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Experimental observation of localized modes in a dielectric square resonator
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We investigated the frequency spectra and field distributions of a dielectric square resonator in a microwave
experiment. Since such systems cannot be treated analytically, the experimental studies of their properties are
indispensable. The momentum representation of the measured field distributions shows that all resonant modes
are localized on specific classical tori of the square billiard. Based on these observations a semiclassical model
was developed. It shows excellent agreement with all but a single class of measured field distributions that will
be treated separately.
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I. INTRODUCTION

Dielectric microresonators are used for a wide range of
applications, e.g., as microlasers, sensors, or building blocks
for optical circuits [1,2]. Most investigations focus on cavities
with circular and deformed circular [3] or polygonal shapes.
The former can exhibit high quality factors or directional lasing
emission [4–6], whereas the latter are of interest, first, for
applications like filters [7,8] and, second, because the crystal
structure of some materials naturally implies such a resonator
geometry [9–11]. In most experiments with microcavities in
the infrared and optical regime only the resonance spectrum is
accessible. This severely limits the possibilities of a detailed
comparison with and verification of model calculations.
Experiments with microwave resonators, on the other hand,
can provide much richer and more detailed information in-
cluding the field distributions inside the resonator over a large
frequency range. Furthermore, microwave resonators can be
manufactured with high precision and thus allow us to compare
models with a defect-free, almost ideal experimental system.
In the microwave experiment presented here, we concentrate
on the simplest case of a polygonal cavity, a dielectric square
resonator, which cannot be handled analytically even though
the classical hard-wall square billiard is integrable.

While the resonance frequencies and field distributions of
dielectric resonators can be calculated via a variety of nu-
merical methods, approximate models for specific resonators
or types of modes are generally much easier to implement
and to handle. At the same time they may provide more
insight than is possible just from numerical solutions. A
variety of models for the dielectric square resonator has been
proposed [7,12–18] that are based on similar assumptions, as,
e.g., that the modes associated with the prominent resonances
are localized along classical trajectories that impinge at the
boundaries with an angle of incidence equal or close to 45◦, like
the diamond orbit. Similar results were obtained for pentagonal
[16] and hexagonal [7,10,11,19] resonators. However, there
is experimental evidence that modes are also localized on
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other types of trajectories. This led to the development of
refined models [20–24]. Furthermore, the existing models
were so far only applied to subsets of resonances and to
cases with a specific refractive index, and never compared to
measured field distributions. In order to investigate the exact
nature of the modal localization in dielectric square resonators
and to develop a comprehensive model, experiments with a
macroscopic microwave resonator were performed and are
reported in this article. Both the frequency spectrum and the
near-field distributions in configuration and momentum space
were investigated in the experiments. The latter evidenced
that the resonant modes are localized on trajectories with
specific momentum vectors. We will introduce a ray-based
semiclassical model that is not restricted to specific groups
of modes but indeed allows us to label all modes with
quantum numbers and their symmetry class. It shows excellent
agreement with the experimental findings for a wide range
of the effective refractive index. Here we focus on the main
characteristics of the model. A more detailed study will be
presented in a subsequent publication [25].

II. EXPERIMENT

A sketch of the experimental setup is shown in
Fig. 1. A ceramic plate made of alumina (Al2O3) with sharp
corners and edges and refractive index n1 = 3.10 was used as
microwave resonator. The side length was a = 297.30 mm and
the thickness was b = 8.27 mm, which was small compared
to the wavelengths, λ ≈ 30–60 mm, used in the experiments.
Accordingly, the resonator is treated as a two-dimensional (2D)
system by introducing the effective refractive index neff [26],
which is between 1.5 and 2.5 in the frequency range f = 5.5–
10.0 GHz considered here. It was placed atop a 120-mm-thick
foam [27] with a refractive index n2 = 1.02 close to that of air
to realize an effectively levitated resonator. Two wire antennas
labeled 1 and 2 were positioned vertically to the resonator
below and above it and connected to a vectorial network
analyzer (VNA) [28]. The VNA measured the complex
transmission amplitude S21(f ) between the antennas, where
|S21(f )|2 = P2,out/P1,in is the ratio of the power coupled out
of and into the resonator via antennas 2 and 1, respectively.
An example of a measured frequency spectrum is shown in
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FIG. 1. Sectional drawing of the experimental setup (not to scale).
The alumina plate is placed atop a foam with refractive index ≈ 1.
The two vertical wire antennas protruding from coaxial rf cables are
connected to a VNA (adapted from Ref. [18]).

Fig. 2. The spectrum features a multitude of resonances with
typical quality factors in the range of Q = 200–2000. Both
transverse magnetic (TM) and transverse electric (TE) modes
with the magnetic, respectively, electric field parallel to the
plane of the resonator were excited. The polarization was
determined using the procedure outlined in Ref. [29]. In the
following, only the TM modes are considered since our setup
is less sensitive to TE modes. In the frequency range ≈ 5.5–9.5
GHz, a series of roughly equidistant resonances is observed as
indicated by the arrows. In Refs. [14–16,22,24,30] these were
generally associated with the diamond periodic orbit family. In
addition, there are many other resonances yielding the overall
complicated structure. The corresponding modes are localized
on various families of classical trajectories as will be shown
below.

The field distributions inside the resonator were measured
with the scanning antenna technique (cf. Refs. [31–33]),
i.e., the receiving antenna was moved around on the top
surface of the resonator on a Cartesian grid with spatial
resolution �x = �y = a/150 ≈ 2 mm. Here, the (x,y) plane
is chosen parallel to that of the resonator and the z direction
perpendicular to it (cf. Fig. 1). The transmission amplitude is
proportional to the z component of the electric field vector, Ez,
at the position (x,y) of the antenna, so that for a TM mode the
measurement of S21(x,y,fres) at the resonance frequency fres

yields the corresponding field distribution Ez(x,y), denoted as
the measured wave function (WF) �expt(x,y) in the following.

III. ANALYSIS OF WAVE FUNCTIONS

Several measured WFs are shown in Figs. 3(a)–3(c).
All are of a simple and clear structure reminiscent of that
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FIG. 2. Measured frequency spectrum in semilogarithmic scale.
The arrows indicate a subset of roughly equidistant resonances. The
inset indicates the positions of the antennas at the corners of the
square resonator.

observed for integrable systems. Similar WFs were calculated
numerically in Refs. [13,16,17,21,23]. Note that in some
examples perturbations of the patterns around the position
of the emitting antenna [e.g., in the center of Fig. 3(c)] are
observed. They originate from the direct transmission between
the two antennas.

A better understanding of the localization of WFs is
achieved by considering their spatial Fourier transforms
(FTs) [34–36], i.e., the corresponding momentum distri-
butions �̃expt(kx,ky). Those corresponding to the WFs in
Figs. 3(a)–3(c) are depicted in Figs. 3(e)–3(g). They exhibit a
clear localization at eight specific momentum vectors neff �k =
(kx,ky) pointing from the origin to the bright spots as indicated
by the white lines. Such a localization is observed for all
measured WFs. Note that in each panel the modulus of the
momentum vectors, i.e., the radius of the white circles, equals
neffk, where k = 2πf/c with c the speed of light in vacuum.
Thus, the calculation of �̃expt(kx,ky) allows for the direct
experimental determination of the effective refractive index.
The eight momentum vectors correspond to a single family
of classical trajectories that are specified by their angles of
incidence αinc [see Fig. 3(e)] and π/2 − αinc, as shown in
Fig. 4. Here, αinc ∈ [0◦,45◦] is defined as αinc = min{αx,αy},
and αx,y are the angles of incidence on the vertical and
horizontal boundaries of the square (cf. Fig. 4), respectively.
In Figs. 3(e)–3(g) it has the values αinc = 39.1◦, 39.0◦, and
33.3◦, respectively. Note that only modes with αinc � αcrit =
arcsin(1/neff) are observed experimentally.

IV. RAY-BASED MODEL

A semiclassical model can be readily deduced on the
basis of the dominant contributions from eight momentum
vectors with angles of incidence determined by the classical
reflection laws as illustrated in Fig. 3. It is evident that such a
phenomenon may be ascribed to an approximate quantization
of classical tori (see Fig. 4) in close analogy to quantum
billiards with Dirichlet boundary conditions. In distinction to
the latter, for an open dielectric square cavity the reflection
coefficient is nontrivial after a reflection from the boundary.
In the simplest approximation it is obtained from the Fresnel
formulas, which are strictly speaking valid only for infinitely
long interfaces, and the wave vector neff �k = (kx,ky) has to
fulfill the conditions

exp{2ikxa} r2(αx) = 1,
(1)

exp{2ikya} r2(αy) = 1 .

Here, r(α) denotes the Fresnel reflection coefficient for an
angle of incidence α with respect to the surface normal,

r(α) =
neff cos(α) −

√
1 − n2

eff sin2(α)

neff cos(α) +
√

1 − n2
eff sin2(α)

, (2)

and αx,y = arctan[Re
(
ky,x

)
/Re

(
kx,y

)
]. The solutions of the

coupled equations are calculated by iteration and can be
formally written as

kx = {πmx + i ln[r(αx)]}/a,

ky = {πmy + i ln[r(αy)]}/a (3)
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FIG. 3. (Color online) Examples of measured wave functions for (a) 6.835 GHz, (b) 7.615 GHz, and (c) 6.869 GHz with color scale given
in (d), and (e)–(g) the corresponding momentum distributions [with color scale in (h)]. They are identified with the model wave functions
(i) TM(16,20, − −) with 84.1% overlap, (j) TM(20,25, − +) with 67.1% overlap, and (k) TM(14,22, + +) with 68.0% overlap, respectively
[color scale in (l)].

with mx,y = 0,1,2,3, . . . being the x and y quantum numbers
[17]. This yields for the associated resonance frequency

fres = c
√

k2
x + k2

y/(2πneff). Models taking into account only

kxex

kyeyn
eff k

αx

αy

FIG. 4. Two examples of trajectories with the same angle of
incidence (black and white thin arrows) belonging to a classical
torus. The associated momentum vector neff �k = (kx,ky) (thick black
arrows) corresponds to an angle of incidence of αx,y on the vertical
and horizontal boundaries of the square billiard, respectively.

the diamond periodic orbit [13,16,18] are recovered in the
limit αinc ≈ 45◦. The model WFs �mod corresponding to our
ansatz are superpositions of eight plane waves with momentum
vectors (±kx, ± ky) and (±ky, ± kx). The associated ampli-
tudes depend on the symmetry class of the mode. There
are altogether six different symmetry classes in the square
resonator [13,37,38]. We label the modes by (mx,my,s1s2)
with s1,2 ∈ {+,−}. Here s1 = +1 (s2 = +1) when �mod is
symmetric, and s1 = −1 (s2 = −1) when �mod is antisymmet-
ric with respect to the diagonal x = y (x = −y). The model
WFs �mod and their symmetries with respect to the horizontal
and vertical axes are listed in Table I. The (mx,my, − +)
and (mx,my, + −) modes are degenerate due to symmetry
reasons [37]. The model furthermore predicts that this is also
the case for the (mx,my, − −) and (mx,my, + +) modes.
In practice, however, they have slightly differing resonance
frequencies due to their distinct features at the corners, where
the (−−) modes have minimal intensity, whereas the (++)
modes have maximal intensity. To identify the model WF that
corresponds to a given measured WF �expt, we calculated the
overlap integral |C|2 = |〈�expt(f )|�mod(mx,my,s1s2)〉|2 for
several trial functions �mod. For isolated resonances, a typical
overlap of |C|2 = 50–80% indicates that the corresponding
model WF is the correct one, while the overlaps with model
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TABLE I. Symmetry classes, quantum numbers, and wave functions. The first column denotes the symmetry with respect to the diagonals,
the second column is the symmetry with respect to both the horizontal and vertical axis, the third column is the parity of mx + my , the fourth
column the parity of mx and my (which is the same for ++ and −− modes but different for +− and −+ modes), and the fifth column is the
corresponding model wave function.

Diag. Horiz./vert. Parity of Parity of
sym. sym. mx + my mx , my Model wave function

++ + Even Even �mod(x,y) = cos(kxx) cos(kyy) + cos(kyx) cos(kxy)
++ − Even Odd �mod(x,y) = sin(kxx) sin(kyy) + sin(kyx) sin(kxy)
−− + Even Even �mod(x,y) = cos(kxx) cos(kyy) − cos(kyx) cos(kxy)
−− − Even Odd �mod(x,y) = sin(kxx) sin(kyy) − sin(kyx) sin(kxy)
+− None Odd �mod(x,y) = sin(kxx) cos(kyy) + cos(kyx) sin(kxy)
−+ None Odd �mod(x,y) = sin(kxx) cos(kyy) − cos(kyx) sin(kxy)

WFs not related to �expt are usually less than 3%. The specific
value of an overlap depends on the data quality of the measured
WFs and always takes a value below 100%. This is also the
case for the numerically calculated WFs since the semiclassical
model does not represent an exact solution of the Helmholtz
equation. In some cases, the data quality of the measured WFs
was too bad to allow for an identification. Three examples
of model WFs are shown in the bottom row of Fig. 3. The
overlap of the WF �mod(16,20, − −) in Fig. 3(i) with the
measured WF in Fig. 3(a) is 84.1%, that of �mod(20,25, − +)
in Fig. 3(j) with the WF in Fig. 3(b) is 67.1%, and that of
�mod(14,22, + +) in Fig. 3(k) with the WF in Fig. 3(c) is
68.0%. Indeed, each measured WF with mx �= my could be
unambiguously identified with one model WF. Accordingly,
the resonant modes for which clear WFs were obtained can be
labeled by quantum numbers and allocated to a symmetry class
as is the case for integrable systems. It turns out that the modes
indicated by the arrows in Fig. 2 are those with the minimal
possible |mx − my | for the given symmetry class, i.e., those
that are localized closest to the diamond orbit with αinc = 45◦.
The other resonances either correspond to TM modes with
smaller values of αinc or are TE polarized. It is expected that
the quality factor decreases when the angle of localization
αinc deviates more and more from 45◦. We, however, could
not provide evidence of this behavior with our data since the
contributions to the resonance widths are dominated by other
mechanisms, such as the absorption in the alumina and the
coupling losses due to the antennas.

There is only one class of modes whose structure can-
not be associated with a single model WF. An example,
�expt(8.581 GHz), is shown in Fig. 5(b). The measured WF
has an overlap of 62.4% with �mod(28,28, + +), which is
comparable to the values of the cases shown in Fig. 3.
Furthermore, its momentum distribution (not shown) exhibits
a localization at αinc = 45◦, i.e., one along the trajectories
from the family of the diamond orbit, like the model mode.
However, the measured WF does not exhibit the chessboard
structure observed for the model WF in Fig. 5(d).

The frequency spectrum in Fig. 5(a) shows another
resonance nearby at 8.591 GHz. The two resonances are
reasonably well isolated and exhibit only a small spectral
overlap. The measured WF associated with the second res-
onance is shown in Fig. 5(c) and can be identified with the
model mode TM(26,30, + +) [see Fig. 5(e)] with an overlap
of 59.8%. Thus, the symmetry class associated with both

resonances is the same. Its structure also shows deviations
from that of the model WF. Such significant deviations
from the patterns predicted by the model were not seen
for any other classes of modes. Especially the chessboard
pattern expected for the mode shown in Fig. 5(b) was not
observed for any mode neither in the experiment nor in
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FIG. 5. (Color online) (a) Magnification of the frequency spec-
trum around 8.6 GHz. (b, c) Measured WFs for the resonances at
8.581 and 8.591 GHz indicated by the left and right arrow in panel (a),
respectively. (d) Model WF for TM(28,28, + +). (e) Model WF for
TM(26,30, + +). (f, g) Superpositions of model WFs corresponding
to the measured WFs at 8.581 and 8.591 GHz, respectively.
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numerical calculations (not shown here). The overlaps between
the measured WFs corresponding to the two resonances
and the model WFs associated with the other one are, re-
spectively, |〈�expt(8.581GHz)|�mod(26,30, + +)〉|2 = 10.2%
and |〈�expt(8.5891GHz)|�mod(28,28, + +)〉|2 = 11.1%. This
cannot be attributed to the weak overlap of the two resonances
in the frequency spectrum since for other pairs with similar

features a significantly smaller overlap of the measured WFs
with the model WFs corresponding to the neighboring reso-
nance was observed. Thus, evidently there is a nonnegligible
coupling between the two resonances that was also confirmed
by numerical calculations. Consequently more than one model
WF is needed to account for their structures. Indeed, the
respective superpositions

|�sup(f )〉 = 〈�mod(28,28, + +)|�expt(f )〉|�mod(28,28,++ )〉 + 〈�mod(26,30, + +)|�expt(f )〉|�mod(26,30, + +)〉 (4)

agree well with the measured WFs [see Figs. 5(f) and
5(g), respectively], as also confirmed by the corresponding
overlaps |〈�expt(8.581GHz)|�sup(8.581GHz)〉|2 = 72.5% and
|〈�expt(8.591GHz)|�sup(8.591GHz)〉|2 = 70.9%. This situa-
tion is exemplary for all modes localized on αinc = 45◦,
i.e., with mx = my and ++ symmetry, and their neighboring
modes [i.e., (mx − 2,mx + 2, + +)]. It should be noted that the
(mx,mx, + +) and the (mx − 2,mx + 2, + +) model modes
are closer in frequency than any other ones having the same
symmetry class. This could be the reason why their mutual
interaction becomes important. We suppose that these modes
interact via a kind of tunneling effect. A detailed study of
the effect, which we do not yet understand, is beyond the
scope of the current article and will be reported in a future
publication [25]. A similar coupling effect for the modes with
mx = my was observed in Ref. [21], which was, however,
attributed to the influence of the coupling to a waveguide, i.e.,
a perturbation of the square geometry.

V. CONCLUSIONS

We have measured the frequency spectrum and near-field
distributions of a dielectric square resonator and demonstrated
that the resonant states are localized close to classical tori of
the square billiard that are quantized by taking into account the
corresponding Fresnel reflection coefficients. We developed a
simple but efficient semiclassical model that describes all the
measured modes of the dielectric square resonator very well
and allows us to label them unambiguously with quantum

numbers. Note that to our knowledge this was possible
hitherto only for dielectric resonators with circular shape [39].
Furthermore, we showed that the model works well for a large
range of the effective refractive index (neff ≈ 1.5–2.5) and, in
spite of its semiclassical nature, even in a frequency regime
where the side length of the resonator is only five times larger
than the free space wavelength, indicating that the range of
its validity is not limited to the semiclassical regime. The
accuracy of the model for even smaller size-to-wavelength
ratios remains to be verified. Only for a single class of modes,
i.e., those localized on trajectories with angle of incidence
45◦, a small coupling between neighboring model modes of the
same symmetry needs to be taken into account. Such a coupling
effect has so far not been discussed for dielectric square
resonators. The investigation of the underlying mechanism
is of interest since ray-based models like the one proposed
here are widely used and consequently an understanding
of any wave-mechanical effects that limit their precision or
validity is indispensable. A future project is the modeling of
the far-field distributions, which are important for microlaser
applications. Furthermore, the generalization of the model
to other polygonal shapes like hexagons would be of great
practical and theoretical interest.
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