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Higher-order effective interactions for bosons near a two-body zero crossing
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We develop the perturbation theory for bosons interacting via a weak two-body potential V , attractive and
repulsive parts of which cancel each other. We find that the leading nonpairwise contribution to the energy
emerges in the third order in V and represents an effective three-body interaction, the sign of which in most
cases (although not in general) is anticorrelated with the sign of the long-range tail of V . We apply our theory to
a few particular two-body interaction potentials and calculate the leading two-body and three-body interaction
corrections for tilted dipoles in quasi-low-dimensional geometries. We show that our approach is consistent with
the many-body Bogoliubov treatment.
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I. INTRODUCTION

Systems with partially attractive and partially repulsive
forces, fine-tuned to an approximate overall cancellation
of the mean-field term, provide an interesting platform for
studying various beyond-mean-field (BMF) phenomena, re-
markable recent examples being quantum droplets and dipolar
supersolids (see Ref. [1] for a review). In contrast to the
mean-field energy, which is essentially the first-order Born
integral of the interaction potential multiplied by the number
of interacting pairs, the BMF term is sensitive to many-body
effects reflecting the structure of the Bogoliubov vacuum, i.e.,
the spectrum of Bogoliubov quasiparticles and their density
of states. This can lead to a rather exotic and nonanalytic
dependence of the BMF energy density on the particle density
(n5/2 in D = 3 dimensions, n2 ln(n) for D = 2, and n3/2 for
D = 1). On the other hand, in quasi-low-dimensional regimes
one can also recover the integer-power behavior with the
leading terms in the energy density proportional to n2 and
n3, which can be interpreted, respectively, as a renormalized
two-body interaction and an emergent effective three-body
force [2,3]. The latter has also been discussed for three ele-
mentary or composite bosons interacting with one another by
a finite-range two-body interaction tuned to a zero crossing
[4–7].

In this paper we reconcile the first-quantized few-body
approach with the Bogoliubov perturbation theory in the par-
ticular case of a two-body potential of zero mean [defined
by

∫
V (r)dDr = 0 in the pure D-dimensional case and by

Eq. (17) in quasi-low-dimensional geometries] calculating the
ground-state energy up to terms ∝V 3. We find that up to
this order the result is an analytic function of the density and
contains two-body corrections ∝V 2n2 and ∝V 3n2 as well as
an effective three-body term ∝V 3n3. We present closed-form
integral expressions for the corresponding coefficients in pure
dimensions and in quasi-low-dimensional geometries and dis-
cuss their general consequences. We apply our formalism
to bosons interacting by the double-Gaussian potential and
by the Yukawa potential in pure dimensions, noting that the

emergent three-body interaction is repulsive (attractive) when
the long-range tail of the underlying two-body potential is
attractive (repulsive). We then calculate the three-body and
two-body energy shifts for quasi-low-dimensional dipoles as
a function of their tilt angle θ with respect to the confinement
cylindrical symmetry axis. We find that the three-body force
for quasi-two-dimensional dipoles changes from attraction to
repulsion with increasing θ . For one-dimensional dipoles the
dominant three-body force is attractive and second order in V
except when they are aligned along the axis (θ = 0). In all
these quasi-low-dimensional cases the confinement-induced
shift of the two-body coupling constant is found to be positive
as a result of a renormalization procedure.

The paper is organized as follows. In Sec. II we use the
standard perturbation theory to derive the interaction energy
shift for N atoms in free space and in quasi-low-dimensional
geometries. In Sec. III we apply the obtained general formulas
to the cases of double-Gaussian and Yukawa-plus-δ poten-
tials in pure dimensions. Sections III C and III D are devoted,
respectively, to the quasi-two-dimensional and quasi-one-
dimensional tilted dipoles. In Sec. IV we make connections to
the many-body case and show how our results can be obtained
from the Bogoliubov theory. We conclude in Sec. V.

II. FEW-BODY PERTURBATIVE APPROACH

We consider the system of N distinguishable atoms [8]
characterized by the Hamiltonian (we assume unit mass and
h̄ = 1),

Ĥ =
N∑

i=1

−∂2
xi
/2 − ∂2

yi
/2 + U (yi ) +

∑
i> j

V (xi − x j, yi − y j ),

(1)

where U (y) is the confining potential and x and y de-
note the sets of single-particle coordinates in the unconfined
and confined directions, respectively. For example, in the
quasi-two-dimensional geometry x is the two-dimensional
in-plane position vector, and y = y is the coordinate
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perpendicular to the confinement direction. The unconfined
space is assumed to be a cube of unit volume with periodic
boundary conditions, and we write the single-particle eigen-
states of the noninteracting part of Eq. (1) as

φq,ν(x, y) = eiq·xψν(y), (2)

where each component of q is an integer divided by 2π and ν

is the set of quantum numbers labeling the eigenstates ψν(y)
for the single-particle motion in the confined direction, εν

being the corresponding spectrum which we count relative to
the ground state (such that ε0 = 0).

Assuming the last term on the right-hand side of Eq. (1) as
a perturbation and applying the standard perturbation theory
we write the ground-state energy of the N-body system as

E [N] = E (1)[N] + E (2)[N] + E (3)[N] + · · · , (3)

where E (i)[N] denotes the ith order term in powers of V . In
Eq. (3) we have already used the fact that by construction
E (0)[N] = 0 (all particles are in the state {q, ν} = 0). We
will restrict ourselves to perturbation order i � 3 and use the
general expressions for the energy corrections available up to
this order in Ref. [9]. Let us reproduce these general formulas
for reference. Denoting the noninteracting multiparticle states
by symbols with the bar n̄ = {k1, ν1; . . . ; kN , νN }, the corre-
sponding multiparticle energies by ωn̄, their differences by
ωn̄m̄ = ωn̄ − ωm̄, and the whole interacting part of the Hamil-
tonian (1) by V̄ , energy corrections to state n̄ read [9]

E (1)
n̄ = V̄n̄n̄, (4)

E (2)
n̄ =

′∑
m̄

|V̄m̄n̄|2/ωm̄n̄, (5)

E (3)
n̄ =

′∑
k̄

′∑
m̄

V̄n̄m̄V̄m̄k̄V̄k̄n̄

ωm̄n̄ωk̄n̄
− E (1)

n̄

′∑
m̄

|V̄m̄n̄|2
ω2

m̄n̄

, (6)

where the primes mean that the state n̄ is excluded from the
summations.

Our task, thus, reduces to counting multiparticle excited
states and calculating V̄n̄m̄. To this end we introduce the two-
body matrix elements,

V ζη
μν (k) = [

V ηζ
νμ (−k)

]∗

= V μν
ζη (−k)

=
∫

dy dy′dx eikxV (x, y−y′)ψ∗
ζ (y)ψ∗

μ(y′)ψη(y)ψν(y′),

(7)

where the first two equalities follow from V (r) = [V (r)]∗ =
V (−r), assumed to be valid throughout the paper. In terms
of these matrix elements the first correction to the N-body
ground-state energy reads

E (1)[N] = g(1)
2

(
N

2

)
= V 00

00 (0)

(
N

2

)
, (8)

and the second one can be written as

E (2)[N] = g(2)
2

(
N

2

)
+ g(2)

3

(
N

3

)
, (9)

where

g(2)
2 = −

∑
k,ν,μ

∣∣V 0ν
0μ (k)

∣∣2

k2 + εν + εμ

, (10)

and

g(2)
3 = −6

∑
ν

∣∣V 00
0ν (0)

∣∣2

εν

. (11)

In Eqs. (10) and (11) the summations exclude terms with
vanishing denominators [equivalent to the prime in Eq. (5)].
Equation (10) is just the second-order interaction correction
for a single pair. It corresponds to (virtual) excitations of two
atoms which, in the first interaction event, get excited into
states {ν,−k} and {μ, k} and, in the second interaction event,
get back to their ground states.

Equation (11) represents an effective three-body attraction,
which appears in confined geometries for weak two-body
interactions of the usual type [for which, in particular,
V 00

0ν (0) �= 0]. It has been discussed in the context of quasi-
one-dimensional [10,11] and lattice bosons [12]. It can also
be obtained by solving the Gross-Pitaevskii equation for the
condensate wave function [10]. Accordingly, this term is ab-
sent in pure dimensions (in our derivation this follows from
the fact that there are no transversal excitations and, thus,
no summation over ν). The emergence of this term in our
first-quantization analysis can be understood by going back
to Eq. (10) and reconsidering virtual excitations where only
one particle is promoted to ν �= 0 (in this case k should vanish
because of the momentum conservation in the unconfined
directions). One can show that the contribution of these spe-
cial one-particle events in Eq. (10) should be multiplied by
N − 1. Indeed, the amplitude V 00

0ν (0) should be replaced by
(N − 1)V 00

0ν (0) since the atom can be excited by interacting
with N − 1 other atoms, not just one as implied in Eq. (10).
Squaring the amplitude, thus, gives (N − 1)2. On the other
hand, one power of N − 1 should be removed since each of
these one-particle events is counted twice per pair instead
of once per atom. Equation (11) is meant to compensate
for these “errors” in Eq. (10) when N > 2. In Sec. IV we
present a many-body approach to this problem based on the
second quantization where Eq. (11) emerges in a more natural
manner.

Proceeding to the calculation of the third-order correction
let us represent it as

E (3)[N] = g(3)
3

(
N

3

)
+ g(3)

2

(
N

2

)
+ δ(3) + σ (3). (12)

In Eq. (12),

g(3)
3 = 6

∑
k,ν,μ,η

V 0η
0ν (k)V 0μ

η0 (k)V ν0
μ0 (k)

(k2 + εν + εη)(k2 + εν + εμ)
, (13)

where the summation extends to indices satisfying the
constraint k �= 0 ∨ (ν �= 0 ∧ μ �= 0 ∧ η �= 0) (∨ and ∧ are
Boolean OR and AND, respectively). The term (13) accounts
for the following sequence of virtual excitations of three dif-
ferent atoms. The first and the second atoms interact with each
other and get excited into states {ν,−k} and {μ, k}, respec-
tively. Then, the second interaction event results in the second
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atom getting back to the ground state and the third atom being
excited to state {η, k}. Finally, the first and the third atoms
interact with each other both going down to the ground state.
The constraint on the summation indices mentioned above is
imposed in order to count in Eq. (13) only genuine three-body
events and not two-body or one-body ones, which we will now
discuss.

We write the coefficient in the second term on the right-
hand side of Eq. (12) in the form

g(3)
2 =

∑
ν,μ,η,ζ,k,q

V 0ζ

0η (−q)V ζμ
ην (q − k)V μ0

ν0 (k)

(k2 + εν + εμ)(q2 + εη + εζ )
, (14)

where the sum is constrained only by the requirement of
nonvanishing denominator [equivalent to the primes in Eq. (6)
or, mathematically, to (k �= 0 ∨ ν �= 0 ∨ μ �= 0) ∧ (q �= 0 ∨
η �= 0 ∨ ζ �= 0)]. Equation (14) is nothing else than the first
term on the right-hand side of the general formula Eq. (6)
calculated for a single pair of atoms. However, similarly
to Eq. (10), Eq. (14) does not properly account for some
two-body excitations when N > 2. We will show that a
higher-order compensation term is required [denoted by δ(3)

in Eq. (12)] which, however, vanishes when V ζη
μν (0) = 0. Ar-

guments for this are rather technical because of the chosen
first-quantization technique. We present them for complete-
ness in the next paragraph, which the reader can skip, if not
interested.

Consider virtual-excitation sequences implied by Eq. (14),
for which at least one of the atoms changes its state less than
three times. In the sum of Eq. (14) this happens when one
of the matrix elements is of the form V γγ

αβ
(0) or V αβ

γγ (0), i.e.,
we are dealing with an interaction event where only one atom
changes its transversal state from β to α leaving its momen-
tum unchanged as well as the state of all other atoms. This
transition can be triggered not only by the interaction with the
second atom in state γ , but also with any of the other N − 2
atoms. In order to account for this type of transition in Eq. (14)
one can replace matrix elements V γδ

αβ
(k), characterizing the

interaction of two atoms in vacuum, by

Ṽ γδ

αβ
(k) = V γδ

αβ
(k) + δk,0

[
(N − 2)δα,βV γδ

00 (0)

+ (N − 2)δγ,δV
00
αβ (0)

+
(

N − 2

2

)
δα,βδγ,δV

00
00 (0)

]
, (15)

which corresponds to the same transition but in the presence
of N − 2 other atoms in the ground state. In Eq. (15) δk,k′ and
δν,ν′ are Kronecker δ’s. An additional modification is needed
when only one atom is excited throughout the whole sequence
of the three interaction events in Eq. (14). This happens for
(μ = ζ = 0 ∨ ν = η = 0) ∧ k = q = 0. In this case not only
the matrix elements should be corrected as explained above,
but also, in addition, the whole contribution of such terms
should be divided by N − 1 as in Eq. (14) each of these
one-body excitation sequences is counted twice for every pair

[with subsequent multiplication by
(N

2

)
in Eq. (12)], whereas

they should be counted only once per atom. These patches

of Eq. (14) can be cast in the form of a compensation term
which we call δ(3) but do not write explicitly as, for purposes
of this paper, it is sufficient to understand that it vanishes when
V ζη

μν (0) = 0.
Finally, the term σ (3) in Eq. (12) corresponds to the last

term in the general formula Eq. (6). This term can be written
explicitly by noting its resemblance to Eq. (5). However, we
observe that it is also proportional to Eq. (8), which vanishes
when V 00

00 (0) = 0. We should note that if V ζη
μν (0) �= 0, the sum

δ(3) + σ (3) can be expressed in the form of three terms, two of
which correct the constants (13) and (14), and the third one
corresponds to an effective four-body interaction. We have
checked that five-body terms cancel out.

In pure dimensions we have explicitly,

E (3)[N] =
(

N

2

) ∑
q,k

V (−q)V (q − k)V (k)

k2q2

+ 6

(
N

3

)∑
k

V 3(k)

k4
, (16)

where states with k = 0, q = 0, or q = k are excluded from
the summation. Equation (16) is valid in general, i.e., without
requiring V (0) = 0.

We observe that under the assumption,∫
dxV (x, y) = 0, (17)

we have V ζη
μν (0) = 0 for any set {μ, ν, ζ, η} [see Eq. (7)].

Then, the energy of the N-body system, up to terms of order
V 3, equals the renormalized two-body part [g(2)

2 + g(3)
2 ]

(N
2

)
plus the leading nonpairwise part (an effective three-body
interaction) given by g(3)

3

(N
3

)
.

Note that the renormalized two-body interaction scales
asymptotically (for V → 0) as V 2. Therefore, slightly soften-
ing the condition Eq. (17) by allowing the Born integral be of
order ∝V 2 gives us more flexibility in controlling the renor-
malized two-body interaction. In particular, one can make it
weakly repulsive, weakly attractive, or vanishing. In the latter
case the three-body term g(3)

3 ∝ V 3 becomes the leading inter-
action correction as all other terms scale, at least, as V 4 [this
follows from the scaling V νμ

ηζ (0) ∝ V 2 for the matrix elements
at zero momenta].

This brings us to one of the main statements of our paper.
In a sufficiently narrow vicinity of a two-body zero crossing,
reached by a fine-tuned compensation, expressed by Eq. (17),
of the attractive and repulsive parts of the interaction potential,
the dominant effective three-body interaction is third order
in V and is characterized by the coupling constant given by
Eq. (13). Note that this effective interaction can be repulsive
or attractive depending on the shape of the two-body potential
and on the confining geometry. In the next section we calcu-
late this term explicitly for a few academically and practically
relevant cases.

III. APPLICATIONS

A. Double-Gaussian potential

Gaussian potentials, although not very realistic, are very
frequently used as model potentials for solving few-body
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and many-body problems. They are smooth, characterized by
regular effective-range expansions, and allow one to calculate
quite a few things analytically. Thus, the first example that we
will consider is the sum of two Gaussians in pure dimensions,
one attractive and one repulsive, with different ranges,

V (x) = v0e−λ0x2 + v1e−λ1x2
. (18)

The condition (17) applied to (18) fixes the ratio v1/v0 as
a function of α = λ0/λ1 and dimension D, namely, v1/v0 =
−α−D/2. Then, the potential (18) leads to the following three-
body coupling constant in different dimensions:

g(3)
3 (D = 1) = 3π

2

v0
3

λ0
3 [

√
3(1 − α3/2)

−(2 + α)3/2 + (1 + 2α)3/2], (19)

g(3)
3 (D = 2) = 9π2

8

v0
3

λ0
4 [−2 ln (2 + α) − α ln (3α2 + 6α)

+2α ln (1 + 2α) + ln (3 + 6α)], (20)

and

g(3)
3 (D = 3) = 3π4

4

v0
3

λ0
5 [−

√
3 +

√
3α

+3
√

2 + α − 3
√

1 + 2α]. (21)

In all these cases the configuration of the potential where it
has a repulsive central part and attractive tail (v0 > 0 and α >

1 or v0 < 0 and α < 1) leads to a three-body repulsion. This
phenomenon has been noted in Ref. [6]. In our perturbative
analysis it follows from the fact that the Fourier transform of
V (x) is positive for any momentum. By contrast, the repulsive
tail case leads to a three-body attraction.

Note also that the momentum integral in Eq. (13) is con-
verging at small momenta since V (k) ∝ k2 with the main
contribution to the integral coming from momenta comparable
to the inverse interaction range. We can, thus, say that the
effective three-body term is characterized by the same range
as the two-body potential.

B. Yukawa-plus-δ potential

We now consider the case of an attractive Yukawa potential
compensated by a repulsive δ potential. A concrete realization
of this model can be achieved by placing bosonic impurities
(species ↓) in a Bose-Einstein condensate of another species
(↑) [13,14]. For simplicity, we assume that m↓ = 1 � m↑
so that we can integrate out the host-gas dynamics in the
adiabatic Born-Oppenheimer approximation. In this manner
the phonon exchange in the host gas leads to a static in-
duced Yukawa attraction between the impurities, and their
direct interaction can be tuned in order to reach the condition
(17). This is attained at the phase-separation threshold g↑↓ =√

g↑↑g↓↓, where gσσ ′ are the two-body interaction coupling
constants. In this case, the Fourier transform of the effective
interaction (exchange plus direct) between two ↓ impurities is
given by

V (k) = v − v/ξ 2

k2 + 1/ξ 2
= vk2

k2 + 1/ξ 2
, (22)

with v = g↓↓ = g2
↑↓/g↑↑ and ξ = 1/

√
4m↑g↑↑n↑ [13,14].

Substituting Eq. (22) into Eq. (13) leads to the three-body
coupling constant,

g3 = SDv3ξ 4−D, (23)

where S1 = 3/8, S2 = 3/(4π ), and S3 = 9/(16π ). As in the
double-Gaussian case, the attractive Yukawa tail corresponds
to an effective three-body repulsion since v and V (k) are
positive. One can also note that the main contribution to the
effective three-body interaction term comes from k ∼ 1/ξ

since the integral in Eq. (13) converges and there is no other
momentum scale.

By analyzing the double-Gaussian potential, the Yukawa-
plus-δ potential and a few other relatively simple two-body
potentials satisfying Eq. (17) we have observed that the signs
of their long-range tails are inversely correlated with the sign
of the emergent effective three-body interactions. It is im-
portant to mention that this does not hold in general. As a
counterexample consider a double-Gaussian potential with,
say, an attractive tail, to which we add a very weak Yukawa-
plus-δ potential with repulsive tail. The three-body interaction
in this case is dominated by the double-Gaussian part and
is repulsive. However, since the Gaussian-law decay is faster
than Yukawa, no matter how weak the Yukawa part is, it will
dominate the long-range behavior of the resulting two-body
potential. We have just constructed a two-body potential satis-
fying Eq. (17) for which the two-body tail and the three-body
effective interaction are both repulsive.

C. Quasi-two-dimensional dipoles

We now consider quasi-two-dimensional dipoles in the
geometry defined by r = {x1, x2, y}, where x = {x1, x2} and y
are the in-plane and transverse coordinates, respectively. The
external confinement potential is harmonic,

U (y) = y2

2l4
− 1

2l2
, (24)

where l is the confinement oscillator length. The transversal
eigenfunctions equal ψν (y) = e−y2/(2l2 )Hν (y/l )/

√
l
√

π2νν!
and correspond to εν = ν/l2. The dipole moments are as-
sumed to be on the {x1, y} plane tilted by the angle θ with
respect to the y axis. The corresponding two-body interac-
tion potential is the sum of the dipole-dipole and zero-range
(pseudo)potentials [15],

V (r) = r∗
r2 − 3(x1 sin θ + y cos θ )2

r5
+ 4πaδ(r), (25)

with the Fourier transform,

V (k, p) = 4πr∗

[
(k1 sin θ + p cos θ )2

k2 + p2
− 1

3
+ a

r∗

]
, (26)

where r∗ is the dipolar length proportional to the square of the
dipole moment, k = {k1, k2}, and k = |k|. Equation (17) for
this tilted-dipole setup translates to the condition [16–18],

a = a∗ = (1/3 − cos2 θ )r∗, (27)

which marks the point where V (0, p) = 0.
Equation (25) should be understood as an effective mean-

field potential valid in the limit of zero momenta and energies.
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The short-range coupling constant 4πa absorbs all high-
energy processes in two-body collisions, and we define it by
postulating that the N-body interaction energy shift in the
limit of extremely large l scales as

E [N] =
(

N

2

)
1√
2π l

4π (a − a∗). (28)

This formulation of the zero-momentum limit avoids prob-
lems associated with the fact that this limit in Eq. (26) is
not well defined, which, in particular, makes Eq. (8) useless
in the strictly uniform three-dimensional space. For the same

reason a cannot be called the scattering length since the zero-
momentum limit of the scattering amplitude depends on the
direction of the momentum. Despite this peculiarity of the
potential (25) it could be treated perturbatively in the same
manner as the ordinary isotropic pseudopotential 4πaδ(r).
The ultraviolet cutoff implicit in Eq. (25) may or may not
be important for a given observable (here we have in mind
energy shifts or coupling constants g(i)

n ) depending on whether
the corresponding momentum integral is ultraviolet divergent
or not.

The matrix elements of the potential (26) of interest to us
can be written as [19]

V ν0
μ0 (k) = V 0ν

μ0 (k) = V 0ν
0μ (k) =

∫ ∞

−∞

d p

2π
V (k, p)λν (p)λμ(−p), (29)

where

λν (p) =
∫ ∞

−∞
ψν (y)ψ0(y)eipydy = (−1)ν/2(l p)νe−p2l2/4/

√
2νν!. (30)

Integrating over p in Eq. (29) then gives

V ν0
μ0 (k) = V 0ν

μ0 (k) = V 0ν
0μ (k)

= (−1)μ+s/2

2(s−1)/2

√
π

ν!μ!

a − a∗
l

[1 + (−1)s](s − 1)!! − (−1)μ+s/2

2s

√
π

ν!μ!

r∗
l

(kl )s+1ek2l2/2

×
{

[1 + (−1)s](s − 1)!! �

(
1 − s

2
,

k2l2

2

)(
cos2 θ − k2

1

k2
sin2 θ

)
+ 1 − (−1)s

√
2

s!! �

(
− s

2
,

k2l2

2

)
k1

k
sin 2θ

}

−−→
s�1

√
s!

ν!μ!

1

2s/2+5/4π3/4s1/4l
[(−1)μ+s/2V (k,

√
s/l ) + (−1)ν+s/2V (k,−√

s/l )], (31)

where �( j, σ ) is the incomplete � function and we have
denoted s = ν + μ. The last line in Eq. (31) is an approximate
expression valid for large s and obtained by observing that the
product λν (p)λμ(−p) in this limit is essentially the sum of
two δ peaks at p = ±√

s/l .
Substituting Eq. (31) into Eq. (13) and setting a = a∗ we

obtain

g(3)
3 = r3

∗
l

[C0F0(θ ) + C1F1(θ )], (32)

where

F0(θ ) = 1 + 3 cos 2θ

4

31 + 12 cos 2θ + 21 cos 4θ

64
, (33)

F1(θ ) = 1 + 7 cos 2θ

8
sin2 2θ, (34)

and the numerical coefficients C0 = −141.1 and C1 = −10.7.
The solid line in Fig. 1 shows C0F0(θ ) + C1F1(θ ) as a function
of θ . It equals C0 for θ = 0, i.e., for dipoles aligned per-
pendicularly to the plane we arrive at a three-body attraction
(assuming positive r∗). Again, we observe that the three-body
attraction is correlated with the repulsive tail. By contrast,
for dipoles in the plane C0F0(π/2) + C1F1(π/2) = −5C0/16,
and we predict a three-body repulsion.

That the sum in Eq. (13) converges at large momenta
and energies can be understood by considering the purely

three-dimensional version of Eq. (13) for dipoles. In this case,
V (k) = O(|k|0), and the integral over the three-dimensional
momentum is converging at large k as

∫
d3k/k4. A cutoff at

k ∼ 1/r0 would produce an effective-range correction to g3 on
the order of δg3 ∼ r0r3

∗/l2 [20]. Assuming r0 ∼ r∗, this gives
the natural scaling δg3 ∼ r4

∗/l2 for the three-dimensional
three-body interaction coupling constant ∝r4

∗ projected to the
transversal ground state of the trap. This is to say that the
three-body interaction (32) is enhanced by the factor l/|r∗| �
1 compared to the natural three-dimensional scale. Neverthe-
less, it remains much weaker than the natural two-dimensional
scaling g3 ∝ l2 for a nonperturbative two-dimensional poten-
tial of range l .

The quasi-two-dimensional model at hand is often reduced
to a purely two-dimensional one by projecting the interaction
potential on the transversal Gaussian ground state [16,18,21–
27]. In our case this projection means that in Eq. (13) we retain
only terms with ν = μ = η = 0. This approximation gives
C0 = −127.4 and C1 = 0 in Eq. (32) and is rather accurate
(see the dashed line in Fig. 1). This curious fact is consistent
with the above-mentioned convergence of the sum in Eq. (13)
at high energies. As we will now show, the two-body energy
correction requires a more accurate treatment.

Let us now discuss the confinement-induced correction
to the two-body interaction, given by Eq. (10), for a = a∗.
Under this condition the sum in Eq. (10) converges at small
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FIG. 1. g(3)
3 in units of r3

∗/l as a function of the tilt angle θ for the
case of quasi-two-dimensional dipoles. The solid line is obtained by
evaluating the sum in Eq. (13) with all excited states of the trap taken
into account. The dashed line includes only the transverse ground-
state (ν = μ = η = 0). Assuming r∗ > 0 the effective three-body
interaction monotonically changes from attractive when dipoles are
perpendicular to the plane (θ = 0) to repulsive when they are in the
plane (θ = π/2). The change in sign takes place at θ ≈ 0.29π .

momenta, and we do not have to deal with the logarithmic
infrared divergence, typical for the ordinary two-dimensional
scattering (see, for instance, Sec. 45 in Ref. [9]). On the other
hand, Eq. (10) does feature an ultraviolet diverging part,

− 1√
2π l

∑
s,k

V 2(k,
√

s/l ) + V 2(k,−√
s/l )

4π l
√

s(k2 + s/l2)
, (35)

which is obtained by substituting the large-s asymptote given
by the last line in Eq. (31) into Eq. (10) and using the fact
that

∑
ν,μ(ν!μ!)−1δν+μ,s = 2s/s!. By identifying s = (l p)2

and passing from summation over s to integration over p
Eq. (35) transforms into

− 1√
2π l

∫ ∞

−∞

d p

2π

∫
d2k

(2π )2

V 2(k, p)

k2 + p2
, (36)

which is nothing else than the second-order Born correction
calculated for V (k, p) in free space and averaged over the
transversal density profile [28]. This piece renormalizes the
short-range coupling constant 4πa and has to be formally
thrown away since it has already been taken into account in
Eq. (28). The regularized sum in Eq. (10) for a = a∗ then
equals

g(2)
2 = r2

∗
l2

(
B0

3 + 10 cos 2θ + 19 cos2 2θ

32
+ B1

sin2 2θ

4

)
,

(37)
where the coefficients B0 = 0.55 and B1 = 1.5 are ob-
tained by extrapolating the numerical summation to infinite
cutoff. The second-order correction Eq. (37) is positive
(because of the renormalization) and monotonically de-
cays from B0(r∗/l )2 for θ = 0 (dipoles perpendicular to
the plane) to (3/8)B0(r∗/l )2 for θ = π/2 (dipoles in the
plane). This means that in order to stay at the two-body
zero crossing, one has to tune the short-range interac-
tion coupling constant to the value of 4πa ≈ 4πa∗ −√

2πg(2)
2 l (valid up to second order in r∗/l). We do not

calculate g(3)
2 limiting our discussion to the leading-order two-

body and three-body corrections.
We should note that the positivity of the renormalized g(2)

2
may be specific to the considered confinement and interaction
potentials. Zin and co-workers [3], using essentially the same
renormalization scheme but for dipoles under periodic bound-
ary conditions, arrived at a negative g(2)

2 .

D. Quasi-one-dimensional dipoles

We now proceed to discussing the quasi-one-dimensional
model of tilted dipoles, which has recently been realized
experimentally with Dy [29]. Despite their formal analogy,
the quasi-two-dimensional and quasi-one-dimensional models
of tilted dipoles have an interesting difference which con-
cerns the effective three-body interaction. Let us define the
quasi-one-dimensional model by the coordinates r = {x, y} =
{x, y1, y2}, the external confinement potential is assumed
cylindrically symmetric,

U (y) = y2

2l4
− 1

l2
. (38)

The single-particle eigenfunctions ψν(y) satisfy [−∂2
y /2 +

U (y)]ψν,m = εν,mψν,m, where εν,m = (2ν + |m|)/l2. We have
used the cylindrical symmetry of the potential (38) to write
ν = {ν, m}, where the integers ν � 0 and −∞ < m < ∞ are
the radial and angular quantum numbers, respectively. The
eigenfunctions read

ψν,m(y) = eimφ (−1)ν

l
√

π

√
ν!

(ν + |m|)!
(y

l

)|m|
L|m|

ν

(
y2

l2

)
e−y2/2l2

,

(39)
where L|m|

ν is the Laguerre polynomial and φ = arg(y1 + iy2).
The dipole moments are assumed to be oriented parallel

to the {x, y1} plane and tilted by angle θ with respect to the
longitudinal x axis. The interaction (pseudo)potential is then
given by

V (r) = r∗
r2 − 3(x cos θ + y1 sin θ )2

r5
+ 4πaδ(r), (40)

which can also be obtained from Eq. (25) by replacing x1 →
y1, x2 → y2, and y → x. Accordingly, the Fourier transform
V (k, p) of (40) is obtained from Eq. (26) by replacing k1 →
p1, k2 → p2, and p → k.

In contrast to the quasi-two-dimensional case, for quasi-
one-dimensional dipoles with tilt, Eq. (17) cannot, in general,
be satisfied for all y. Indeed, one can check that,∫

dx V (x, y) = 4π (a − a∗)δ(y) + 2r∗ sin2 θ
y2

2 − y2
1

y4
, (41)

where

a∗ =
(

1

3
− sin2 θ

2

)
r∗. (42)

From Eq. (41) we see that the condition V 00
00 (0) = 0 requires

a = a∗ (this condition corresponds to εdd = 1 in notations of
Ref. [2]). However, the matrix elements V ζη

μν (0) involving ex-
cited states all vanish only if a = a∗ and sin θ = 0. Therefore,
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for a finite tilt angle the dominant nonpairwise interaction cor-
rection is given by g(2)

3 Eq. (11) and corresponds to an effective
three-body attraction. We will calculate it for arbitrary θ . As

far as g(3)
3 is concerned, it can become dominant only at (or

sufficiently close to) the point θ = 0.
The relevant matrix elements needed for these calculations

can be written as [19]

V 0{ν,m}
0{μ,m′}(k) = V 0{ν,m}

{μ,−m′}0(k) = V {ν,−m}0
0{μ,m′} (k) = V {ν,m}0

0{μ,−m′}(k) =
∫

d2 p

(2π )2
V (k, p)λν,m(p)λμ,m′ (−p), (43)

where

λν,m(p) =
∫

ψ0(y)ψν,m(y)eip·yd2y = (−1)ν+|m|/2

√
ν!(ν + |m|)!

(
l p

2

)2ν+|m|
e−p2l2/4

(
p1 + ip2

p

)m

. (44)

Then, integrating in Eq. (43) over p gives

V 0{ν,m}
0{μ,m′}(k) = (−1)s2−s−1s!√

ν!(ν + |m|)!μ!(μ + |m′|)!
4(a − a∗)δm+m′,0 + r∗δ|m+m′ |,2 sin2 θ

l2
+ r∗(−1)s(kl/2)2s+2ek2l2/2

l2
√

ν!(ν + |m|)!μ!(μ + |m′|)!
×{s!�(−s, k2l2/2)[δm+m′,0(4 − 6 sin2 θ ) − δ|m+m′ |,2 sin2 θ ] + 2(s + 1/2)!�(−s − 1/2, k2l2/2)δ|m+m′ |,1 sin 2θ},

(45)

where s = ν + μ + (|m| + |m′|)/2.

Substituting Eq. (45) [more precisely, its particular

case V 00
0{ν,m}(0) = (−1)ν

2ν−1 ( a−a∗
l2 δm,0 − r∗ sin2 θ

8l2

√
ν+1
ν+2δ|m|,2)] into

Eq. (11), we get

g(2)
3 = −12 ln

4

3

(a − a∗
l

)2

+
(

3

2
− 6 ln

4

3

)( r∗
l

)2
sin4 θ.

(46)
The first term on the right-hand side of Eq. (46) recovers
the result of Refs. [10,11] obtained for r∗ = 0. By tuning to
a = a∗ this term vanishes simultaneously with the leading
two-body energy shift g(1)

2 = V 00
00 (0). Nevertheless, Eq. (46)

predicts that the three-body attraction persists for any finite
tilt angle even if a = a∗. Tilted dipoles can thus realize a
model of one-dimensional bosons with three-body attraction,
interesting for some applications (see, for example, Ref. [30]).
Curiously, g(2)

3 remains finite also for the “magic” angle given
by cos θ = 1/

√
3, a characteristic point where V (x, y) loses

its long-range dipolar tail in the x direction.
As we have mentioned, for θ = 0 and a = a∗ the second-

order term g(2)
3 vanishes. The three-body interaction in this

case emerges in the third order and can be repulsive. Evalu-
ating Eq. (13) and using Eq. (45) with θ = 0 and a = a∗, we
obtain [20]

g(3)
3 = 4.65(r∗/l )3. (47)

We see that the attractive long-range tail (corresponding to
r∗ > 0) is correlated with a three-body repulsion. As in the
quasi-two-dimensional case we can compare the full quasi-
one-dimensional model with the purely one-dimensional one
obtained by projecting the interaction potential V (r) to the
radial ground state. The calculation of g(3)

3 then proceeds by
restricting the sum in Eq. (13) to ν = μ = η = 0 and gives
g(3)

3 = 3.57(r∗/l )3.
Finally, let us come back to the case of finite θ and mention

the confinement-induced correction g(2)
2 . For a = a∗ Eq. (10)

contains no infrared divergences, and the ultraviolet one has

the same origin and is treated in the same manner as in the
quasi-two-dimensional case. Performing a very similar anal-
ysis of the large-s asymptote of V 0{ν,m}

0{μ,m′}(k) we arrive at the
diverging integral of the type (36) for the function V 2(k, p)
with the prefactor 1/(2π l2) instead of 1/(

√
2π l ) [28]. When

calculating Eq. (10) we subtract this diverging contribution
and arrive at

g(2)
2 = r∗2

l3
(D0 + D1 sin2 θ + D2 sin4 θ ), (48)

with the numerical coefficients D0 = 0.081, D1 = 0.35, and
D2 = −0.2. The correction (48) is always positive.

We can try to calculate g(2)
2 by projecting to the transversal

ground state, i.e., integrating over k in Eq. (10) with ν =
μ = 0. In this manner we obtain g(2)

2 = −0.94(r2
∗/l3)[1 −

(3/2) sin2 θ ]2, which is actually quite different from Eq. (48),
indicating that the correct renormalization procedure is im-
portant. In fact, Edler and co-workers [2] have calculated
the BMF energy density for quasi-one-dimensional dipoles
with θ = 0 and a = a∗ by using the projected value of g(2)

2
as the low-density reference point for their Hugenholtz-Pines
approach [31]. We agree with them on the effective three-body
repulsion in this case but disagree on g2. This, however, does
not qualitatively change the conclusion of Ref. [2] on the exis-
tence of self-bound states in this system since one can always
tune g2 by modifying a. Nevertheless, it would be interesting
to perform the BMF crossover analysis using Eq. (48) as the
low-density reference point.

IV. BOGOLIUBOV THEORY

The standard perturbation theory of Sec. II requires that
the interaction shifts be smaller than the level spacing in the
noninteracting system of N particles. In principle, one can
always reach this regime by decreasing V while keeping the
volume fixed. The fixed volume maintains a low-momentum
cutoff, avoiding possible infrared divergences in the integrals,
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and leads to the regular expansion of the energy in integer
powers of V .

The problem of infrared divergences can also be solved in
the thermodynamic limit by turning to the Bogoliubov theory
which accounts for a nonperturbative change in the system
behavior at length scales comparable or larger than the heal-
ing length ξ ∝ 1/

√
V 00

00 (0)n. The Bogoliubov theory, thus,
effectively introduces an infrared density-dependent cutoff at
k ∼ 1/ξ , which, in particular, leads to the nonanalyticity of
the energy as a function of n (and V ).

In all examples of Sec. III the infrared divergences are
eliminated by the condition (17) [32]. Our theory, thus, pre-
dicts the regular expansion of the energy in integer powers of
n, characterized by the effective few-body coupling constants
g2 and g3, which are “local” BMF contributions involving
virtual excitations with wave lengths comparable to the in-
teraction range.

The perturbation theory of Sec. II is basically the Born
series expansion for which the typical value of |V | (in real
space) multiplied by the square of its range should be small
[9]. This small parameter is density independent. By contrast,
the Bogoliubov theory relies on the relative smallness of the
noncondensed fraction, which depends on the density. It is
then interesting to figure out how the hierarchy of the Bo-
goliubov theory (the mean-field term, the leading-order BMF
contribution, and the beyond-Bogoliubov terms) is related
to our expansion in powers of V . In the remaining part of
this section we show how the perturbative results obtained in
Sec. II can be deduced from the Bogoliubov theory.

The Hamiltonian (1) in the second quantization reads

Ĥ =
∑
q,ν

(q2/2 + εν )â†
q,νâq,ν

+1

2

∑
q1,q2,k,ν,μ,η,ζ

V ζη
μν (k)â†

q2+k,μ
â†

q1−k,ζ
âq2,νâq1,η. (49)

Following the standard Bogoliubov procedure we assume the
macroscopic occupation of the ground state replacing â0,0 and
â†

0,0 by
√

n0 and then expanding Ĥ = H0 + Ĥsp + ∑4
i=1 Ĥi,

where

H0 = V 00
00 (0)n2

0/2, (50)

Ĥsp =
∑
q,ν

(q2/2 + εν )â†
q,νâq,ν, (51)

Ĥ1 = n3/2
0

′∑
ν

V 00
ν0 (0)â†

0,ν + V 00
0ν (0)â0,ν, (52)

Ĥ2 = n0

2

′∑
ν,μ,k

V ν0
μ0 (k)â†

k,μ
â†

−k,ν
+ V 0ν

0μ (k)â−k,μâk,ν

+ 2
[
V 00

μν (0) + V 0ν
μ0 (k)

]
â†

k,μ
âk,ν, (53)

Ĥ3 = √
n0

′∑
q,k,ν,μ,η

V μη
ν0 (k)â†

k,ν
â†

q,μâq+k,η

+V 0ν
ημ (k)â†

q+k,η
âk,νâq,μ, (54)

and

Ĥ4 = 1

2

′∑
q1,q2,k,ν,μ,η,ζ

V ζη
μν (k)â†

q2+k,μ
â†

q1−k,ζ
âq2,νâq1,η. (55)

In Eqs. (52)–(55) the primes indicate that the corresponding
sum excludes terms involving creation or annihilation opera-
tors of condensate particles.

Equation (50) is the usual mean-field term. As far as the
linear part Eq. (52) is concerned, it appeared because we
skipped one step of the standard Bogoliubov method. Namely,
we just took the single-particle ground state φ0,0(x, y) [see
Eq. (2)] for the condensate mode instead of solving the mean-
field Gross-Pitaevskii equation, which, in general, leads to a
different profile in the confined direction (see, for example,
Ref. [23]). The inconvenience of having this linear term is
compensated by the fact that the matrix elements V ζη

μν (k) do
not depend on the density and other parameters through the
outcome of the Gross-Pitaevskii equation. In fact, this equa-
tion may not even always have a solution if the system is
unstable from the mean-field viewpoint. It is also interesting
to observe that tuning V 00

00 (0) to zero does not necessarily
mean Ĥ1 = 0 since matrix elements of the type V 00

ν0 (0) can
still remain finite. A particular example of this phenomenon
is quasi-one-dimensional dipoles with finite tilt discussed in
Sec. III D. In such cases, one can treat Ĥ1 as a perturbation on
top of the single-particle Hamiltonian Ĥsp given by Eq. (51).
The second-order correction to the energy calculated in this
manner equals g(2)

3 n3
0/6, with g(2)

3 given by Eq. (11).
In what follows we proceed under the assumption (17),

which means H0 = Ĥ1 = 0. Among remaining terms the
sum Ĥsp + Ĥ2 is the quadratic Bogoliubov Hamiltonian, the
zero-point energy of which gives the leading-order BMF
contribution to the energy density. The diagonalization of
this Hamiltonian consists of solving the linear Bogoliubov–
de Gennes equations and can be performed analytically in
some cases (for instance, for flat condensates with periodic
boundary conditions [3]). Otherwise, and this is the case of
harmonic confinement, this procedure requires a numerical
diagonalization of a 2M × 2M matrix, where M is the size
of the discretized ν space [2]. This is, however, not necessary
for our purposes. We just note that for small V or n0 we can
treat Ĥ2 as a perturbation to Ĥsp and proceed with the standard
perturbation theory. It is then easy to see that the first-order
energy shift vanishes, and the second- and third-order correc-
tions are given by g(2)

2 n2
0/2 and g(3)

3 n3
0/6, respectively, where

the coupling constants are given by Eqs. (10) and (13). On the
other hand, the third-order correction to the two-body constant
Eq. (14) is not recovered, which is understandable since Ĥ2

does not include interactions between excited atoms.
In our search for all third-order corrections we, thus, have

to formally go beyond the Bogoliubov approximation and
consider Ĥ3 and Ĥ4. Note that these operators do not perturb
the ground state of Ĥsp in any order. They can, thus, only
react on the ground state already perturbed by Ĥ2 leading to
corrections of order V 3 or higher. Indeed, the ground state of
Ĥsp + Ĥ2, calculated to the first order in Ĥ2, reads

|1〉 = −n0

2

′∑
ν,μ,k

V ν0
μ0 (k)

k2 + εν + εμ

â†
k,μ

â†
−k,ν

|0〉 , (56)

033326-8



HIGHER-ORDER EFFECTIVE INTERACTIONS FOR … PHYSICAL REVIEW A 103, 033326 (2021)

where |0〉 is the vacuum of excitations of Ĥsp, i.e., pure con-
densate with density n0. We then observe that 〈1| Ĥ3 |1〉 = 0
and the leading-order beyond-Bogoliubov contribution equals

〈1| Ĥ4 |1〉 = g(3)
2 n2

0/2, (57)

where g(3)
2 is given by Eq. (14). Finally, we note that the

leading-order noncondensed density equals

δn = 〈1|
∑
q,ν

â†
q,νâq,ν |1〉 = n2

0

∑
k,ν,μ

∣∣V 0ν
0μ (k)

∣∣2

(k2 + εν + εμ)2
, (58)

and, to the order V 3, for all the above-mentioned en-
ergy corrections we can take n0 to be equal to the total
density. We have, thus, established the consistency of the
second-quantized Bogoliubov approach with the standard
first-quantized approach of Sec. II up to the order V 3. Note,
however, that Eq. (58) features an infrared logarithmic di-
vergence for quasi-two-dimensional dipoles since V 0ν

0μ (k) ∝ k.
This divergence leads to the scaling δn ∝ V 2 ln V , which does
not change our conclusion, but signals that at higher orders a
nonperturbative treatment of the quadratic Bogoliubov Hamil-
tonian is necessary in this case.

V. CONCLUSIONS

In conclusion, we have developed a perturbation approach
for calculating interaction energy shifts for bosons with the in-
teraction potential V tuned close to the condition (17). Under
this assumption the leading nonpairwise energy correction is a
third-order effect manifesting itself in the form of an effective
three-body interaction. Whether this interaction is attractive or
repulsive is determined by the shape of V (k) through Eq. (13).
For simple two-body potentials the sign of g3 is systemati-
cally anticorrelated with the sign of the long-range tail of the

two-body potential, but this does not hold in general (see a
counterexample at the end of Sec. III B).

We have applied our theory to a few particular shapes
of V in pure dimensions (double-Gaussian and Yukawa-
plus-δ potentials) and in quasi-low-dimensional geometries
where we have considered tilted dipoles. For the latter sys-
tems we have fully characterized the leading two-body and
three-body energy corrections as a function of the tilt angle.
In particular, we have found that dipoles under harmonic
quasi-two-dimensional confinement are characterized by an
effective three-body attraction when aligned perpendicularly
to the plane and by a three-body repulsion if aligned in the
plane (see Fig. 1). It remains to be seen if this repulsion can
stabilize dilute supersolid stripe phases of tilted dipoles so far
predicted to be stable only in the dense regime [33,34]. The
three-body repulsion for dipoles oriented parallel to the plane
has also been found by Zin et al. [3], although in their case the
quasi-two-dimensional confinement is achieved by imposing
the periodic boundary condition.

Our analysis of quasi-one-dimensional dipoles has re-
vealed a strong (second-order) three-body attraction for any
finite tilt angle and a weaker (third-order) three-body repul-
sion when the dipoles are aligned along the unconfined axis.
This latter observation is in agreement with the BMF calcula-
tions of Ref. [2]. We, however, disagree on the leading-order
two-body correction g(2)

2 , positive in our case and negative
in Ref. [2] (see our comment at the end of Sec. III D). We
argue that our results can be used to improve the Hugenholtz-
Pines analysis by providing the low-density reference point
for quasi-low-dimensional tilted dipoles.
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