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A. Particle positions in u⃗ coordinates

The particle positions r⃗1 and r⃗2 can be expressed in
terms of n⃗c and n⃗r as

r⃗1 = n⃗c cos(θ/2) + n⃗r sin(θ/2),

r⃗2 = n⃗c cos(θ/2)− n⃗r sin(θ/2),
(A.1)

where the geodesic center-of-mass and relative vectors are
respectively given by n⃗c = (sinβ cosα, sinβ sinα, cosβ)T

and n⃗r = cos γ a⃗ + sin γ b⃗. In particular, see Fig. 1,
a⃗ = (− cosβ cosα,− cosβ sinα, sinβ)T is the tangent
vector to the center of mass directed along the great circle
passing by the north pole, while b⃗ = (sinα,− cosα, 0)T

is the tangent vector to the center of mass directed along
the circle parallel to the equator. Given the above re-
lations, Eq. (A.1) represents the particles positions in
terms of the angles u⃗.
The body-fixed frame is built on the basis vectors

n⃗r, n⃗c × n⃗r, and n⃗c, which define the x′, y′, and
z′ axes, respectively. The transition from the space-
fixed to body-fixed frame is carried out with the help
of the rotation matrix R = (n⃗r, n⃗c × n⃗r, n⃗c) such
that any vector r⃗ ′ = (x′, y′, z′)T defined in the body-
fixed frame corresponds to r⃗ = R r⃗ ′ in the labora-
tory frame. For instance, the particles coordinates cor-
respond to r⃗1

′ = (sin(θ/2), 0, cos(θ/2))T and r⃗2
′ =

(− sin(θ/2), 0, cos(θ/2))T .

B. Kinetic energy in u⃗ coordinates

The kinetic energy operator can be expressed in terms
of the angles u⃗ = (α, β, γ, θ) by calculating the Laplace-
Beltrami operator

T̂ = −1

2

1
√
g
∂i(

√
ggij∂j), (A.2)

where ∂i = ∂/∂ui, g = det(gij), and gij is the inverse of
the metric tensor gij , defined through the line element
squared ds2 as ds2 = (dr⃗1)

2 +(dr⃗2)
2 = gij du

iduj . Thus,
by differentiating the coordinates at Eq. (A.1) in terms
of the angles u⃗, we obtain the metric tensor

gij =

[
hij 0⃗

0⃗ 1/2

]
, (A.3)

with g = sin2 β sin2 θ, and where the symmetric 3 × 3
tensor h has components

h11 =2 sin2 β[cos2 γ + cos2(θ/2) sin2 γ − sin2(θ/2) cos(2γ)]+

2 sin2(θ/2) cos2 β,

h12 =2 sin2(θ/2) sinβ sin γ cos γ,

h13 =2 sin2(θ/2) cosβ,

h22 =2 sin2 γ + 2 cos2(θ/2) cos2 γ + 2 sin2(θ/2) cos(2γ),

h23 =0,

h33 =2 sin2(θ/2).

(A.4)

We calculate Eq. (A.2) explicitly and obtain the ki-
netic energy operator presented in the main text T̂ =
(Ĵ2

x′/Ix′ + Ĵ2
y′/Iy′ + Ĵ2

z′/Iz′)/2 + L̂2
θ, whose angular mo-

mentum components are defined as

Ĵx′ = i

(
cos γ

sinβ
∂α − sin γ∂β − cotβ cos γ∂γ

)
,

Ĵy′ = i

(
− sin γ

sinβ
∂α − cos γ∂β + cotβ sin γ∂γ

)
,

Ĵz′ = −i∂γ ,

(A.5)

in the molecular frame.

For completeness, we report the orthogonality relation
of the Wigner-D functions used in the main text for pro-
jecting the Schrödinger equation [1]∫ 2π

0

dα

∫ π

0

dβ sinβ

∫ 2π
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dγDj′∗
m′l′(α, β, γ)D

j
ml(α, β, γ)

=
8π2

2j + 1
δjj′δmm′δll′ .

C. Derivation of Eq. (8)

In this appendix we discuss the case j = m ≫ 1.
Let us write the two-body wave function in the form
Ψ(θ1, ϕ1, θ2, ϕ2) = χ(y1, y2, x)e

ijϕc , where yσ = θσ − π/2
is the deviation from the equator, x = ϕ1 − ϕ2, ϕc =
(ϕ1 + ϕ2)/2, and j is large integer, even or odd. The
Schrödinger equation without interaction (1) in these co-
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ordinates becomes

∑
σ=1,2
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(A.6)

The interaction is taken into account via a Bethe-Peierls
boundary condition at {x, y1 − y2} = 0. Let us assume
(and a posteriori verify) that yσ ∼ 1/

√
j, ∂/∂yσ ∼

√
j,

and that ∂/∂x is at most of order
√
j. Then, keeping

only terms ∼ j2χ and jχ Eq. (A.6) reduces to
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∂Y 2
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)
χ = Eχ

(A.7)
with y = y1 − y2 and Y = (y1 + y2)/2. We thus arrive at
the problem of two atoms of unit mass trapped in the y
direction by a harmonic potential with frequency j/2. As
we mention in the main text this confinement arises from
the expansion of the term j2/(8 cos2 yσ) in Eq. (A.6) in
powers of yσ. It reflects the centrifugal barrier felt by
the atoms as they deviate from the equator trying to
approach any of the poles.

Equation (A.7) is supplemented by the periodicity con-
dition χ(Y, x, y) = (−1)jχ(Y, 2π+x, y) and by the Bethe-
Peierls constraint on the asymptotic behavior of the wave
function χ(Y, x → 0, y → 0) ∝ ln[(x2 + y2)/a2]. The
center-of-mass motion separates from the relative one:
χ(Y, x, y) = e−jY 2/2χ̃(x, y). The relative wave function
χ̃ can be written in the form of the Green function of a
harmonic oscillator [2] adapted to satisfy the periodicity
condition

χ̃(x, y) =

∞∑
n=−∞

(−1)jn
∫ ∞

0

e
−y2 coth τ

4l2⊥
+q2l2⊥τ+ τ

2−
(x+2πn)2

4τl2⊥

4π
√
τ sinh τ

dτ,

(A.8)
where l⊥ =

√
2/j is the oscillator length. The total

energy E = j2/4 + j/2 + q2 decomposes into the ki-
netic energy of the center-of-mass motion along the equa-
tor (j2/4), the center-of-mass zero-point energy along y
(j/4), the relative zero-point energy (j/4), and the en-
ergy of the relative motion along x which we denote by
q2.

We now establish the relation between q2 and a ap-
plying the Bethe-Peierls constraint, which is sufficient to
write as χ̃(x, 0) ∝ ln(x/a). Adding and subtracting the
logarithmically diverging part from Eq. (A.8) and then
setting x = 0 in the nondiverging terms gives

χ̃(x, 0) = F1(x) + F2 + F3 + o(x0), (A.9)

where

F1(x) =

∫ ∞

0

eq
2l2⊥τ−x2/(4τl2⊥) dτ

4πτ
= K0(

√
−q2l2⊥x)/(2π)

= − ln(
√
−q2x2eγE/2)/(2π) + o(x0),

(A.10)

F2 =

∫ ∞

0
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(√
τ/ sinh τeτ/2 − 1
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4πτ
, (A.11)

and

F3 =

∞∑
n=−∞,n̸=0

(−1)jn
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≈ 1
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√

−q2 − (−1)j ]
√
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.

(A.12)

In Eq. (A.12) we use the fact that the main contribution
to the integral comes from τ ∼ 1/l2⊥ ≫ 1. Then, ap-
proximating sinh τ ≈ eτ/2 the integral and the sum in
Eq. (A.12) can be calculated analytically. The relation
between q and a is obtained by noting that according to
the Bethe-Peierls condition Eq. (A.9) should behave as
− ln(x/a)/(2π) at small x. In this manner we obtain∫ ∞

0

eq
2l2⊥τ

(√
τ/ sinh τeτ/2 − 1

) dτ

4πτ
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2
.

(A.13)

We now discuss validity of Eq. (A.13). When the dis-
tance between the two atoms is larger than l⊥, i.e., when
|x+ 2πn| >∼ 1/

√
j (for any integer n), the wave function

χ behaves as

χ(Y, x, y) ∝ e−jY 2/2−jy2/8
∑
n

(−1)nje−
√

−q2|x+2πn|.

(A.14)
We derive Eq. (A.14) from Eq. (A.8) by using the ap-
proximations coth τ ≈ 1 and sinh τ ≈ eτ/2 valid since
typical τ are large. We see that the characteristic length
scale for the variation of χ in the y direction is indeed
∼ 1/

√
j and the characteristic length scale in the x di-

rection is 1/|q|. This verifies that Eq. (A.7) is valid for
|q| ∼ ∂/∂x <∼

√
j as we initially assumed.

We remind that passing from Eq. (A.6) to Eq. (A.7) we
kept only terms of order j2 and j. Therefore, in principle,
we should not allow |q2| to be smaller than j in order not
to exceed the accuracy of the approximation. Under this
condition the size of the dimer is smaller than the sphere
radius and the exponentially small second term in the
left-hand side of Eq. (A.13) can be neglected leading to
Eq. (8) of the main text, for which we require −q2 ≫ 1.
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However, considering the difference between Eqs. (A.7)
and (A.6) as the perturbation and Eq. (A.14) as the un-
perturbed solution to the harmonic problem Eq. (A.7),
one can show that the first-order and higher-order en-
ergy shifts are of order max{q2, 1}/j. We can thus claim
that Eq. (A.13) also makes sense for q2 ∼ 1 and can
describe the whole crossover from the isotropic molecule
(|q| ∼

√
j) to the noninteracting limit a → ∞ where it

correctly reproduces Eqs. (7) predicting q2 = 0 for even j

and q2 = 1/4 for odd j. To solve Eq. (A.13) for positive
q2 we use analytical continuation.
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