q3) in Eq. (S1) is symmetric

with respect to permutations of qi and qj . Moreover,
it can be written in the form

f(q1,q2,q3) = f(q1, q2, q3,q2 · q3,q3 · q1,q1 · q2), (S3)

which, in particular, means that

f(q1,q2,q3) = f(q
∼
1,q2,q3), (S4)

where by q
∼
i we denote the mirror image of qi with respect

to the plane spanned by qj and qk ({i, j, k} are cyclic
permutations of {1, 2, 3}). Explicitly, q

∼
i = qi − 2(qi ·

n̂i)n̂i, where n̂i = qj × qk/|qj × qk|. Note that κ and
f are symmetric and g – antisymmetric with respect to
qi → q

∼
i.

Our diffusion process is based on the following. Con-
sider a nine-dimensional element d3q1d

3q2d
3q3 placed at

q1,q2,q3 and define the distribution function

Pq1,q2,q3
(q) = − q · q2 × q3
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(S5)
which is nowhere negative, and introduce the corresponding normalization integral

Wq1,q2,q3
=

∫
d3qPq1,q2,q3

(q). (S6)

Assuming that we start with dNw walkers in d3q1d
3q2d

3q3 we create three groups of new walkers with popula-
tions dNwWq1,q2,q3 , dNwWq2,q3,q1 and dNwWq3,q1,q2 , respectively. Then for each walker in group i we randomly
move qi to q keeping qj and qk unchanged. Here q is drawn from the normalized probability density distribution
Pqi,qj ,qk(q)/Wqi,qj ,qk . As a result we obtain dNw(Wq1,q2,q3

+ Wq2,q3,q1
+ Wq3,q1,q2

) walkers distributed such that
only one of their momenta is different from the initial one.

Let us now assume that walkers are initially distributed over the whole space according to the probability density
distribution f(q1,q2,q3) and consider one such diffusive iteration acting simultaneously over all space elements. Then,
the change in the density of walkers equals

δf(q1,q2,q3) = −f(q1,q2,q3) +

∫
d3q[Pq,q2,q3

(q1)f(q,q2,q3) + Pq1,q,q3
(q2)f(q1,q,q3) + Pq1,q2,q(q3)f(q1,q2,q)].

(S7)

The direct substitution of Eqs. (S1), (S2), and (S5)
into Eq. (S7) shows that the equilibrium condition
δf(q1,q2,q3) = 0 leads to the STM Eq. (1) of the main
text.

We model this diffusion process by using a finite num-

ber of walkers N
(i)
w (i stands for the iteration number),

which we keep close to an initially chosen average number
Nw. For each walker with coordinates q1,q2,q3 we cre-

ate bWq1,q2,q3c copies plus another one with probability
Wq1,q2,q3

− bWq1,q2,q3
c, where bW c denotes the integer

part of W . This gives on average Wq1,q2,q3
copies, the

first momentum of which we move to different q drawn
from Pq1,q2,q3(q)/Wq1,q2,q3 . We do the same with the
other two momenta.

The total population of walkers, apart from the statis-
tical noise due to the above branching procedure, can
be controlled by tuning one of the parameters E, a,



2

r0, or M/m. We typically tune a at fixed E, r0, and
M/m. In each iteration we sum ∂(Wq1,q2,q3 +Wq2,q3,q1 +
Wq3,q1,q2

)/∂a over the walkers and use it to estimate how

strongly we need to change a in order to have N
(i+1)
w close

to Nw. We thus have a sequence of a(i) which fluctuates
around an average value. The amplitude of these fluc-
tuations decreases with Nw and a(i) averaged over many
iterations converges to the exact a in the limit Nw →∞.
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FIG. S1: The convergence of the pentamer energy E5 towards
E∞

5 (assumed exact value in the limit Nw → ∞) with increas-
ing the number of walkers Nw for various M/m, from bottom
to top: 10 (red), 11 (green), 12 (blue) and 13 (purple).

In Fig. S1 we show our analysis of the convergence of
the pentamer energy with increasing Nw for M/m = 10
(red), 11 (green), 12 (blue) and 13 (purple). For these
data we use α = 0 and β = 2.

SAMPLING AND NORMALIZATION

In this section we outline the sampling procedure for
the distribution function (S5) and calculation of the nor-
malization integral (S6). First note that

Pq1,q2,q3
(q) = Pq1,q2,q3

(q
∼

) = Pq
∼

1,q2,q3
(q). (S8)

Therefore, we can restrict ourselves to the domain q1 ·
q2×q3 > 0 and sample only in the domain q·q2×q3 > 0.
We then introduce the reduced distribution function

P reduced
q1,q2,q3

(q) =
g(q1,q2,q3)

8π3qβ2 q
β
3

(q2 + q22 + q23)−
α
2 q−β

κ2q1,q2,q3
+ (q + v)2

, (S9)

where v = µ(q
∼
1 +q2 +q3)/m. The distribution function

(S9) is, in the chosen domain, larger than Pq1,q2,q3
(q) =

P reduced
q1,q2,q3

(q) − P reduced
q1,q2,q3

(q
∼

). Thus, in order to sample
Pq1,q2,q3

(q) we use the rejection technique. Namely,

we draw q from (S9) and accept it with the probabil-
ity P/P reduced < 1. The sampling of (S9) is realized by
using spherical coordinates in which the zenith direction
is along v. Sampling the angles is trivial and the radial
coordinate q is distributed according to

P (q)dq ∝ q1−β

(q2 + q22 + q23)
α
2

ln
κ2 + v2 + q2 + 2vq

κ2 + v2 + q2 − 2vq
dq,

(S10)
which we sample by using again the rejection method. In
particular, in the case α > 2−β we use the proposal dis-
tribution ∝ dq/(κ2 +v2 +q2) and the rejection algorithm
then relies on the inequality

1

q
ln
κ2 + v2 + q2 + 2vq

κ2 + v2 + q2 − 2vq
≤ 2

√
κ2 + v2

κ2 + v2 + q2
ln

√
κ2 + v2 + v√
κ2 + v2 − v

(S11)
and on the fact that q2−β(q2 + q22 + q23)−

α
2 is bounded

from above. We find that this method works well for
all parameters (κ, v, q2, q3, α, β) that we typically deal
with.

The normalization integral (S6) is equivalent to inte-
grating P reduced

q1,q2,q3
(q) − P reduced

q1,q2,q3
(q
∼

) over the half space
q·q2×q3 > 0. We find it convenient to perform this inte-
gration in spherical coordinates with the zenith direction
along q2×q3. The angular integrals are analytic and we
end up with a one-dimensional integral over q which is
numerically fast.

CHOICE OF α AND β

An obvious constraint on possible values of α and β
is the convergence of the normalization integral (S6). In
practice, as we have explained, we require α > 2− β for
sampling convenience. In fact, we find that more strict
constraints are dictated by the physics of the problem. As
we argue in the main text, for r0 = 0 the large-Q asymp-
tote of the function F should be F (Q) ∝ Q−3N/2+1−s.
Then, for N = 4 the walker distribution function scales
at large Q as f(Q) = F (Q)/g(Q) ∝ Q−4−s−α−3β and
convergence of

∫
f(Q)Q8dQ requires α+3β+s > 5. The

same type of convergence condition should also hold for
the four- and three-body subsystems of the 4+1 problem.
These three conditions can be written simultaneously as

α+ (N − 1)β > −sN+1 + 3N/2− 1, (S12)

where sN+1 denotes the parameter s for the N+1 body
(sub)system with N = 2, 3, and 4 [see Fig.2(b) of the
main text]. We should also mention that the condition
(S12) holds for the pure tetramer and trimer calculations,

assuming, respectively, g(q1,q2) ∝ (q21+q22)
α
2 qβ1 q

β
2 /κ and

g(q1) ∝ qα+β1 /κ.
Trying various combinations of α and β we have

checked that the result for the energy does not depend
on these parameters as long as they satisfy (S12) and as
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long as we use sufficiently large Nw. However, for some
combinations of α and β the calculation of the exponent s
should be done with care. This problem arises due to the
fact that we are dealing with finite E and a. Then the
large-Q asymptote of F (Q) at fixed hyperangle Q̂ and

the large-Q asymptote of the integral
∫
F (Q)dQ̂ do not

necessarily coincide. To make this point more clear con-
sider the two-dimensional function 1/[(1 + x2)(1 + y2)].
For any fixed hyperangle θ = arctan(x/y) larger than 0
and smaller than π/2 this function asymptotes to ∝ 1/ρ4

at large hyperradius ρ =
√
x2 + y2. However, if θ = 0

or π/2, we obtain the 1/ρ2 scaling. Moreover, if we inte-
grate 1/[(1 + x2)(1 + y2)] over θ, we obtain yet another
power law ∝ 1/ρ3.

Clearly, the power-law scaling that one obtains from a
function of the type (x2 + y2)

α
2 xβyβ/[(1 + x2)(1 + y2)]

depends on α, β, and on the exact limiting procedure. A
possible solution of this problem is to restrict α and β
such that the total integral over the hyperangles is prop-
erly behaved. In the particular example just considered
we have to choose β such that the integral xβ/(1+x2) di-
verges at large x, i.e., β > 1, thus effectively depreciating
the role of the small-x region. A much simpler solution
is to restrict the hyperangular integration to the region
ε < θ < π/2− ε. This is what we do in the actual calcu-
lations. Namely, when we gather statistics on walkers in
the interval (Q,Q+ δQ), we update the bin value only if
qi/Q > ε.


