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Dimer problem on a spherical surface
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We solve the problem of a dimer moving on a spherical surface and find that its binding energy and wave
function are sensitive to the total angular momentum. The dimer gets squeezed in the direction orthogonal to the
center-of-mass motion and can qualitatively change its geometry from two dimensional to one dimensional.
These results suggest that combining the curved geometry with finite angular momentum may give rise to
qualitatively new many-body phenomena in ultracold shell-shaped gases.
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The problem of two interacting bodies has a central im-
portance in diverse areas of physics ranging from celestial
mechanics and general relativity [1–3] to classical electrody-
namics [4]. In quantum mechanics, it underlies the solution
of the hydrogen atom and the theory of scattering [5]. Two-
body physics also rules the thermodynamic description of
ultracold atomic gases [6,7] since their interaction range is
much smaller than their de Broglie wavelengths and average
interparticle distances. In particular, the zero-range scattering
problem has been solved in three-dimensional free space [5],
in quasi-one-dimensional [8] and in quasi-two-dimensional
[9] geometries, and the spectrum of a harmonically confined
pair of atoms was obtained in any spatial dimension [10].
These solutions are crucial for understanding Feshbach res-
onances in trapped gases [11,12], the crossover from the
Bardeen-Cooper-Schrieffer state to the Bose-Einstein con-
densate of molecules (BCS-BEC crossover) in fermionic
mixtures [13], two-dimensional universal thermodynamics
[14,15], solitons and nonlinear states [16,17], and many other
phenomena in ultracold gases.

In the above cases, the solution of the two-body problem
is simplified by its separability into two independent single-
particle problems: one for the center-of-mass free dynamics,
another for the relative motion of the particles. The separa-
bility is however not assured if the particles are constrained
to move in optical lattices [18,19], in mixed-dimensional
setups [20–23], in anharmonic [24,25] or species-dependent
harmonic [26,27] potentials, or in spatial domains which are
compact or curved. In particular, solving the two-body prob-
lem in curved setups is more difficult than in flat counterparts,
but fundamentally valuable for discovering new quantum-
mechanical behaviors induced by the curved geometry [28].
Indeed, the solution of one- and two-body problems on a
spherical surface evinced interesting consequences associated
with curvature and to nonseparability. For instance, there
were studies of p-wave dimers moving under a geometri-
cally induced gauge field [29], of s-wave scattering of one
body [30] and of two bodies on a large sphere [31], of
the gas-to-soliton crossover [32], and of the anyonic spec-

trum on the sphere [33,34]. These developments address the
fundamental theoretical issue of understanding few-body
physics in curved geometries and are potentially interesting
for experiments with shell-shaped gases [35–38] and with
other low-dimensional curved geometries [39].

In this Letter, we calculate the energy and wave function of
two atoms confined to a sphere varying the scattering length
a and the total angular momentum j. Technically, at fixed j
the problem is reduced to a finite set of coupled differential
equations for the relative wave function. We derive these
equations by adapting to our case the rigid-rotor formalism
of Ref. [29]. We find that, for a small dimer, when a is
much smaller than R/

√
j (R is the sphere radius), the wave

function is well approximated by the product of the isotropic
relative wave function, the same as in the flat case, and the
wave function of the center-of-mass motion with angular
momentum j. However, upon increasing a (or j) the dimer
becomes anisotropic; the relative wave function gets more and
more squeezed in the direction perpendicular to the direction
of the center-of-mass motion. We argue that this squeezing
is due to an effective harmonic confinement with oscillator
length ∼R/

√
j acting on the relative degree of freedom. For

large j our two-body problem on a sphere can be reduced to
a flat-space quasi-one-dimensional problem in this effective
harmonic confinement. The two-body state can be of localized
or delocalized character and it can be two dimensional or
quasi one dimensional depending on the relationships among
the three relevant length scales a, R, and R/

√
j. In the rest of

the Letter we use the sphere radius as the unit of length, i.e.,
we set R = 1.

Our two-body system on a sphere has four angular de-
grees of freedom, which admit different parametrizations. We
first work with the center-of-mass and relative angles �u =
(α, β, γ , θ ). Figure 1 shows how the set �u is related to the
single-particle vectors �r1 and �r2 (see the Supplemental Mate-
rial for explicit expressions [40]). The spherical coordinates
α ∈ [0, 2π ] and β ∈ [0, π ] parametrize the center-of-mass
vector �nc = (�r1 + �r2)/|�r1 + �r2|. The relative vector �nr =
(�r1 − �r2)/|�r1 − �r2| is parametrized by α, β, and by the an-
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FIG. 1. Illustration of the coordinate system of two particles
located at �r1 and �r2. Their geodesic center of mass, pointed by the
vector �nc is described by the spherical coordinates α and β, while
their relative position, pointed by the vector �nr , is described by
the angles γ and θ . The system is characterized by four quantum
numbers: the total angular momentum j, its projection m along the
axis z, the angular momentum l describing the molecular rotation
along the z′ = �nc axis, and the parity s of the eigenstates under the
exchange l → −l .

gle γ ∈ [0, 2π ] between the geodesic passing by the center
of mass and the great circle passing by the north pole.
Finally, θ ∈ [0, π ] is the relative angular distance between the
atoms.

The Schrödinger equation for the two-body wave function
�(α, β, γ , θ ) reads

(T̂ − E )� = 0, (1)

where the relation between the two-body energy E and
the s-wave scattering length a is obtained by imposing
the Bethe-Peierls boundary condition �|θ→0 ∝ ln(θ/a). The
kinetic-energy operator T̂ is derived by directly calculating
the Laplace-Beltrami operator in the coordinates �u, finding
(see the Supplemental Material for details [40]) T̂ = (Ĵ2

x′/Ix′ +
Ĵ2

y′/Iy′ + Ĵ2
z′/Iz′ )/2 + L̂2

θ , which is the sum of the rotational en-
ergies along the molecular axes (�x ′, �y ′, �z ′) = (�nr, �nc × �nr, �nc)
and of the kinetic energy L̂2

θ = −(sin θ )−1∂θ (sin θ ∂θ ) for
the relative motion along θ [30]. The moments of inertia
are equal to Ix′ = 2 cos2(θ/2), Iy′ = 2, and Iz′ = 2 sin2(θ/2),
while the expressions of the angular-momentum operators
Ĵx′ , Ĵy′ , and Ĵz′ in terms of α, β, and γ are reported
in the Supplemental Material [40]. We now rewrite T̂ through
the total angular-momentum operator Ĵ2 = Ĵ2

x′ + Ĵ2
y′ + Ĵ2

z′ and
the ladder operators Ĵ± = Ĵx′ ± iĴy′ , obtaining

T̂ = A(θ )Ĵ2 + B(θ )Ĵ2
z′ + C(θ )(Ĵ2

+ + Ĵ2
−) + L̂2

θ , (2)

with A(θ ) = [1/ cos2(θ/2) + 1]/8, B(θ ) = [8/ sin2 θ − 1 −
3/ cos2(θ/2)]/8, and C(θ ) = tan2(θ/2)/16. The common
eigenstates of Ĵ2 and Ĵz′ are the Wigner-D matrices
D j∗

ml (α, β, γ ) [41], satisfying the relations

Ĵ2D j∗
ml = j( j + 1)D j∗

ml ,

Ĵ2
z′D

j∗
ml = l2D j∗

ml ,

Ĵ±D j∗
ml = [ j( j + 1) − l (l ± 1)]1/2D j∗

ml±1.

(3)

These eigenstates are labeled by the total angular momentum
j, by its projection along the z axis m = − j, . . . , j, and by the
angular-momentum projection along the z′ axis l = − j, . . . , j
(see Fig. 1). Note that the operator T̂ conserves j and m, but
it does couple states with l different by 2. We decompose the
wave function in each j, m channel as [5,42]

� j,m(α, β, γ , θ ) =
j∑

l=0,

l even

ψl (θ )S jml (α, β, γ ), (4)

where S jml = (D j∗
ml + D j∗

m−l )/
√

2 for l > 0, while S jm0 =
D j∗

m0, and using the properties (3) we reduce Eq. (1) to[
L̂2

θ + j( j + 1)A(θ ) + l2B(θ )
]
ψl (θ )

+ C(θ )[clψl+2(θ ) + cl−2ψl−2(θ )] = Ejψl (θ ), (5)

where cl = √
( j − l − 1)( j − l )( j + l + 1)( j + l + 2), c0 =√

2( j − 1) j( j + 1)( j + 2), and cl = 0 for l < 0. Note that we
only include the even-l wave function components in Eq. (4)
because the operator T̂ does not couple even-l channels to
odd-l channels. Indeed, for zero-range s-wave interaction the
odd-l part describes noninteracting states and we are only
interested in the even-l channels (the p-wave-interacting case
has been considered in Ref. [29]). In fact, the s-wave interac-
tion is effective only in the equation with l = 0 because the
other components experience the centrifugal barrier l2B(θ ) ∝
1/θ2. Also note that T̂ conserves parity under the exchange
l → −l . While the odd-parity configurations are insensitive
to the interaction, the symmetric states under this exchange
feel the interaction through their coupling to ψ0. By expand-
ing the wave function in terms of symmetric superpositions
of opposite l channels, Sjlm, we select only the even-parity
configurations. Thus, our dimer problem with s-wave inter-
action essentially reduces to ( j + 2)/2 coupled differential
equations for even j or to ( j + 1)/2 equations for odd j (recall
that |l| � j).

In particular, for j = 0 we have the single equation (L̂2
θ −

E0)ψ0(θ ) = 0, solved in terms of Legendre functions [32,43]:
ψ0(θ ) ∝ P−1/2+s[cos(π − θ )], with s = (E0 + 1/4)1/2. The
energy E0 is then obtained from ln(1/a) = [D(1/2 + s) +
D(1/2 − s)]/2 + ln(eγE /2), where D is the digamma function
and γE is the Euler-Mascheroni constant.

The case j = 1 is governed by a different but also single
equation [L̂2

θ + 2A(θ ) − E1]ψ0(θ ) = 0, which can be rewrit-
ten in the form of the Jacobi differential equation. We
obtain its solution in terms of Jacobi functions ψ0(θ ) ∝ (1 +
cos θ )−1/2J (−1,0)

ν [cos(π − θ )], with ν = E1/2
1 [44]. The Bethe-

Peierls boundary condition leads to the relation between
the energy and the scattering length: ln(1/a) = [D(ν) +
D(−ν)]/2 + ln(eγE /2).

For j > 1 we solve Eq. (5) numerically. The energies Ej

as functions of a are presented in Fig. 2 as solid curves. The
dashed curves correspond to the two leading-order terms in
the expansion of the energy in powers of small a:

E (a
1)
j = E (flat) − 1/3 + j( j + 1)/4, (6)

where E (flat) = −4 exp(−2γE )/a2 is the dimer energy in the
flat case. The center-of-mass energy j( j + 1)/4 and the
leading-order curvature-induced shift −1/3 can be obtained
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FIG. 2. Dimer energy spectrum versus a for j = 0, . . . , 9 (con-
tinuous lines). The exact curves converge towards the analytical
asymptotes of Eqs. (6) and (7) valid, respectively, in the strongly
attractive regime a 
 1 (dashed lines), and in the noninteracting
regime a � 1 (dot-dashed lines). In the intermediate a regime,
the curves are well reproduced by the semi-analytical quasi-one-
dimensional theory (thick dashed lines). The dimer is quasi-one-
dimensional between the dotted curves; the left border corresponds
to the dimer aspect ratio ≈1 and the right border indicates where the
dimer size becomes comparable to the sphere radius (see text).

by solving Eq. (5) perturbatively at small θ ∼ a. In doing this
it is convenient to rewrite the operator L̂2

θ and the functions
A(θ ), B(θ ), C(θ ) changing the variable from the angle θ to
the chord distance ρ = 2 sin(θ/2) (see Ref. [32]). The dash-
dotted horizontal lines correspond to the formulas

E (a�1)
j even = j2/4 + j/2,

E (a�1)
j odd = j2/4 + j/2 + 1/4.

(7)

Equations (7) follow from the fact that the energy on the
sphere scales quadratically with the angular momentum and,
therefore, for fixed total angular momentum j the lowest-
energy state of two noninteracting atoms is obtained when
their (integer) angular momenta j1 and j2 are as close as
possible to j/2 and are also such that j1 + j2 = j. In Fig. 2
we show the lowest-energy two-body states for fixed total
angular momenta j. These energies do not depend on the
projection, which can be m = − j, . . . , j. Note that we assume
the thin-shell regime completely neglecting the degree of free-
dom perpendicular to the sphere surface (see Ref. [45] for an
analysis of the case where the radial excitations are not frozen
and where angular and radial degrees of freedom are coupled).

We now discuss how the wave function depends on
j. For j = 0 and j = 1 only ψ0 is nonzero and the to-
tal wave function is independent of γ , which can be seen
from Eq. (4) bearing in mind that S000 = 1 and S110 =
e−iα sin β/

√
2. The dimer in these cases is isotropic although

the θ dependence of its wave function is sensitive to j. The
anisotropy first appears in the case j = 2 where ψ2 = 0. It
manifests itself in a squeezing of the molecule along a di-
rection which depends on the center-of-mass angles α and
β and on m (note, however, that ψl depend on j, but not
on m). The phenomenon can be seen clearly in the case
m = j, which corresponds to the center-of-mass motion of

FIG. 3. Contour plots of the ratio (rescaled to its maximum)
|� j,m(α, π/2, γ , θ )/K0(2e−γE θ/a)| for a = 2, which demonstrate
the squeezing of the state along the direction of motion of the center
of mass.

the molecule along the equator. If we also set the cen-
ter of mass on the equator (β = π/2), the wave function
(4) explicitly reads � j, j (α, π/2, γ , θ ) ∝ e−i jα[ψ0(θ )/ j! +∑

l>0 ψl (θ ) cos(lγ )/
√

2( j + l )!( j − l )!]. We demonstrate
the squeezing of the dimer by plotting the quantity
|� j, j (α, π/2, γ , θ )/� (flat)(θ )| in Fig. 3 for a = 2 (note that
|� j, j (α, π/2, γ , θ )| is independent of α). We divide by the
(isotropic) bound-state wave function in the flat-case limit
� (flat)(θ ) = K0(2e−γE θ/a) to remove the logarithmic diver-
gence at θ → 0 and to better visualize the angular distribution
of the state. We observe that by increasing j the dimer
becomes more and more squeezed in the direction perpendic-
ular to the equator, i.e., perpendicular to the center-of-mass
motion.

The squeezing becomes more pronounced for large j. In
this case the dimer wave function (4) involves many l compo-
nents and for describing the system it is more convenient to
switch from (α, β, γ , θ ) to the single-particle bases of polar
and azimuthal angles (θ1, φ1, θ2, φ2). As we have already
mentioned, for fixed j (let us assume for simplicity that j
is even), two noninteracting atoms prefer to occupy single-
particle orbitals with angular momenta j1 = j2 = j/2. If m =
j, we also have m1 = m2 = j/2. For large j such orbitals are
localized close to the equator of the sphere where θσ ≈ π/2.
The variation of θσ is of order |θσ − π/2| ∼ 1/

√
j. One can

see this by switching to the variable yσ = θσ − π/2 and ob-
serving that the single-particle kinetic-energy operator can be
written as [−∂2/∂y2

σ + tan yσ ∂/∂yσ + j2/(4 cos2 yσ )]/2. The
expansion of j2/8 cos2 yσ at small yσ gives an approximately
harmonic potential with frequency j/2 which localizes the
wave function to the oscillator length

√
2/ j. As we show in

the Supplemental Material [40], this localization persists also
in the interacting case. The dimer problem becomes quasi-
one-dimensional and the dimer energy E = j2/4 + j/2 + q2

is obtained by solving

∫ ∞

0
e2q2τ/ j (

√
τ/ sinh τeτ/2 − 1)

dτ

4πτ
= 1

2π
ln

√
−q2aeγE

2
.

(8)
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The corresponding results are shown as dashed curves in
Fig. 2. Equation (8) is valid for j = m � 1 and we require
1 
 −q2 � j (see more details in the Supplemental Material
[40]). Under these conditions the two-body wave function
is well approximated by �(θ1, φ1, θ2, φ2) ≈ exp[− j(θ1 −
π/2)2/4 − j(θ2 − π/2)2/4 − (−q2)1/2|φ1 − φ2|], its quasi-
one-dimensional character is explicit; in the direction of the
center-of-mass motion the dimer has the size 1/(−q2)1/2

which is larger than its width given by ≈1/
√

j.
We can now summarize the main regimes of an s-wave-

interacting dimer on a sphere. For small j, with increasing
a the dimer increases in size but remains to a large extent
isotropic. The change of the character in this case happens at
a ≈ 1 when the dimer size becomes comparable to the sphere
radius. For large j we identify the following three regimes:
For a � 1/

√
j the dimer is strongly bound and approximately

isotropic. In the interval 1/
√

j � a � a∗ the dimer is quasi-
one-dimensional and its size is smaller than the sphere radius.
The characteristic scattering length a∗ ≈ e

√
π j/2 is obtained

by setting q2 = −1 in Eq. (8). It marks the crossover to the
third regime where the two atoms are delocalized along the
equator but localized in the perpendicular direction with po-
lar angles |θσ − π/2| ∼ 1/

√
j. The dotted curves in Fig. 2

correspond to a = 1/
√

j (left border) and a = a∗ (right bor-
der) and indicate the regime where the dimer is quasi-one-
dimensional.

In conclusion, we find the spectrum and wave functions
of an s-wave-interacting dimer on a spherical surface as a
function of the scattering length a and total angular momen-
tum j. The nonseparability of the relative and center-of-mass
degrees of freedom manifests itself in squeezing of the dimer
in the direction transversal to the center-of-mass motion. The
effect is most pronounced for a � 1/

√
j when the dimer be-

comes quasi-one-dimensional. Moreover, for a � 1, when the
attraction is insufficient to localize two atoms into a dimer at
low j, this transversal squeezing enhances the attraction and
eventually leads to a bound quasi-one-dimensional dimer at
sufficiently large j.

Our findings have implications for ongoing experiments
with shell-shaped magnetic [35,36,46] and optical [37,38]
traps as well as for proposals based on quantum effects
in self-bound mixtures [47]. One can be able to create
rapidly rotating gases by combining gravity-compensation
mechanisms with phase-imprinting techniques for transfer-
ring angular momentum to the gas [48,49]. The two-body
spectrum that we calculate can be measured experimentally
by radio-frequency spectroscopy [11,12] and the anisotropy
of the dimers can be observed in time-of-flight experiments.
If we neglect interactions, after a long free expansion, the
distribution of atoms is directly related to the Fourier trans-
form of the original wave function. The free expansion of
shell-shaped gases in their ground states at zero angular
momentum has been analyzed in Refs. [36,37,50,51]. In

the future, to account for trap imperfections (gravitational
sag, ellipticity, local variations of the curvature, finite shell
thickness and its variations, etc.) we think of generalizing
our harmonic large- j theory to a finite out-of-surface con-
finement and to generic nonspherical geometries. From the
many-body perspective, we can mention the study of the
BCS-BEC crossover on a sphere [52], which would be inter-
esting to reconsider at a finite angular momentum, and the
gas-to-soliton transition for attractive bosons [32]. This tran-
sition is characterized by a subtle interplay among the space
curvature, mean-field and beyond-mean-field effects, and we
believe that it should also be sensitive to the total angular
momentum.
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