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Exciton BEC:

• An exciton Bose-Einstein condensate is a source of the spatially coherent PL 
• Coherence of the PL is suppressed in a biexciton BEC  
• The condensate is dilute in typical experimental conditions. 
However, dense regime is also possible. Example: dipolar excitons. 
• As in atomic BEC’s, the two-body interactions play an important role. 
• The dipolar interaction is long-range
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Macroscopically ordered exciton state (MOES)
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[radial electric field polarizes and traps the excitons, 
see S. V. Andreev, PRB 94, 165308 (2016)]

Cold dipolar excitons at the ring: 
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Experimental facts about the MOES:

• The ring consists of independent quasi-1D segments separated by defects 
• There is a critical temperature for the transition 
• Coherence length is on the order of the size of one bead and much 
less than the length of a segment 
• Coherence is suppressed in the centres of the beads 
• Repulsive interaction 
• The external ring has been observed by several experimental groups  
in the samples with d<dc and d>dc. 
The fragmented state of the ring has been observed only by the Butov group  
in the sample with d approaching dc from above.

Hypothesis:

• One can use thermodynamics to describe cold exciton gases  
in the segments of the ring.
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Stable dilute supersolid of quasi-1D dipolar bosons
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Beliaev diagrammatic approach: 
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Sov. Phys. JETP 34, 289 (1958)
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Challenge for the theory:
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Fragmentation of the supersolid
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Comparison with the 2015 experiment
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The two-body interaction constant g 
is known from the calculations 
and measurements of the blueshift. 
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Summary:

• The theory identifies the MOES with a form of the supersolid 
state of matter 

• By simultaneously reducing the density and the temperature  
one can try to observe a transition from the fragmented to the 
coherent (true) supersolid state. 

• The solid forms due to resonant pairing of excitons 
as the temperature T approaches Tc .  

At T<< Tc a biexciton BEC forms  
in the cores of the beads.   

2µ



Polarization textures in the MOES. 
Spin-orbit coupled BEC of excitons at the edges of the beads.

From A.A. High,A.T. Hammack, J.R. Leonard, SenYang,L.V.Butov, T. Ostatnicky, A.V. Kavokin, A. C. Gossard, APS 
March Meeting, March 21-25, 2011, Dallas, TX.

Theory:  

S. V. Andreev and A. V. Nalitov, arXiv:1704.08961 (2017) 

http://physics.ucsd.edu/~lvbutov/presentations/APSMM2011_High.pdf
http://physics.ucsd.edu/~lvbutov/presentations/APSMM2011_High.pdf
http://physics.ucsd.edu/~lvbutov/presentations/APSMM2011_High.pdf
http://physics.ucsd.edu/~lvbutov/presentations/APSMM2011_High.pdf
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