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Regular visitors

LAST NAME FIRST NAME AFFILIATION

CAO Xiangyu LPENS Paris

CHEPELIANSKII Alexei LPS Orsay

DE LUCA Andrea LPTM Cergy

KITANINE Nikolaï IMB Dijon

LE DOUSSAL Pierre LPENS Paris

SCHEHR Gregory LPTHE Paris

SYKES Cécile LPENS Paris

WIESE Kay LPENS Paris
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Visitor programme
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2018

LAST NAME FIRST NAME STAY AFFILIATION

BAIESI Marco 4 Universita di Padova

BERNEVIG Andrei 37 Princeton University

BILEN Agustin 12 Univ. Nacional de Mar del Plata

BRAUN Daniel 25 University of Tubingen

CHEIANOV Vadim 30 Leiden University

EVANS Martin 7 University of Edinburgh

FEDOROV Aleksey 8 Russian Quantum Center Moscou

FLEUROV Victor 18 Tel Aviv University

FUKUSUMI Yoshiki 50 University of Tokyo

GAMAYUN Oleksandr 6 University of Amsterdam

GAVRILIOUK Serguei 3 Aix Marseille Université

GRADENIGO Giacomo 3 Université de Rome

GRITSEV Vladimir 8 University of Amsterdam

GUERY-ODELIN David 1 Université Paul Sabatier Toulouse

HE Xiaolong 16 Hubei University, Wuhan

JOYNER Christopher 2 Queen Mary University of London

KAMCHATNOV Anatoly 54 Institute of Spectroscopy, Troitsk

KIKTENKO Evgeniy 8 Russian Quantum Center Moscou

KOLTON Alejandro 30 Centro Atomico Bariloche

KUNDU Anupam 20 Tata Institute Bangalore
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KURLOV Denis 130 University of Amsterdam

LIENARDY Jean 14 Université Catholique de Louvain

LIPPIELLO Eugenio 4 Univ. della Campania L. Vanvitelli
Caserta

MAGONI Matteo 58 Politecnico di Torino

MATVEENKO Sergey 153 Landau Institute Moscou

MENDONCA Jose Ricardo 1 an Universidade de Sao Paulo

MIZUSAKI Takahiro 14 Senshu University, Tokyo

MUKAMEL David 4 Weizmann Institute Rehovot

OZORIO DE ALMEIDA Alfredo 9 Centro Brasileiro de Pequisas Fisicas
Rio de Janeiro

PETRILLO Giuseppe 94 Univ. della Campania L. Vanvitelli
Caserta

POLOVNIKOV Kirill 35 Lomonosov Moscow State Univ.

POLYCHRONAKOS Alexios 28 City College of New York

POPLAVSKYI Mihail 14 King’s college London

RAY Sayak 26 Indian Inst. of science, Mohanpur

RONCERAY Pierre 19 Princeton University

SAAD David 3 Aston University

SAMAJ Ladislav 45 Slovak Acad. of Sciences Bratislava

SPOHN Herbert 3 Technische Universitat Munchen

TAMM Mikhail 15 State University of Moscow

TELLEZ Gabriel 14 Universidad de Los Andes

TOURIGNY Yves 61 University of Bristol

VALOV Alexander 16 Lomonosov Moscow State Univ.
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WARCHOL Piotr 9 Jagiellonian University Krakow

XU Peng 16 Hubei University, Wuhan

ZACCANTI Matteo 8 Universita di Firenze

2019

LAST NAME FIRST NAME STAY AFFILIATION

ALTSHULER Boris 31 Columbia University

BALDELLI Niccolo 21 ICFO Barcelone

BASU Urna 30 Raman Institute Bangalore

BERTINI Bruno 14 University of Ljubljana

BILEN Agustin 8 Univ. Nacional de Mar del Plata

BOUDJEMAA Abdelaali 41 Hassiba Benbouali Univ. of Chlef

BOYER Denis 75 University of Mexico

CABRA Daniel 8 La Plata University

DEAN David 5 LOMA Talence

DUPONT Maxime 5 University of California, Berkeley

ENDRES Manuel 1 California Inst. of Technology
Pasadena

EVANS Martin 29 University of Edinburgh

FEDOROV Aleksey 5 Russian Quantum Center Moscou

FRANCHINI Fabio 5 Ruder Boskovic Institute Zagreb

GARCIA DE SORIA Maribel 13 Universidad de Sevilla

GRABSCH Aurélien 2 Leiden University

HARTL Benedikt 26 Technical University Vienna
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KAHL Gerhard 3 Technical University Vienna

KIKTENKO Evgeniy 5 Russian Quantum Center Moscou

KRAVTSOV Vladimir 5 ICTP Trieste

KURLOV Denis 71 University of Amsterdam

LANZA Federico 174 University of Padua

MACALUSO Elia 1 Trento University

MATVEENKO Sergei 63 Landau Institute Moscou

MAYNAR Pablo 13 Universidad de Sevilla

MAYS Anthony 31 University of Melbourne

MUKAMEL Davis 9 Weizmann Institute Rehovot

OPPENHEIMER Naomi 178 Simons Foundation New York

PEREIRA DOS SANTOS Alexandre 14 Univ. Federal do Rio Grande do Sul
Porto Alegre

PLATA Carlos 19 Universidad de Sevilla

PODGORNIK Rudolf 11 University of Ljubljana

POLYCHRONAKOS Alexios 31 City College of New York

POPLAVSKYI Mihail 15 King’s college London

PRADOS Antonio 19 Universidad de Sevilla

RASANEN Esa 30 Tampere University

ROSSINI Davide 31 University of Pisa

SAMAJ Ladislav 29 Slovak Acad. of Sciences Bratislava

TELLEZ Gabriel 31 Universita de Los Andes

TOMSOVIC Steve 19 Washington State University

TOURIGNY Yves 19 University of Bristol
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YUDSON Vladimir 6 National Research Univ. Moscou

ZADNIK Lenart 5 University of Ljubljana

2020

LAST NAME FIRST NAME STAY AFFILIATION

GOIRAND Florian 10 Université Paul Sabatier Toulouse

GRABSCH Aurélien 4 Leiden University

HENKEL Malte 3 Université de Lorraine Nancy

HOCINE Ahmed 11 Hassiba Benbouali Univ. of Chlef

IEMINI Fernando 12 Univ. Federal Fluminense Rio de
Janeiro

KOZLOWSKI Karol 2 ENS Lyon

MAYNAR Pablo 17 Universidad de Sevilla

POLYCHRONAKOS Alexios 26 City College of New York

PUJOL Pierre 1 LPT Toulouse

RONCERAY Pierre 12 Princeton University

SCHIMMENTI Vincenzo 184 University of Padua

2021

LAST NAME FIRST NAME STAY AFFILIATION

ARES Filiberto 7 Universidad de Zaragoza

EVANS Martin 13 University of Edinburgh

GATTOBIGIO Mario 2 INPHYNI Valbonne

HAGENDORF Christian 31 Université de Louvain
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POLYCHRONAKOS Alexios 14 City College of New York

SANTOS Luis 3 Leibniz University

TARRUELL Leticia 3 ICFO Barcelone

TOURIGNY Yves 27 University of Bristol

2022

LAST NAME FIRST NAME STAY AFFILIATION

AGORITSAS Elisabeth 33 EPFL Lausanne

ASTRAKHARCHIK Grigori 21 Univ. Politecnica de Catalunya

BICEGO Sara 6 Imperial College London

BRESOLIN Sebastiano 34 University of Trento

CABRA Daniel 44 La Plata University

DEL VECCHIO DEL
VECCHIO

Giuseppe 49 King’s college London

EVANS Martin 30 University of Edinburgh

GONCHENKO Marina 10 Univ. Politecnica de Catalunya

JAGLA Eduardo 10 Centro Atomico Bariloche

JAPHARIDZE Georges 5 Ilia State University

JAVERZAT Nina 16 SISSA Trieste

KALISE Dante 2 Imperial College London

MAJEED BHAT Junaid 4 ICTS Bangalore

MARTIN John 31 University of Liège

MAYNAR Pablo 12 Universidad de Sevilla

MERCADO VASQUEZ Gabriel 9 University of Mexico
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MOUDGALYA Sanjay 2 California Inst. of Technology
Pasadena

NARDIN Alberto 7 University of Trento

NIEDDA Jacopo 25 Sapienza Univ. Rome

PATRON Antonio 93 Universidad de Sevilla

PETRILLO Giuseppe 52 Univ. della Campania Luigi
Vanvitelli

POLOVNIKOV Kirill 51 Skoltech Moscow

POLYCHRONAKOS Alexios 25 City College of New York

PRADOS Antonio 28 Universidad de Sevilla

SAMAJ Ladislav 14 Slovak Acad. of Sciences
Bratislava

SASTRY Srikanth 4 Jawaharlal Nehru Centre
Bangalore

TELLES Igor 28 Univ. Federal do Rio Grande do Sul

TELLEZ Gabriel 5 Universita de Los Andes

TOURIGNY Yves 16 University of Bristol

WALTER Benjamin 12 Imperial College London

2023

LAST NAME FIRST NAME STAY AFFILIATION

AUPETIT-DIALLO Gianni 3 INPHYNI Valbonne

BELLIARD Samuel 4 LMPT Tours

BERADZE Bachana 59 Ilia State University

BOUDJEMAA Abdelaali 19 Hassiba Benbouali Univ. of Chlef
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BOYER Denis 28 University of Mexico

CABRA Daniel 22 La Plata University

CONGY Thibault 4 Northumbria University

DAS Suchismita 3 MPI Dresde

DEL VECCHIO DEL
VECCHIO

Guiseppe 3 King’s college London

DERIVERY Emmanuel 11 MRC Lab Cambridge

DEROSI Giulia 2 Univ. Politecnica de Catalunya

DI LIBERTO Marco 2 University of Padova

DI SPENA Sharon 54 LPTM Cergy

EVANS Martin 9 University of Edinburg

FLORIS Elisa 3 Politecnico di Turino

GANEVA Iva 3 University of Bern

GARUCHAVA Shota 59 Ilia State University

GERAGHTY Patrick 5 University of Cologne

GIACHETTI Guido 365 LPTM Cergy

HOCINE Ahmed 5 Hassiba Benbouali Univ. of Chlef

IMURA Ken Ichiro 9 University of Tokyo

JAVERZAT Nina 5 SISSA Trieste

JOSEPH Merin 3 Leeds University

KARDAR Mehran 5 MIT Cambridge

KHERUNTSIAN Karen 2 University of Queensland

MEHRI Zohra 30 Hassiba Benbouali Univ. of Chlef

MUKHERJEE Soheli 11 Ben Gurion University
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NARDIN Alberto 115 University of Trento

NEJI Rajendra 3 IBB Julich

NICOLETTI Flavio 8 Sapienza Univ. Rome

NIEDDA Jacopo 16 Sapienza Univ. Rome

NUNZI Carlotta 117 LPTM Cergy

PELITI Luca 32 SMRI Santa Marinella

PETRILLO Giuseppe 11 Univ. della Campania Luigi
Vanvitelli

POLETTI Dario 8 Singapore University

RUSSO Giovanni 98 Universita di Pavia

SCARDICCHIO Antonello 3 ICTP Trieste

SCHLAGHECK Peter 3 University of Liège

SCLOCCHI Antonio 3 EPFL Lausanne

TAKAHASHI Kin’Ya 3 University of Tokyo

TAMM Mikhail 5 Tallinn University

TELLES Igor 155 Univ. Federal do Rio Grande do Sul

TOMSOVIC Steve 115 Washington State University

TOURIGNY Yves 26 University of Bristol

YOSHIDA Hironobu 15 University of Tokyo

ZADNIK Lenart 7 SISSA Trieste

ZUNDEL Martina 8 LPMMC Grenoble
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Long stays

YEAR NAME PLACE DAYS

2018 E. Bogomolny University of Bristol 98

E. Bogomolny Lanzhou (Chine) 15

T. Emig Naples University 7

T. Emig UMI 3466 CNRS MIT 59

S. Franz AIMS Kigali Rwanda 30

S. Franz ICTP Trieste 10

S. Franz La Sapienza University Rome 138

O. Giraud Université de Mar del Plata 20

S. Majumdar Weizmann Institute 24

S. Majumdar Raman Research Institute Bangalore 14

S. Majumdar ICERM Brown University 21

S. Ouvry University Stellenbosch 27

S. Ouvry Uni. Federal Rio Grande do Norte
Natal

12

S. Ouvry Uni. British Columbia Vancouver 8

S. Ouvry City College New York 9

S. Ouvry IRD Mbour Sénégal 22

R. Santachiara IFLP Univ. La Plata 21

V. Terras Simons Center Stony Brooks 14

2019 E. Bogomolny ICTP Trieste 12

T. Emig Polar Electro, Oulu, Finland 15

T. Emig UMI 3466 CNRS MIT 7

S. Franz La Sapienza University Rome 145
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O. Giraud National University of Singapore 11

O. Giraud Université de Mar del Plata 13

S. Majumdar Raman Research Institute Bangalore 30

S. Majumdar TIFR Bombay 14

S. Majumdar Weizmann Institute 20

S. Majumdar Raman Research Institute Bangalore 27

S. Ouvry University Stellenbosch 20

S. Ouvry Institut Physics Natal 24

S. Ouvry CRM Montréal 8

S. Ouvry AIMS Mbour Sénégal 22

A. Rosso RRI Bangalore, TIFR Mumbai 15

R. Santachiara IIP UFRN Natal 30

2020 S. Majumdar ICTS Bangalore 21

S. Ouvry AIMS Stellenbosch 19

2021 E. Bogomolny ICTP Trieste 10

S. Ouvry City College New York 12

2022 S. Franz La Sapienza University Rome 48

O. Giraud National University of Singapore 20

O. Giraud Université de Mar del Plata 14

S. Ouvry AIMS Stellenbosch 13

A. Rosso ICTS TIFR Bangalore, TIFR Mumbai 9

V. Terras Galileo Galilei Inst. Florence 14

2022 - 2023 M. Lenz Ludwig Maximilian University of Munich 330

2022 - 2023 S. Majumdar ICTS Bangalore 28

2023 E. Bogomolny ICTP Trieste 20
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T. Emig Physics Dept. MIT 15

S. Franz La Sapienza University Rome 62

S. Majumdar Raman Research Institute Bangalore 28

S. Ouvry AIMS Stellenbosch 23

S. Ouvry City College New York 9

S. Ouvry University Montreal 11

E. Trizac Institut Physics Bratislava 11
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Organization of events

2018 Workshop Correlations, fluctuations and anormalous
transport in systems far from equilibrium, Weizmann

Inst.

S. Majumdar

Journée de physique statistique, Paris E. Trizac

Workshop Running science meets physics &
engineering, MIT, Cambridge

T. Emig

Atelier sur les matrices aléatoires, Paris G. Schehr

Conference NSPCS, KIAS, Seoul S. Majumdar

Disordered serendipity: a glassy path to discovery. A
workshop in honour of Giorgio Parisi's 70th birthday, La

Sapienza Univ.

S. Franz

Conference Probabilistic methods in statistical physics
for extreme statistics and rare events, Pise

G. Schehr

4th international conference on physics and
biological systems, Gif sur Yvette

M. Lenz

2019 3rd Bangkok workshop on discrete geometry,
dynamics and statistics

S. Ouvry

Journée de physique statistique, Paris E. Trizac

Conference Artificial intelligence and physics, Orsay A. Rosso

Conference CCEGN 2019, Les Houches S. Nechaev

Workshop Complex HRV analysis during exercise, Oulu
Univ. Finland

T. Emig

Workshop Yielding phenomena in disordered systems,
Bariloche

A. Rosso

Workshop New trends in quantum light and
nanophysics, Maratea

G. Shlyapnikov

SFT-Paris 2019: Lectures on statistical and condensed
matter field theory

R. Santachiara

2020 Journée de physique statistique, Paris E. Trizac

Workshop Shortcut to adiabaticity 2020, Toulouse E. Trizac

Virtual Physiological Human 2020 M. Lenz

2021 Workshop on quantum computing, Sotchi G. Shlyapnikov

7th Les Houches School in computational physics:
dynamics of complex quantum systems, from theory

to computation

A. Rosso

Programme Bootstat 2021, Orsay R. Santachiara

5th international conference on physics and
biological systems, Fully online

M. Lenz
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Summer school FPSP XV, Bruneck A. Rosso

Programme “Dynamics and local control of impurities
in complex quantum environments”, Orsay

M. Zvonarev

Conference on quantum technologies, Moscow G. Shlyapnikov

2022 4th Bangkok workshop on discrete geometry,
dynamics and statistics

S. Ouvry

Journée de physique statistique, Paris E. Trizac

Workshop on quantum computing, Sotchi G. Shlyapnikov

School Interdisciplinary challenges: from
non-equilibrium physics to life sciences, Edinburgh

V. Ros

Workshop Quantum many-body physics in the
presence of an environment 2022, Cergy

L. Mazza

6th international conference on physics and
biological systems, Orsay

M. Lenz

Summer school Disorder in complex systems, Orsay A. Rosso

Workshop New frontiers in liquid matter, Paris E. Trizac

International school & workshop ECRYS 2022, Cargèse S. Brazovskii

Workshop Large deviations, extremes and anomalous
transport in nonequilibrium systems, ESI, Vienna

S. Majumdar

Conference Statistical mechanics and its applications,
Dilijan, Armenia

S. Nechaev

Conference Statistical physics of complex systems,
ICTS, Bangalore

S. Majumdar

2023 5th Bangkok workshop on discrete geometry,
dynamics and statistics

S. Ouvry

From soft matter to biophysics conference, Les
Houches

M. Lenz

Journées interdisciplinaires de physique statistique,
Orsay

V. Ros

Programme "Dynamical foundations of many-body
quantum chaos", Orsay

O. Giraud

Program Quantum many-body physics in the
presence of an environment 2023, Orsay

L. Mazza

Congress of the French Physical Society, Paris M. Lenz

Frustrated self-assembly retreat, Eybens M. Lenz
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We describe below the scientific activity of the LPTMS regarding the seminars, meetings, scientific days
involving other laboratories in the Paris-Saclay area and beyond, off-site meetings, organization of
scientific visits and outreach activities.

1- Seminars & regular meetings at the LPTMS

Seminars play a vital role in LPTMS's scientific life. The general LPTMS seminar is held weekly, and it is
supplemented by three topical seminar series on complex systems, biophysics and quantum physics, by
the PhD and Postdoc seminar and by some group meetings. Further details on each series is provided
below.

LPTMS general seminar (Tuesday, 11 am, every week)

This seminar is contributed by invited visitors, prospective CNRS applicants, as well as lab members (one
or two talks per year). The diversity in topics aims at representing all research lines of the LPTMS in a
balanced manner. The audience includes also the regular visitors of the lab; when relevant, members
of neighboring labs (LPS, LISN and IPhT) are invited. It is a strong tradition of the LPTMS to see this seminar
not only as the main occasion for its members to gather and interact, but also as an essential formative
experience for PhD students: all students are highly encouraged to attend, and their participation
remains consistently high. The seminar series has been conducted online amid the COVID-19
pandemic, and in a hybrid format from 2021 to 2023. It is now transitioning back to in-person sessions.
Organizer: Valentina Ros.

Complex systems seminars (Thursday, 11 am, once or twice per month) and Quantum physics
seminars (Friday, 2 pm, once or twice per month)

These two topical seminars take place once or twice per month, with the scope of hosting more
technical and detailed talks on the subjects of complex systems and quantum physics, respectively.
Their more flexible structure allows also for the inclusion of talks by external visitors who may face travel
constraints preventing their participation in general Tuesday seminars, along with students and
permanent members of LPTMS. Organizers: Marco Biroli, Valentina Ros (complex systems) and Leonardo
Mazza, Alberto Nardin (quantum).

Physics-Biology interface seminar (Friday, 11 am, twice per month)

Coordinated by both LPTMS and the adjacent lab LPS, this seminar series serves as a primary platform
for the research at the interface between physics and biology in the south of Paris. The audience
consists of physicists and biologists from the Paris-Saclay area, with a significant presence of
experimentalists. Talks within this series occur bi-weekly, alternating between LPTMS and LPS as hosting
venues. Organizers: Martin Lenz, Antoine Fruleux.

PhD and Postdoc seminars (Wednesday, 2 pm, once per month)

This seminar series is independently organized by PhD students and Postdocs from the lab. The format
follows a journal-club style, where participants alternate between presenting and discussing scientific
papers of broad interest, alongside sharing their own research findings and questions. Organizer:
Charbel Abetian.
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Soft Biophysics Group Meeting (Wednesday, 3 pm, each week)

This regular group meeting features journal clubs, informal contributions and technical discussions from
students and collaborators of Martin Lenz, Antoine Fruleux, Valentina Ros. Once every two weeks this
meeting is held jointly with the group of Erwin Frey at LMU Munich over Zoom. Organizer: Martin Lenz.

2-Meetings “hors les murs”

LPTMS days (journées du LPTMS)

Throughout the evaluation period, the LPTMS has organized two off-site meetings involving all the lab
members, including the regular visitors and prospective PhD students doing an M2 stage. The scientific
program included seminars by a selection of permanents, postdocs and PhD students, with the aim of
keeping all lab members informed about the evolving research directions at the LPTMS. These
occasions also facilitated discussions on general issues related to the lab life (carbon footprint,
seminars organization) through some general assemblies. The LPTMS days 2019 took place in Deauville,
organized by Christophe Texier, Leonardo Mazza and Claudine Le Vaou. The LPTMS days 2022 took
place in Bordeaux, organized by Silvio Franz, Claudine Le Vaou, Karolina Kolodziej.

Opération Oxy-Jeunes

The LPTMS has joined the program Oxy-Jeunes aiming at organizing scientific meetings for Phd students
and postdocs following the pandemic period. The lab has financed a 3 day meeting at the Ecole de
Physique des Houches (31 May-2 June 2021) with a scientific program self-organized by the PhD
students and postdocs of the LPTMS and LPS laboratories.

3- Seminars & meetings promoting integration with other labs

FFJ days & colloquia

The LPTMS is a constituent of the Fédération Friedel Jacquinot (FFJ), which encompasses six laboratories
(FAST, ISMO, LAC, LPS, LPTMS, LuMIn) that are closely knit both geographically (situated within an
800-meter radius) and scientifically (experimental and theoretical studies of soft and condensed
matter). The lab has contributed with talks to the three FFJ Days held yearly from 2021; in addition, the
FFJ organizes a series of colloquia of general interest (8 colloquia from autumn 2021 to spring 2024). The
LPTMS has proposed and managed the organization of the following colloquia in the period 2021-2023:
Michael Berry (December 2021), Michael Kosterlitz (June 2022), Leticia Cugliandolo (December 2023).
The LPTMS referent for the FFJ is Raoul Santachiara.

LPTMS-IPhT Days

Members of the LPTMS have strong scientific connections and collaborations with the IPhT laboratory of
CEA Saclay. To highlight and foster these interactions, in 2022 we organized a new edition of the
LPTMS-IPhT Days, with two days of seminars featuring presentations by members of both labs on the
themes of quantum physics (14 April 2022 at the LPTMS) and statistical physics (20 April 2022 at the IPhT).
The LPTMS member responsible for the organization has been Raoul Santachiara.
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Scientific programs of the Institut Pascal

Besides participating as audience to the scientific programs of the Institut Pascal (IPa) which shares the
building with the LPTMS, several members of the lab have contributed actively to the organization of
the following scientific programs since the beginning of the activity of the IPa until 2023:
◻ Artificial intelligence and physics (2 days, 2019). LPTMS organizer: Alberto Rosso
◻ Dynamics and local control of impurities in complex quantum environments (4 weeks, 2021). LPTMS
organizer: Mikhail Zvonarev
◻ Bootstat 2021: Conformal bootstrap and statistical models (4 weeks, 2021). LPTMS organizer: Raoul
Santachiara
◻ Disorder in complex Systems (2 weeks, 2022). LPTMS organizer: Alberto Rosso
◻ OpenQMBP (3 weeks, 2023). LPTMS organizer: Leonardo Mazza
◻ Dynamical Foundations of Many-Body Quantum Chaos (5 weeks, 2023). LPTMS organizer: Olivier
Giraud
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The unit has planned over the recent period various actions regarding its carbon footprint. We
summarize below what has been done and the future challenges regarding the environmental impact
of the lab.

1-Context and timeline of the activities

We first recall some key dates and facts setting the context in which the unit is embedded. We focus on
the French research community. We first recall that the implementation of a national low-carbon
strategy for France gives an objective of 2 tCO2e / person in 2050 (and carbon neutrality assuming
carbon compensation) with an intermediate target of 6 tCO2e / person around 2030.

Some key dates for the French research community are

● ~2019-today : creation of the collective Labo1Point5, which became a GDR in June 2021,
many laboratories carry out their greenhouse gas assessments (BGES), mainly with the
GES1point5 tool.

● ~2018 : Hcéres takes into account initiatives to reduce the environmental footprint of
laboratories during its evaluations.

● October 21, 2020 : Letter from CNRS DG and CPU President “contribute to the regulation of the
carbon impact of academic activities.”

● January - March 2021 : meetings in Paris-Saclay and at the CNRS on the implementation of
BGES. (again in 2022 and 2023)

● November 2022 : the ministry MESR publishes its Climate-biodiversity and ecological transition
plan for higher education and research with an objective of -2% reduction per year.

● November 2022 : the CNRS announces its Low Carbon Transition Plan
● December 5, 2022 : COMETS (ethics committee) publishes a key report
● January 2023 : publication of the sufficiency plan of the University Paris-Saclay
● during 2023 : Working group at the CoNRS regarding the evaluation of researchers in the light

of the carbon issue. Workshop "Impact of ecological, energy and digital transitions on research
in laboratories” within the framework of the INP prospective.

At the LPTMS level, a strategy fully supported by the two successive directors over the period:

● June 2019 : presentation of the climate issue and its implications in the academic world at the
laboratory days.

● November 2020 : Appointment of Guillaume Roux as sustainable development referent with
the CNRS and the University of Paris-Saclay.

● April 2021 : extended laboratory council acting on the preparation of the laboratory's carbon
accounting (BGES). Guillaume Roux is assisted by Claudine Le Vaou, Karolina Kolodziej and
Olivier Giraud.

● May 2022 : presentation of the results of the BGES at the lab’s days. Creation of a committee
to make propositions for a reduction plan. Composition of the committee: L. Brémaud (PhD
student), O. Giraud (DR), K. Kolodziej (ITA), S. Ouvry (DR), G. Roux (MCF)

● March 29, 2023 : general assembly of the laboratory that took several actions.
● 2024 : Implementation of the first actions.
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2- Results of the carbon accounting

There exists a non-public 30 pages report that explains the results. The methodology is similar to the one
of GES1point5 but at that time, this tool was incomplete on several items that were relevant to us so we
developed our own analysis. The summarized result is

with the following comments (in particular specifying differences with the GES1point5 methodology)

● people : we count permanent and non-permanent, with LPTMS affiliation, with a weight 1
(GES1point5 counts only 0.5 for university members) but not visitors nor trainees (about 55
people in all).

● missions (traveling) : the main scope. Aviation footprint includes trails condensation effects. We
counted everything for members and visitors from all financial sources. GES1point5 counts only
missions paid by CNRS with an expense.

● building : both energy and construction (typically half and half in contributions).
● numerics : both material and services
● purchases : most of the things the lab pays for for everyday work.

An arbitrary though realistic ambitious reduction plan with order of magnitude to try to reach almost
2tCO2e is given below, separating actions resorting to individual and collective decisions

Simulateur de réductions
actuel

[kgCO2e/pers]
simulé 2030

[kgCO2e/pers] hypothèses

individuels 4 009 1 060

missions 3 816 954 -75%

trajets domicile-travail 194 106 électrification des véhicules

communs 1 741 1 255

numérique 811 649 -20% (sobriété + baisse sociétale des FE)

bâtiment 681 407 chaufferie géothermie + baisse température

achats - services 249 199 -20% (sobriété + baisse sociétale des FE)

total 5 750 2 315 -59,74%

Essentially, for our unit, the main lever on which the lab policy can act are missions, but all scopes are
being and need to be addressed.
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3- Reduction plan voted in general assembly and the future

End of March 2023, a general assembly voted the following actions

● awareness actions : display of 2 posters in common rooms about order of magnitudes for
missions

● communication actions : web page dedicated to the lab footprint and actions
● footprint monitoring : missionary calculates its footprint and sends it to the secretary and the

director. Implementation of anonymous monitoring by all members on the total and distribution
of the mission footprint.

● mission regulation :
○ No plane if there is a train journey of less than 5 hours
○ Reduction targets. The members of the laboratory agree on an objective overall (all

missions monitored) of approximately -50% in 2030 compared to 2019. Every two years,
the objectives are re-discussed based on follow-up and collective assessment.

○ distribution policy and decision support for the DU for the policy of choosing
assignments.

4- Other climate related activities

Guillaume Roux has participated in several institutional activities on the question of integrating the
environmental challenge in Physics research. This includes

⋄ Plenary keynote with André Estevez-Torres in the congrès général des 150 ans de la Société Française
de Physique 2023
⋄ participation in the committee writing the report Intégrer les enjeux environnementaux à la
recherche en Physique (hal-04255371) for CNRS Physics prospective. 2023
⋄ working group for CoNRS on Evaluation in research in times of environmental challenges, 2023.

⋄ participation to workshops helping colleagues, PhD advisor and directors setting up their carbon
strategy both at University and CNRS, 2022 & 2023
⋄ co-organization of the doctoral school ECOCLIM 2022 to which LPTMS provided financial support.
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1. Teaching

Many members of the unit are involved in teaching. We list below salient actions and contributions in
this essential activity.

Involvement in the teaching landscape

Over the last 6 years, 7 members of the lab were professors, assistant professors or “professeur agrégé”
affiliated to the Paris-Saclay University (Franz, Mazars, Mazza, Pavloff, Roux, Texier, Trizac), less than 30%
of the permanent staff. All are involved in courses for the Physics department of the University and
contribute significantly to both bachelor and master programs. At bachelor levels, they are involved in
all tracks and, at master levels, they take or took part in M2 ICFP (Roux, Texier, Trizac), M2 PCS (Pavloff,
Roux, Texier, Trizac) and M2 QLMN (Roux, Pavloff). At the bachelor level, one specificity of the
Paris-Saclay curriculum is the existence of a Magistère de Physique that gathers students meant to
research training, originating university & ENS Paris Saclay. The department also offers Physics lectures
for students from engineering schools and international ones (General Physics). At the M2 level, there is
a big shuffle of students and they usually gather students from all the Paris area and well beyond.

The LPTMS members specialize in teaching statistical physics and quantum mechanics but contribute to
all sorts of general physics education. They hold several responsibilities as head / representative of
educational tracks : ICFP (Texier), PCS (Trizac, Texier), L3 Physique (Roux). Martial Mazars has a teaching
load of 384h each year and he is a key teacher in experimental works and education tracks for future
teachers (Agrégation de Physique).

Several members are currently or previously IUF members (Trizac, Franz, Pavloff). Despite the small
number of university members of the unit, most of them have participated actively in local and national
collective instances over the last 6 years : CNU (Mazza), CoNRS (Roux), CCUPS (Mazza, Pavloff, Roux,
Texier), Conseil du département de physique (Pavloff, Roux, Texier).

CNRS members have always been involved in teaching. They usually participate in master programs :
M2 ICFP (Lenz, Ros, Rosso), M2 PCS (Lenz, Giraud, Ullmo), but also teach in other institutions such as
CentraleSupélec (Santachiara), Mines ParisTech (Lens), ENS Lyon (Majumdar) and ESPCI (Rosso, Terras).

Members have also participated to the AIMS program (Franz, Ouvry).

Many PhD students contribute to teaching, essentially through the “doctoral mission” program of the
Physics department.

Original contributions, books

University members have written books, both for students and for outreach or essays on Science. The
whole list can be found on the webpage of the lab

https://www.lptms.universite-paris-saclay.fr/activites/publication/librairie/

Over the 2018-2023 period, books have been released

● "Prévoir sans comprendre, comprendre sans prévoir", H. Krivine, éd. Cassini, 2018.
● L’IA peut-elle penser ? Miracle ou mirage de l’intelligence artificielle (2021)
● Enjeux de la transition écologique, G. Roux, EDP Sciences Open EBook, 428 pages (2021).

https://cnrs.hal.science/LPTMS/hal-03461012v1
● "On nous aurait menti, de la rumeur aux fake news", H. Krivine, éd. De Boeck, 2022.
● Statistical Physics (2023), Nicolas Sator, Nicolas Pavloff, Lenaic Couedel
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Many of the teachers (University or CNRS) share freely useful materials either from their webpage or
from the dedicated page for the lab

https://www.lptms.universite-paris-saclay.fr/wiki-cours/index.php/Main_Page

Hubert Krivine has been appointed as expert for the national GEPP in charge of elaborating the new
Physics and Chemistry programs for highschools.

Guillaume Roux has participated in the setting of the interdisciplinary object AllCan since 2020, which
offers a university track in coordination with CentraleSupélec and other components of the Paris-Saclay
university. In 2019-21, he participated to the creation and development of the SPOC "Challenges of the
ecological transition”

2. Outreach

Fêtes de la science Paris-Saclay

Since its inception, the LPTMS has actively participated in the "Fête de la Science" organized annually
by the University Paris-Saclay. Specifically, the laboratory offers six workshops meticulously crafted by its
members to present fundamental and intricate concepts, spanning from quantum mechanics to
fractals, to both high school students and families without specific backgrounds in science. The LPTMS
has consistently stood out by involving a considerable number of PhD students, postdocs, and
permanent members during these "Fête de la Science" events, thereby fostering an enthusiastic and
constructive atmosphere around science for students and families alike.
See more at https://www.lptms.universite-paris-saclay.fr/wiki/index.php/Fete_de_la_science

Stages des troisième

In collaboration with the FFJ, we annually host students for their “stage de découverte professionnelle
du 3eme”. For one week, the students interact with senior and young researchers of our laboratory
with the aim of providing them a glimpse into the life of a researcher and of the educational path to
pursue this career.

Outside the walls

Here, we list public seminars for broad audience, media broadcasting and outreach actions taking
place outside the University wall in which LPTMS members have been involved in. Notice that several
non-permanent members have been also active in this field but we have less traces of their
contributions.

Thorsten Emig
⋄ Conférence/débat public, Salon Sport Unlimitech, Lille, 24/09/2021
⋄ Presse écrite, British Milers Club News, Vol.15 Issue 2 (2018).
Hubert Krivine
⋄ Invité à quatre émissions scientifiques sur France Inter et France culture, divers articles de vulgarisation
et présentations de livres dans des librairies et des lycées en France et à l'étranger (Tunisie, Égypte et
Madagascar dans le cadre de AEFE)
⋄ Animations de plusieurs "forum des mathématiques"; plusieurs vidéos dont :
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- "Cinq à sept" de l'académie des sciences, Est-on sûr de l’âge de la terre ? 2018
- "les mardis de l'espace des sciences de Rennes" : Peut-on être sûr de l'âge de la Terre ? 2019
- émission "médiapart", L'Intelligence artificielle: que peut-elle vraiment ? 2019,
-"Timeworld 2021", le hasard est-il une limitation de l’intelligence artificielle ? 2021.
Martin Lenz
⋄ Pint of Science; Spoke about protein aggregation at a festival in a bar (Kremlin-Bicêtre 2019)
⋄ EPSAA student projects; Designed outreach materials with graphic arts students (Paris 2019-present)
⋄ Viens voir mon taf; Hosted disadvantaged middle school students for 1 week/year (Orsay
2019-present)
⋄ Telescience; discussed research during lockdown with Indian high schoolers (Kerala 2020)
⋄ U. Paris-Saclay; organized exhibition of graphic artwork based on our and others’ research (Orsay
2022)
⋄ L’origine de la vie de l’univers à la terre; Outreach round table (Orsay 2023)
⋄ Le dessin scientifique et la chambre claire; Outreach conference and hands-on activity (Orsay 2023)
Nicolas Pavloff
⋄ Participation à un film de vulgarisation de 6mn30s réalisé par M. Relid du service de communication
de l’Université Paris-Saclay (COMPAS) au sujet des trous noirs acoustiques.
http://www.canal-u.tv/video/scavo/les_trous_noirs_acoustiques.49705

Valentina Ros

⋄ Outreach lecture within the course "Comunicare la fisica e la matematica" at the Master in Scientific
journalism Franco Prattico, SISSA, Trieste, Italy, 2022. Title of intervention: Complex systems: metastability,
slow dynamics, and what do a glass and a bacterial ecosystem have in common

Guillaume Roux
⋄ Table ronde Quelle est la place de l’écologie en Recherche ? au Festival double science, parrainé
par la SFP, 2023.
⋄ Écopolien seminar Face à l’anthropocène : quels regards adopter pour accompagner l’orientation
et l’action ? 2023
⋄ Outreach conference on Anthropocene in highschool Colbert and at Prof En Fac, Sorbonne
Université, 2022.
⋄ Intervention D’Alembert colloquium Promesses des sciences et sciences des promesses, 2022.
⋄ Interview dans l’édition 2021 du Big bang au big band.
Emmanuel Trizac
⋄ Round table on Time and irreversibility in La Nuit des Temps, 2021
https://www.sfpnet.fr/la-nuit-des-temps-2021
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We summarize here the involvement of the LPTMS in training through research. This training plays a
central role in the life of the unit, through the supervision of young researchers (doctoral students,
post-doctoral researchers, or internship students) or through the management of the doctoral school
itself.

1- LPTMS PhD students during the period 2018-2023

The unit is very involved in doctoral training : 52 doctoral students have been officially trained in LPTMS
during the period 2018-2023 (113 since the creation of the laboratory), among which 35 defended
during the period. On average, there have been 5 new doctoral students each year at LPTMS.

Concerning the origin of the funding, LPTMS usually obtains 1 to 2 contracts from the doctoral school
competition each year (1,5 in average per year during the period), the others students being funded
from various other programs : among the 35 PhD students which have been hired during the period
2018-2023, one counts 4 fundings from CDSN (2 from ENS Ulm, 1 from ENS Lyon and 1 from ENS
Paris-Saclay), 2 from ERC, 3 from foreign fellowships, 1 from the Labex, 6 from CNRS, the other ones
being from very various origins (Labex, Idex, DIM, QuantEdu, CFM or Bettencourt-Schueller
foundation…).

Concerning the academic and/or geographical origin of doctoral students, the natural recruitment
pool is that of the various master's degrees in the Paris region, in particular the ICFP and Physics of
Complex Systems master's degrees. Despite its relative distance from the center of Paris, the LPTMS
remains attractive for good students from these masters. Thus, a large majority of doctoral students
recruited over the period came from there. But there are also a certain number of doctoral students
coming directly from foreign master's degrees (many Italians, but also a few doctoral students from
other European or even non-European master's degrees). On the other hand, we have relatively few
doctoral students from provincial master's degrees, but this is a general phenomenon for all laboratories
affiliated to the doctoral school.

Among the 35 PhD students who defended
during the period, 22 (more than 60%)
continued an academic career : the majority
in a post-doctoral position, 2 of them having
already obtained a permanent position. Many
of the others found quite easily interestings
jobs as scientists or consultants in private
companies. 2 became high school teachers.

We can mention that, in total since the
creation of the laboratory, 27 former PhD
students have obtained an academic
permanent position in France (17 in CNRS, 7 at university, 1 ESPCI, 1 ENS, 1 CIRAD).
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2- Involvement in the management of the doctoral school

The unit is affiliated with the Doctoral School « Physique en Ile-de-France » (EDPIF, ED564), which is one
of the 4 doctoral schools in the scope the Graduate School of Physics of Université Paris-Saclay. This
doctoral school is formally hosted by Université PSL, and driven jointly with Sorbonne Université,
Université Paris Cité, and Université Paris-Saclay. The doctoral school is governed by a board, made up
of a director (professor at ENS) and 3 deputy directors, each representing one of the partner institutions.
The deputy director of Paris-Saclay is one of the LPTMS CNRS researchers, Véronique Terras. She is
therefore directly in charge of the organization of the Paris-Saclay’s part of the doctoral school, which
represents around 200 PhD students spread in 18 research units across Université Paris-Saclay.

3- Post-doctoral researchers

Over the evaluation period 2018-2023, the LPTMS hosted 38 post-docs. 11 of them were hired thanks to
ANR grants, 13 of them thanks to ERC grants, the funding of the other ones coming from different other
sources (Simon Foundation, Cefipra, Bettencourt-Schueller Foundation, Labex…).

Most of them (23) are still doing research, among which 3 of them are now CNRS permanent
researchers, 7 hold an academic position abroad, and 13 are still in post-doc. The other 8 work in the
private sector, either in France or abroad.
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4- Internship students

LPTMS’ members supervised 89 interns (from L3 to M2) during the evaluation period 2018-2023.

This represents a strong involvement, both in terms of the time devoted to the students and of the
financial resources that are allocated. In the table below, we give the number of interns per year and
their repartition according to the source of the funding.
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Asymptotic Quantum Many-Body Scars
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(Dated: November 13, 2023)

We consider a quantum lattice spin model featuring exact quasiparticle towers of eigenstates with
low entanglement at finite size, known as quantum many-body scars (QMBS). We show that the
states in the neighboring part of the energy spectrum can be superposed to construct entire families
of low-entanglement states whose energy variance decreases asymptotically to zero as the lattice size
is increased. As a consequence, they have a relaxation time that diverges in the thermodynamic limit,
and therefore exhibit the typical behavior of exact QMBS although they are not exact eigenstates of
the Hamiltonian for any finite size. We refer to such states as asymptotic QMBS. These states are
orthogonal to any exact QMBS at any finite size, and their existence shows that the presence of an
exact QMBS leaves important signatures of non-thermalness in the rest of the spectrum; therefore,
QMBS-like phenomena can hide in what is typically considered the thermal part of the spectrum.
We support our study using numerical simulations in the spin-1 XY model, a paradigmatic model
for QMBS, and we conclude by presenting a weak perturbation of the model that destroys the exact
QMBS while keeping the asymptotic QMBS.

Introduction — Quantum Many-Body Scars
(QMBS) [1–4] in non-integrable quantum lattice models
of any dimension are one of the paradigms for the weak
violation of the Eigenstate Thermalization Hypothesis
(ETH) [5, 6], according to which all local properties
of energy eigenstates in the middle of the spectra of
non-integrable models coincide with those of a thermal
Gibbs density matrix at a suitable temperature [7–10].
QMBS are isolated energy eigenstates that are outliers
in many respects, e.g., in the expectation value of a local
observable or in the entanglement entropy. Numerous
instances of lattice models featuring exact towers of
QMBS at finite size have been discovered [2, 7, 8, 11–
13, 16, 17, 19–23]. Most of these results have also
been understood via unified frameworks or systematic
construction recipes [3, 13, 17, 20, 24–30].

A question that has been less explored is whether the
presence of a finite-size QMBS affects the properties of
the rest of the spectrum. Ref. [3] pointed out the exis-
tence of low-entanglement states in the PXP model which
exhibit slow relaxation even though they are orthogonal
to the known exact QMBS: the energy variance of such
states is independent of system size and thus their fi-
delity relaxation time does not decrease [32]. This is a
remarkable phenomenology to be contrasted with that
of short-range correlated states, whose energy variance
grows with system size, whereas the fidelity relaxation
time decreases.

Are there even more drastic examples of slowly relax-
ing states [33], for instance with an energy variance de-
creasing with system size, which would lead to a relax-
ation time that diverges polynomially in the thermody-
namic limit (TL)? Slow relaxation of hydrodynamic ori-

gin is ubiquitous in systems with continuous symmetries,
where it occurs at a diverging timescale known as the
Thouless time [34–37], and is related to diffusion or sub-
diffusion [38–43]. The interpretation of QMBS as an un-
conventional non-local symmetry [29, 44] motivates the
search for such slow relaxation. Long-lived quasiparti-
cles, e.g. the phonons of a superfluid with Beliaev de-
cay [45], also induce slow relaxation. QMBS are asso-
ciated to quasiparticles with specific momenta and infi-
nite lifetime [4], hence it is natural to look for long-lived
quasiparticles at neighboring momenta.

In this letter we address these questions by consider-
ing the spin-1 XY model featuring exact QMBS at any
finite size [2] and show that it is possible to construct
slowly-relaxing low-entanglement initial states that ex-
hibit QMBS-like features, but nevertheless are orthog-
onal to the exact QMBS. They have an energy vari-
ance that goes to zero in the TL and asymptotically dis-
play the typical dynamical phenomenology of a QMBS,
i.e. the lack of thermalization; hence we refer to such ini-
tial states as asymptotic QMBS. Our work widens the
range of initial states that qualitatively exhibit a non-
thermalizing phenomenology and motivates the search
for non-thermal features in regions of the spectrum where
entanglement signatures do not make them evident.

The model and the exact QMBS — We consider
a one-dimensional spin-1 chain of length L even, and con-
sider a spin-1 XY model with external magnetic field and
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where Sα
j , with α = x, y, z, are the spin-1 operators on

site j. We use open boundary conditions (OBC) for the
numerical simulations and periodic boundary conditions
(PBC) for some of the analytical results. This model with
OBC has been numerically shown to be non-integrable;
the last term breaks a hidden non-local symmetry [2, 4,
46].

The Hamiltonian in Eq. (1) exhibits QMBS for any
finite value of L [2]. In order to see that, we define the
fully-polarised state |⇓⟩ = |− − · · · − −⟩ with all spins in
the eigenstate of Sz

j with eigenvalue −1, and the operator

J+
k =

1

2

L∑
j=1

eikj
(
S+
j

)2
. (2)

The scar states read:

|n, π⟩ = 1√
Nn,π

(
J+
π

)n |⇓⟩ , (3)

where Nn,π is a normalisation constant. The state
satisfies the energy eigenvalue equation H |n, π⟩ =
(−Lh+ 2nh+ LD) |n, π⟩ and for generic values of h and
D it lies in the middle of the Hamiltonian spectrum. Its
existence is related to quantum interference effects, sim-
ilar to those that are responsible for the existence of η-
pairing states in the Hubbard model [16].

Moreover, it is possible to consider the reduced density
matrix ρA,n,π of |n, π⟩ defined on half the system (conven-
tionally, the region A is 1 ≤ j < L/2), and to compute its
entanglement entropy, Sn,π = −tr[ρA,n,π log ρA,n,π]. The
explicit calculation has been done in Ref. [2], and it shows
that it scales as logL, displaying a mild logarithmic vi-
olation of an entanglement area law, see Supplementary
Materials (SM) [47] and Ref. [1] for details. QMBS are
easily found numerically by plotting the entanglement
entropy SEi

of ρA,Ei
, the reduced density matrix of the

eigenstate |Ei⟩, as a function of energy. Indeed, almost
all the eigenstates appear to satisfy the ETH and are
characterised by an SEi

that is only a function of the
energy Ei; they have a higher amount of entanglement
than the QMBS states, which indeed violate ETH.

A family of states obtained by deforming the
exact QMBS — We now consider other initial states
for the dynamics of the model in Eq. (1); they read as
follows:

|n, k⟩ = 1√
Nn,k

J+
k

(
J+
π

)n−1 |⇓⟩ , (4)

where Nn,k is a normalisation constant, which coincide
with the exact QMBS in Eq. (3). When k ̸= π and
is an integer multiple of 2π

L , they are orthogonal to the
exact QMBS: the relation ⟨n, k |n′, π⟩ = δn,n′δk,π for any
1 ≤ n, n′ ≤ L−1 is proved in the SM [47]. Models where
such classes of multimagnon states are exact eigenstates
have been studied in [49], however for k ̸= π these are not
eigenstates of the spin-1 XY model. It is easy to show
that the average energy of these states does not depend
on k and reads ⟨n, k|H |n, k⟩ = −Lh+ 2nh+ LD [47].
Furthermore, the entanglement of the states in Eq. (4)

scales with system size as a sub-volume law. For a quick
proof, since |n, k⟩ ∝ J+

k |n− 1, π⟩, we note that J+
k can

be straightforwardly expressed as a Matrix Product Op-
erator (MPO) of bond dimension χ = 2 [3, 50, 51], hence
the half-subsystem entanglement entropies of |n− 1, π⟩
and |n, k⟩ can differ at most of an additive term log 2. In
other words, since the operator J+

k can be split in two
terms, one acting on j < L/2 and one on j ≥ L/2, it is
possible to show [47] that the total number of Schmidt
states in |n, k⟩ is at most twice than that in |n− 1, π⟩.
To further characterise the states in Eq. (4), we com-

pute the variance of the energy ∆H2 under the Hamil-
tonian H in PBC, and as we show in the SM [47], we
obtain:

∆H2 = 4

[
J2 cos2

(
k

2

)
+ J2

3 cos
2

(
3k

2

)]
. (5)

Among the states defined in Eq. (4), the |n, π⟩ are the
only eigenstates of the Hamiltonian, because ∆H2 = 0
only for k = π. When k ̸= π, |n, k⟩ must be a linear
superposition of the energy eigenstates of H, which are
mostly in a window centered around the same energy of
|n, π⟩ and in a width of about ∆H. When k ̸= π is cho-
sen to be an integer multiple of 2π

L , |n, π⟩ is not part of
this set of states due to orthogonality. Since |n, π⟩ nu-
merically appear to be the only exact QMBS of H [2],
we conclude that such states |n, k⟩ must be a linear su-
perposition of “thermal” eigenstates, i.e., those that are
typically said to satisfy ETH, having an entanglement
entropy and expectation values of local observables that
are smooth functions of energy.
We have numerically verified this statement using the

python-based package QuSpin [52]: we diagonalize the
Hamiltonian (1) and compute the bipartition entangle-
ment entropy SEi and the average square magnetisation
Sz2
Ei

= 1
L

∑
j⟨(Sz

j )
2⟩ of all eigenstates. Subsequently, we

compute the scalar product of the state |n, k⟩ with all
eigenstates for n = L/2 and k = π − 2π

L and look at the
properties of the eigenstates with whom the overlap is
not zero. The results are reported in Fig. 1, and support
our thesis.
Dynamics and asymptotic QMBS — The dy-

namical properties of the states |n, k⟩ for large system
sizes depend on how we approach L → ∞. If the limit
is taken while the momentum k is held fixed, then the
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FIG. 1. Top: Squared overlap of |n, k⟩ for n = L/2 and
k = π− 2π

L
with the eigenstates |Ei⟩ of Hamiltonian (1) with

zero magnetisation, Sz = 0; the parameters of the simulation
are {J, h,D, J3} = {1, 0, 0.1, 0.1} and L = 10. The informa-
tion on |⟨Ei |n, k⟩ |2 is also encoded in the color code of the
marker of all panels using a logarithmic scale, see colorbar.
Middle and bottom: We plot the data of the top panel in a di-
agram with the energy E on the abscissa and the bipartition
entanglement entropy SE or the average square magnetisa-
tion Sz2(E) of the eigenstate on the ordinate, respectively.
For the entanglement entropy, we use the natural logarithm
and we divide the result by L/2 to obtain an intensive quan-
tity. The state |n, k⟩ has overlap only with states whose SEi

or Sz2
Ei

lies on the continuous “thermal” curve. The red circle
and the blue square highlight the regions of the plots where
the QMBS |n = L/2, π⟩ appear: the absence of any grey mark
means that the scalar product is compatible with the numer-
ical zero.

variance is finite in the TL (see Ref. [3] for examples in
the PXP model). Loosely speaking, we can invoke the
well-known energy-time uncertainty relation, linking the
typical timescale of the dynamics τ of a quantum state
to the fluctuations of the energy:

τ ≥ ℏ
2∆H

, (6)

to claim that for these states the dynamics is frozen
up to a given time-scale τ that is independent of L
and that afterwards an evolution towards thermal equi-
libration takes place [47]. To be more precise, the en-
ergy variance ∆H2 of the initial state determines the
fidelity relaxation time τ ∼ 1/∆H [6], since the fidelity
F (t) = | ⟨Ψ| e−iHt |Ψ⟩ |2 of an initial state |Ψ⟩ decays at
short times as ∼ exp

(
−∆H2t2

)
; τ is a lower bound for

the relaxation time of local observables [4, 10].
Another class of states can be obtained by approach-

ing the TL while letting k flow to π. This can be done
by setting k = π + 2π

L m, with the coefficient m ∈ Z kept
constant while L → ∞. In this case the energy vari-
ance scales as ∆H2 ∼ (J2 + 9J2

3 )(k − π)2 and tends to

0 0,5 1 1,5 2

J t

0,95

0,96

0,97

0,98

0,99

1,00

S
z
2
(t

)

L = 6
L = 12
L = 24
L = 36
L = 48
L = 60

0 0,5 1 1,5 2

J t

0,0

0,2

0,4

0,6

0,8

1,0

F
(t

)

FIG. 2. The properties of the state e−iHt |n, k⟩ for n = L/2
and k = π − 2π/L as a function of time for various system
sizes L. Left: time evolution of the squared magnetisation
Sz2(t). Right: time evolution of the fidelity with the initial
state F (t).

zero as 1/L2. We refer to this second class of states as
asymptotic QMBS of the model, since according to (6),
the typical relaxation timescale of their dynamics scales
as τ ∼ L, i.e., the system is frozen for timescales that
increase polynomially with the system size. On the con-
trary, low entanglement states, by virtue of their diverg-
ing variance [33], are typically expected to lose fidelity
on timescales that decrease with system size, and the ex-
pectation values of typical observables relax in timescales
that do not change drastically with system size [5, 10, 55–
59, 61]. Hence the dynamics of this class of states asymp-
totically approaches QMBS-like behavior even though
they are not exact QMBS of the system at finite size,
and moreover they are orthogonal to all the exact QMBS
|n, π⟩. To the best of our knowledge, this phenomenology
has never been discussed before.

We support the previous statements with a numeri-
cal simulation of the dynamics of the states |n, k⟩ un-
der the action of H using a time-evolving block deci-
mation (TEBD) code based on a Matrix-Product-State
(MPS) representation of the state obtained via the ITen-
sor library [62, 63]. We consider in particular the state
|n = L/2, k = π − 2π/L⟩ for several system sizes up to
L = 60 and truncation error 10−12. We then com-
pute the observable Sz2(t) = 1

L

∑
j⟨
(
Sz
j

)2⟩t and the fi-
delity of the time-evolved state with the initial state
F (t) = | ⟨n, k| e−iHt |n, k⟩ |2. The results, reported in
Fig. 2, show in both cases an important slow-down of the
dynamics as the size increases. In the SM we show that
the data concerning the fidelity can be collapsed via a
rescaling of time by a factor of L [47], which suggests the
divergence of the relaxation time in the TL. The result
on the fidelity F (t) shows undoubtedly that the time-
evolved state maintains an overlap with the initial state
that increases with L and it implies the freezing of the



4

state. In the SM we complement this analysis by con-
trasting it with the typical dynamics of other states [47];
we also analyze states obtained by acting on the exact
QMBS with (J+

k )m, i.e., creating multiple quasiparticles
of momenta close to π, and we argue that they should
also be asymptotic QMBS as long as m does not scale
with L [47].

Slow relaxation and non-thermalness in the
middle of the energy spectrum — Two properties
make the asymptotic QMBS particularly interesting: (a)
they have a limited amount of entanglement, i.e., a sub-
volume law, but an extensive amount of energy; (b) they
have an energy variance ∆H2 that drops fast enough to
zero in the TL. Any state that satisfies these conditions is
guaranteed to have a long relaxation time, both in the fi-
delity and in the observables, while having an average en-
ergy that lies in the middle of the Hamiltonian spectrum.
Note that both (a) and (b) are necessary features that
make the behavior of asymptotic QMBS atypical. While
any linear superposition of thermal eigenstates with small
energy variance relaxes slowly, it typically has a large
entanglement [33]. On the other hand, a typical low-
entanglement state has an energy variance that increases
with system size [33].

It is tempting to think that the existence of asymptotic
QMBS should imply some kind of “non-thermalness” [3]
or ETH-violation in the “thermal” states orthogonal to
the exact QMBS, even at finite system size. Note that
ETH consists of two parts [6, 9, 64], pertaining to diago-
nal and off-diagonal matrix elements of a local operator
in the energy eigenbasis. The diagonal matrix elements
control the late-time expectation values of observables,
and the existence of asymptotic QMBS does not imply
any violation of diagonal ETH since we expect them to
eventually thermalize for any finite system size. On the
other hand, the timescale of relaxation is controlled by
both the energy variance of the initial state and the off-
diagonal matrix elements [5]. It is plausible that our
result entails a violation of off-diagonal ETH at least in
a part of the Hamiltonian spectrum.

Asymptotic QMBS without exact QMBS —
Our definition of asymptotic QMBS is based on a defor-
mation of the tower of exact QMBS supported at finite
size; it is not clear whether asymptotic QMBS can exist
in models without any exact QMBS or at energies distant
from those of the exact QMBS.

We now show that it is possible to weakly perturb the
Hamiltonian H in a way that destroys all exact QMBS,
but such that the perturbed model maintains the asymp-
totic QMBS. As an example, we consider H ′ = H + V
with V = (Jz/L)

∑
j S

z
j S

z
j+1, which is still a non-trivial

local perturbation since its spectral norm ∥V ∥∞ corre-
sponding to its largest singular value is subextensive and
scales as O(1). Using the python-based QuSpin pack-
age [52], we numerically diagonalize H ′ and compute the
the entanglement entropy SEi

and the average square
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FIG. 3. Properties of the eigenstates of Hamiltonian H ′ in
the zero magnetization sector Sz = 0; the parameters of
the simulation are {J, h,D, J3, Jz} = {1, 0, 0.1, 0.1, 1} and
L = 10. Top: Squared overlap of |n, π⟩ for n = L/2 with
the eigenstates |Ei⟩ of Hamiltonian H ′ with zero magnetisa-
tion, Sz = 0. The information on |⟨Ei |n, π⟩ |2 is also encoded
in the color code of the marker of all panels using a loga-
rithmic scale, see colorbar. Middle and bottom: We plot the
data of the top panel in a diagram with the energy E on the
abscissa and the bipartition entanglement entropy SE or the
average square magnetisation Sz2(E) of the eigenstate on the
ordinate, respectively. The state |n, π⟩ has overlap only with
states whose SEi or S

z2(Ei) lies on a continuous curve. In the
SM [47] we show the entire spectrum and show that the model
does not have any QMBS (here the spectrum is incomplete
because we plot only state that have a non-negligible overlap
with |n, π⟩).

magnetisation Sz2(Ei) for all eigenstates. The plots, in
Fig. 3, do not indicate the presence of any exact QMBS.
We now consider the state |n, π⟩ of Eq. (3), which

is an exact QMBS of H but not an eigenstate of H ′.
Using the ITensor library [62, 63], we compute Sz2(t)
and the fidelity F (t) for the time-evolved state |Ψ(t)⟩ =
e−iH′t |n, π⟩; the results are in Fig. 4. The plots dis-
play the phenomenology of an asymptotic QMBS in a
Hamiltonian that does not show any exact QMBS at fi-
nite size, and the F (t) curves exhibit a collapse when time
is rescaled by a factor

√
L [47], indicating a diverging re-

laxation time. This behavior can be directly attributed
to the fact that the variance of the state |n, π⟩ under
the Hamiltonian H ′ scales as ∼ 1/L when n is a finite
fraction of L, as it is proven in the SM [47].
Conclusions — In this letter we revisited the

paradigmatic one-dimensional spin-1 XY model that sup-
ports exact QMBS at finite size, and we explored the
properties of the rest of the spectrum. We showed that
it is possible to construct other states, dubbed asymp-
totic QMBS, with little entanglement and whose relax-
ation time diverges polynomially in the thermodynamic
limit. These asymptotic QMBS indicate the existence of



5

0 1 2 3
J t

0,94

0,96

0,98

1,00

F
(t

)

0 1 2 3
J t

0,9988

0,9990

0,9992

0,9994

0,9996

0,9998

1,0000
S

z
2
(t

)

L = 96
L = 108
L = 120
L = 132
L = 144
L = 156
L = 168
L = 180

0 0,005 0,01

1 / L

0,94

0,96

0,98

1,00

F(t = 3/J)

FIG. 4. The properties of the state e−iH′t |n, π⟩ for n = L/2
as a function of time; the parameters of the Hamiltonian em-
ployed in the simulation are the same of Fig. 3. Left: time
evolution of the squared magnetisation Sz2(t); right: time
evolution of the fidelity with the initial state F (t). The in-
set shows the scaling as a function of size of the values of
F (t = 3/J); we find a scaling to 1 as 1/L → 0.

slowly relaxing modes and novel long-lived quasiparticles
in systems with exact QMBS; it would be interesting to
understand their relations to analogous slowly relaxing
modes of hydrodynamic origin.

Remarkably, asymptotic QMBS are linear combina-
tions of “thermal” eigenstates whose entanglement en-
tropy and average squared magnetization are “smooth”
functions of energy; we leave for future work the investi-
gation of a possible violation of off-diagonal ETH [65–71].

Asymptotic QMBS with similar properties can also be
constructed in higher dimensional spin-1 XY models [47],
but other extensions would also be interesting, consid-
ering first the exhaustive algebra of local Hamiltonians
that have the same exact QMBS |n, π⟩ [29]. Second,
they likely can always be constructed in Hamiltonians
with simple quasiparticle towers of exact QMBS [7, 11–
13, 17, 19, 25, 72]. Third, there are many different
types of exact QMBS [3], e.g., with non-local “quasipar-
ticles” [13, 27, 73], or with non-isolated states [24, 32];
they could appear in gauge theories [74, 75] or Floquet
systems [28, 76–78]. Are there asymptotic QMBS in these
models?

Finally, one could also consider deformations of Hamil-
tonians with exact QMBS (a problem that we partially
addressed in the final part of this letter), and ask what
are the conditions for a Hamiltonian to display an asymp-
totic QMBS without any exact QMBS.
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2Université Paris-Saclay, CNRS, LPTMS, 91405, Orsay, France
3Department of Physics and Institute for Quantum Information and Matter,

California Institute of Technology, Pasadena, California 91125, USA
4Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, California 91125, USA

November 13, 2023

In this Supplementary Material we present the explicit calculations of the main relevant prop-
erties of the asymptotic QMBS presented in the main text:

S1. Orthogonality of the asymptotic QMBS with the exact QMBS

S2. Average energy and energy variance for the asymptotic QMBS

S3. Entanglement entropy of the exact and asymptotic QMBS

S4. Variance of the exact QMBS for the perturbed Hamiltonian

S5. Dynamics of initial states that are not asymptotic QMBS

S6. Spectral properties of the Hamiltonian H ′

S7. Universal rescaling of fidelities

S8. Higher dimensional generalisations of asymptotic QMBS

S1. ORTHOGONALITY OF THE ASYMPTOTIC QMBS WITH THE EXACT QMBS

In this section, we demonstrate the orthogonality of the states {|n, k⟩}, defined in Eq. (4) of the main text. First, we
note that |n, k⟩ is orthogonal to |n′, k′⟩ when n ̸= n′ because they have a different magnetisation Sz =

∑
j S

z
j , which is

a simple function of n: Sz = −L+2n. We now consider states with the same n and take the system size L to be even
and k to be an integer multiple of 2π

L for simplicity. We then observe that ⟨n, k |n, k′⟩ ∝ ⟨n− 1, π| J−
k J

+
k′ |n− 1, π⟩ for

n ≥ 1. By definition of the operators J+
k in Eq. (2) of the main text we have:

⟨n− 1, π| J−
k J

+
k′ |n− 1, π⟩ = 1

4

L∑
j,j′=1

e−i(kj−k′j′) ⟨n− 1, π| (S−
j )2(S+

j′ )
2 |n− 1, π⟩

=
1

4

L∑
j=1

e−i(k−k′)j ⟨n− 1, π| (S−
j )2(S+

j )2 |n− 1, π⟩+ 1

4

∑
j ̸=j′

e−i(kj−k′j′) ⟨n− 1, π| (S−
j )2(S+

j′ )
2 |n− 1, π⟩

=
1

4
α

L∑
j=1

e−i(k−k′)j +
1

4
β

L∑
j=1

ei(π−k)j
∑
j′ ̸=j

ei(k
′−π)j′ =

1

4
L(α− β)δk,k′ +

1

4
βL2δk,πδk′,π, (S7)

where α = 4
(L−1
n−1)
( L
n−1)

= 4L+1−n
L and β = 4

(L−2
n−2)
( L
n−1)

= 4 (n−1)(L−n+1)
L(L−1) , and we have used the fact that k and k′ are integer

multiples of 2π
L . This calculation is done directly by using the expression of |n, π⟩ as an equal amplitude superposition

of “fully-magnetised” product states

|n, π⟩ =
√

1

22n
(
L
n

) ∑
1≤j1<j2<...<jn≤L

eiπ
∑n

i=1 ji
(
S+
j1

)2 (
S+
j2

)2
. . .
(
S+
jn

)2 |⇓⟩ , (S8)

and studying the action of the sandwiched operator on the basis states separately when j = j′ and when j ̸= j′, and
carefully accounting for the phase factors and normalization factors. It is important to visualise the combinatorial
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nature of this state, expanded on a basis of states where the bimagnons created by
(
S+
j

)2
are equally distributed

everywhere. When j = j′, we obtain that α in Eq. (S7) is simply related to the number of fully-magnetised product
states that do not have a bimagnon at site j, or else the action of (S−

j )2(S+
j )2 vanishes on such a basis state. This

number is
(
L−1
n−1

)
; if we consider the normalisation factor and the specific matrix elements of

(
S−
j

)2
(S+

j )2, we obtain
its expression, given after Eq. (S7). Similarly, when j ̸= j′ and n > 1, we obtain that β in Eq. (S7) is related to
the number of fully-magnetised product states that have one bimagnon at site j, and no bimagnon at j′, which is(
L−2
n−2

)
. Its expression, given after Eq. (S7), then follows directly after taking into account the normalization factors

and matrix elements. Hence using Eq. (S7) for any k ̸= k′ it is clear that we obtain ⟨n, k′|n, k⟩ = 0. Given that we
work with normalised states, we can combine the arguments above to conclude that ⟨n, k |n′, π⟩ = δn,n′δk,π whenever
k is an integer multiple of 2π

L and L is even.

S2. AVERAGE ENERGY AND ENERGY VARIANCE FOR THE ASYMPTOTIC QMBS

In this section, we compute the average energy and variance of the asymptotic QMBS states {|n, k⟩} defined in
Eq. (4) of the main text.

A. Rewriting the asymptotic QMBS

For the convenience of explicit calculations, we propose the following rewriting of the asymptotic QMBS:

|n, k⟩ = 1√
Mn,k

J+
k |n− 1, π⟩ . (S9)

where the states |n− 1, π⟩ and |n, k⟩ are normalised. As a first step, we compute the normalization factor coefficient
Mn,k, which can be directly deduced from Eq. (S7). That is, its expression reads

Mn,k = ⟨n− 1, π| J−
k J

+
k |n− 1, π⟩ = (L− n+ 1)(L− n)

L− 1
+
L(L− n+ 1)(n− 1)

L− 1
δk,π (S10)

B. Average energy

To compute the average energy of the state |n, k⟩, we first rewrite the OBC spin-1 XY Hamiltonian, along with the
symmetry breaking perturbation [see discussion below Eq. (1) in the main text], as:

H =
J

2

L−1∑
j=1

(
S+
j S

−
j+1 + S−

j S
+
j+1

)
+ h

L∑
j=1

Sz
j +D

∑
j

(Sz
z )

2
+
J3
2

L−3∑
j=1

(
S+
j S

−
j+3 + S+

j S
−
j+3

)
. (S11)

In order to compute the average energy, we need to study the action of [S+
j S

−
j+1 + h.c.] onto the state |n, k⟩, and for

this it is convenient to consider the decomposition of |n, k⟩ over sites j and j + 1. For example, we can rewrite |n, π⟩
as

|n, π⟩ = αn,π |+⟩j |+⟩j+1 |ψn,π,1⟩+ βn,π |−⟩j |−⟩j+1 |ψn,π,2⟩+ γn,π

( |+⟩j |−⟩j+1 − |−⟩j |+⟩j+1√
2

)
|ψn,π,3⟩ ; (S12)

where αn,π, βn,π, and γn,π are numbers with |αn,π|2 + |βn,π|2 + |γn,π|2 = 1, and {|ψn,π,ℓ⟩} for 1 ≤ ℓ ≤ 3 are some
states with support on sites other than j and j + 1, and we have denoted the three spin-1 states on a site j by |+⟩j ,
|−⟩j , and |0⟩j . One can similarly rewrite the |n, k⟩ as:

|n, k⟩ =αn,k |+⟩j |+⟩j+1 |ψn,k,1⟩+ βn,k |−⟩j |−⟩j+1 |ψn,k,2⟩+

+ γn,k

( |+⟩j |−⟩j+1 − |−⟩j |+⟩j+1√
2

)
|ψn,k,3⟩+ υn,k

(
|+⟩j |−⟩j+1 + eik |−⟩j |+⟩j+1√

2

)
|ψn,k,4⟩ , (S13)
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where αn,k, βn,k, γn,k, and vn,k are numbers such that |n, k⟩ is normalized and {|ψn,π,ℓ⟩} for 1 ≤ ℓ ≤ 4 are some
states without support on j and j + 1. The action of the term [S+

j S
−
j+1 + h.c.] can then be directly computed to be:

(
S+
j S

−
j+1 + h.c.

)
|n, k⟩ =

√
2υn,k

(
1 + eik

)
|0⟩j |0⟩j+1 |ψn,k,4⟩ . (S14)

Using Eq. (S13), it then directly follows that ⟨n, k|
(
S+
j S

−
j+1 + h.c.

)
|n, k⟩ = 0. A similar reasoning can be carried

out for the interaction term proportional to J3 to show that ⟨n, k|
(
S+
j S

−
j+3 + h.c.

)
|n, k⟩ = 0, hence in all we obtain

⟨n, k|H |n, k⟩ = h(−L+ 2n) +DL for all k. We conclude by noticing that the same result holds in PBC as well.

C. Energy variance

To compute the energy variance in any state, it is easy to see that the contribution of the terms in the Hamiltonian
for which the state is an eigenstate simply vanishes. Hence, in the computation of the variance of |n, k⟩, we can
simply ignore the magnetic field and anistropy terms in H of Eq. (S11), i.e., those that are proportional to h and
D, since |n, k⟩ are their eigenstates. For simplicity, we refer to the terms in H proportional to J and J3 as H1 and
H3, respectively, and work with PBC. As we showed in the previous section, ⟨n, k|H1 |n, k⟩ = ⟨n, k|H3 |n, k⟩ = 0,
and using similar ideas one can also show that ⟨n, k|H1H3 |n, k⟩ = ⟨n, k|H3H1 |n, k⟩ = 0. Hence the expression of
the variance of |n, k⟩ in H reduces to ∆H2 = ⟨n, k| (H1 + H3)

2 |n, k⟩ = ⟨n, k| (H2
1 + H2

3 ) |n, k⟩. We now propose a
rewriting of each term:

⟨n, k|H2
ℓ |n, k⟩ =

1

Mn,k
⟨n− 1, π| J−

k H
2
ℓ J

+
k |n− 1, π⟩ = 1

Mn,k
⟨n− 1, π| [J−

k , Hℓ] [Hℓ, J
+
k ] |n− 1, π⟩ =

=
1

Mn,k
⟨n− 1, π| [Hℓ, J

+
k ]† [Hℓ, J

+
k ] |n− 1, π⟩ , (S15)

where ℓ = 1, 3, and we have exploited the fact that Hℓ |n− 1, π⟩ = 0. We a few straightforward algebraic passages, it
is possible to show that:

[H1, J
+
k ] =

J

2

L∑
j=1

eikj [S+
j S

−
j+1 + S−

j S
+
j+1,

1

2
(S+

j )2 +
eik

2
(S+

j+1)
2]

= −J
2

L∑
j=1

eikj
[
{Sz

j , S
+
j }S+

j+1 + eikS+
j {Sz

j+1, S
+
j+1}

]
, (S16)

where {·, ·} denotes the anti-commutator and we have used the identity [S+
mS

−
n , (S

+
n )2] = −2S+

m{Sz
n, S

+
n }. The calcu-

lation proceeds by substituting Eq. (S16) into Eq. (S15) and it is greatly simplified by the fact that Sz
j S

+
j |n− 1, π⟩ =

Sz
j S

−
j |n− 1, π⟩ = 0. First, using this identity simplifies the action of [H1, J

+
k ] on |n− 1, π⟩ to

[H1, J
+
k ] |n− 1, π⟩ = −J

2

L∑
j=1

eikj
[
S+
j S

z
j S

+
j+1 + eikS+

j S
+
j+1S

z
j+1

]
|n− 1, π⟩ , (S17)

and Eq. (S15) then reads

⟨n, k|H2
1 |n, k⟩ =

J2

4Mn,k

L∑
j,j′=1

eik(j−j′) ⟨n− 1, π| [Sz
j′S

−
j′S

−
j′+1 + e−ikS−

j′S
z
j′+1S

−
j′+1][S

+
j S

z
j S

+
j+1 + eikS+

j S
+
j+1S

z
j+1] |n− 1, π⟩ .

(S18)
We then notice that in Eq. (S18), all the terms with j ̸= j′ in the sum vanish since the action of the sandwiched
operator on |n− 1, π⟩ in such cases leads to inevitable appearance of spins with states |0⟩m on certain sites m, which
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in turn have a vanishing overlap with ⟨n− 1, π|. Hence, we can simplify Eq. (S18) to

⟨n, k|H2
1 |n, k⟩ =

J2

4Mn,k

L∑
j=1

⟨n− 1, π| [Sz
j S

−
j S

−
j+1 + e−ikS−

j S
z
j+1S

−
j+1][S

+
j S

z
j S

+
j+1 + eikS+

j S
+
j+1S

z
j+1] |n− 1, π⟩

=
J2

4Mn,k
⟨n− 1, π|

L∑
j=1

[
e−ikS−

j S
+
j S

z
j S

z
j+1S

−
j+1S

+
j+1 + S−

j S
+
j S

z
j+1S

−
j+1S

+
j+1S

z
j+1

+ Sz
j S

−
j S

+
j S

z
j S

−
j+1S

+
j+1 + eikSz

j S
−
j S

+
j S

−
j+1S

+
j+1S

z
j+1

]
|n− 1, π⟩ , (S19)

Now we consider the expansion of |n− 1, π⟩ in the product state basis, as shown in Eq. (S8) and note that each of
the terms in Eq. (S19) vanish on the basis states unless there is no bimagnon on both sites j and j+1. Hence we can
simply count the number of such states and incorporate the normalization factor to obtain:

⟨n, k|H2
1 |n, k⟩ =

J2

Mn,k

L∑
j=1

(
L−2
n−1

)(
L

n−1

) [e−ik + 1 + 1 + eik
]
=

4J2 cos2
(
k
2

)
1 + δk,π

L(n−1)
L−n

= 4J2 cos2
(
k

2

)
, (S20)

where in the last step we have used the fact that the numerator anyway vanishes for k = π. The same calculation
can be carried out in OBC and amounts to a multiplication of the result in Eq. (S20) by a factor 1− 1

L , which does
not change the PBC result in the thermodynamic limit. With similar arguments one can prove that:

⟨n, k|H2
3 |n, k⟩ = 4J2

3 cos
2

(
3k

2

)
, (S21)

thus recovering the result in Eq. (5) of the main text. Once again, the choice of OBC amounts to a correction factor
1− 3

L , which is irrelevant in the thermodynamic limit.

D. Considerations on multiparticle asymptotic QMBS

The set of asymptotic QMBS is not limited to the single-particle asymptotic QMBS explicitly discussed above.
For instance, the action of an operator (J+

k )m for k = π − ϵ (for ϵ ∼ 1/L small) and m ≪ L, on any exact QMBS
eigenstate results in a state with variance scaling approximately as ∼ mϵ2; a set of numerical results supporting this
claim is given in Fig. S1. Based on these results, we can identify also the multiparticle QMBS as asymptotic QMBS.
In the rest of this section, we present an analytical calculation of the energy variance of the aforementioned state:

⟨n− 1, π| (J−
k )mH2(J+

k )m |n− 1, π⟩
⟨n− 1, π| (J−

k )m(J+
k )m |n− 1, π⟩

=
∥H(J+

k )m |n− 1, π⟩∥2

∥(J+
k )m |n− 1, π⟩∥2

, (S22)

where ∥•∥ denotes the L2 norm. Although we are not able to compute the variance exactly, we will show that via
some approximations we can reproduce the scalings obtained in Fig. S1.

Let us first remark that the formula in Eq. (S22) follows from the following facts: (i) the state (J+
k )m |n− 1, π⟩ is

an exact eigenstate of the Hamiltonian parts proportional to h and D, with eigenvalue −Lh+ 2(n− 1 +m)h+ LD;
(ii) it has zero expectation value of H1 +H3. Both results follow from the fact that (J+

k )m |n− 1, π⟩ is only a linear
superposition of |+⟩ and |−⟩ spin states, with z the spin-quantisation axis: the action of H1 and H3 necessarily creates
two |0⟩ spin states, and thus make the state orthogonal to the initial one. A similar reasoning has been presented in
Sec. S2B for m = 1.

As long as the energy variance is considered, we can thus simply focus on H = H1 + H3. Yet, for the sake of
simplicity, in this Section we will only consider H1. The results can be easily generalized to H3.

We first focus on the denominator of the expression in Eq. (S22):

∥(J+
k )m |n− 1, π⟩∥2 = ⟨n− 1, π| (J−

k )m(J+
k )m |n− 1, π⟩ =

=
(m!)2

22m

∑
j1<...<jm

∑
l1<...<lm

eik(l1+...+lm−j1−...−jm) ⟨n− 1, π| (S−
j1
)2 . . . (S−

jm
)2(S+

l1
)2 . . . (S+

lm
)2 |n− 1, π⟩ . (S23)
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FIG. S1. Energy variance ∆H2 of the multiparticle QMBS obtained by acting m times a bimagnon operator J+
k with k =

π − 2π/L on an exact scar |n, π⟩. The state we are considering is thus proportional to (J+
k )m |n, π⟩. We study three different

system sizes, L = 30, 48 and 60, and five different values of m, from 1 to 5. The numerical data, obtained with a MPS
representation of the states, yield a scaling of ∆H2 that is approximately linear in m and proportional to L−2. In the left panel
the data are plotted versus m; in the right panel the same data are plotted versus L. The dashed lines are a guide to the eye
to highlight the approximate behaviours as m̃ and as L̃−2; note that the scalings are not precise at large m.

The evaluation of this sum is a formidable task, and we approximate it by considering only the leading terms ji = li,
which are characterised by the fact that the phase is stationary. The factor (m!)2 takes into account the possible
orderings of the indexes. Other terms will be characterised by an oscillating phase and thus are expected to be
inessential in the thermodynamic limit. The denominator is then approximated by the following expression:

∥(J+
k )m |n− 1, π⟩∥2) ≈ (m!)2

22m

∑
j1<...<jm

∑
l1<...<lm

δj1,l1 . . . δjm,lm22m
(
L−m
n−1

)(
L

n−1

) =

=(m!)2
(
L

m

)(L−m
n−1

)(
L

n−1

) = m!
(L− n+ 1)!

(L− n−m+ 1)!
. (S24)

We now move to the numerator of Eq. (S22); for its evaluation, the following relation is useful:

[[H1 +H3, J
+
k ], J+

k ] = 0. (S25)

Let us prove Eq. (S25) using the explicit expression of the commutator in Eq. (S16); we will only focus on the term
H1 of the Hamiltonian since the extension to H3 is straightforward:

[[H1, J
+
k ], J+

k ] = −J
2

∑
j

eikj
[
{S+

j , S
z
j }S+

j+1 + eikS+
j {S+

j+1, S
z
j+1},

1

2
eikj(S+

j )2 +
1

2
eik(j+1)(S+

j+1)
2

]
(S26)

The commutator can be easily split into the sum of four commutators; let us begin by analysing the first:[
{S+

j , S
z
j }S+

j+1, (S
+
j )2
]
=
[
(S+

j S
z
j + Sz

j S
+
j ), (S+

j )2
]
S+
j+1 =

(
S+
j

[
Sz
j , (S

+
j )2
]
+
[
Sz
j , (S

+
j )2
]
S+
j

)
S+
j+1. (S27)

The commutator that appears in the last expression can be explicitly computed:
[
Sz
j , (S

+
j )2
]
= 2(S+

j )2. We thus

obtain an expression proportional to (S+
j )3, that for a spin-1 system is equal to zero. The thesis follows by applying

similar calculations to the other three commutators.
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With the help of Eq. (S25), it is possible to show by induction that:

H(J+
k )m |n− 1, π⟩ = m(J+

k )m−1[H,J+
k ] |n− 1, π⟩ , 1 ≤ m ≤ L− n+ 1. (S28)

Hence we obtain that:

∥H(J+
k )m |n− 1, π⟩∥2 = ∥m(J+

k )m−1[H,J+
k ] |n− 1, π⟩∥2 = m2 ⟨n− 1, π| [H,J+

k ]†(J−
k )m−1(J+

k )m−1[H,J+
k ] |n− 1, π⟩

(S29)

Using Eq. (S16) we obtain:

∥H(J+
k )m |n− 1, π⟩∥2 =

m2[(m− 1)!]2

22m−2

(
J

2

)2 ∑
j1<...<jm−1

∑
l1<...<lm−1

∑
r,s

e−ikr(1 + e−ik)eiks(1 + eik)×

× eik(l1+...+lm−1−j1−...−jm−1)×
× ⟨n− 1, π|S−

r S
−
r+1(S

−
j1
)2 . . . (S−

jm−1
)2(S+

l1
)2 . . . (S+

lm−1
)2S+

s S
+
s+1 |n− 1, π⟩ . (S30)

The evaluation of this expression can be performed using an approximation similar to that employed for the denomi-
nator: only the terms whose phase does not oscillate are retained, and namely those for which ji = li and r = s. The
term inside the sum can then be evaluated analytically thanks to the special nature of exact quantum many-body
scars: it reads

2(1 + cos k)δr,s

[
m−1∏
t=1

δjt,lt(1− δjt,r)

]
22m

(
L−m−1
n−1

)(
L

n−1

) . (S31)

We can use the identities:∑
r

∑
j1<...<jm−1

m−1∏
t=1

(1− δjt,r) = L

(
L− 1

m− 1

)
, L(m− 1)!

(
L−m−1
n−1

)(
L−1
m−1

)(
L

n−1

) =
(L− n+ 1)!

(L−m− n)!(L−m)
(S32)

and finally express:

∥H(J+
k )m |n− 1, π⟩∥2 = 2J2m2(m− 1)!(1 + cos k)

(L− n+ 1)!

(L−m− n)!(L−m)
. (S33)

At this stage, we can compute the ratio of the numerator and of the denominator:

∆H2
1 ≈2J2m2(1 + cos k)

L−m

(m− 1)!(L− n+ 1)!

(L−m− n)!

(L−m− n+ 1)!

m!(L− n+ 1)!
=

=m4J2L−m− n+ 1

L−m
cos2

(
k

2

)
L→+∞−−−−−−→
m+n≪L

m× 4J2 cos2
(
k

2

)
(S34)

We thus obtain that a state obtained by applying m times the J+
k operator on an exact quantum many-body scars

has an energy variance scaling linearly in m. Thus, as long as m does not scale with the system size L, the state
remains and asymptotic quantum many-body scar.

E. Norm and variance of the localized bimagnon state

In order to highlight the properties of the asymptotic QMBS states, we study here the properties of the localised
bimagnon state:

|ψj⟩ =
1√

4L−n+1
L

(S+
j )2 |n− 1, π⟩ = 1√

L(L− n+ 1)

∑
k

e−ikjJ+
k |n− 1, π⟩ =

∑
k

e−ikj |ψk⟩ for 1 ≤ n ≤ L.

(S35)
The localised bimagnon state is thus a linear superposition of the states |n, k⟩, since expression in Eq. (S9) allows us
to write:

|ψk⟩ =
1√

L(L− n+ 1)
J+
k |n− 1, π⟩ =

√
Mn,k

L(L− n+ 1)
|n, k⟩ . (S36)
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Note that the scaling of the prefactor is L−1/2. This localised bimagnon state has average energy 0 and thus its energy
variance reads:

⟨ψj |
(
H2

1 +H2
3

)
|ψj⟩ =

∑
k

⟨ψk|
(
H2

1 +H2
3

)
|ψk⟩ =

∑
k

Mn,k

L(L− n+ 1)
⟨n, k|

(
H2

1 +H2
3

)
|n, k⟩ ,

=
4(J2 + J2

3 )(L− n)

L(L− 1)

∑
k

cos2(
k

2
) =

2(J2 + J2
3 )(L− n)

(L− 1)
, (S37)

where we have used PBC and hence ⟨n, k′|H1 |n, k⟩ = 0 for k ̸= k′; and also that ⟨n, k|H1H3 |n, k⟩ = 0, and that
|ψj⟩ is an eigenstate of all the other terms of the Hamiltonian. It is clear that this energy variance is finite in the
thermodynamic limit for any n

L < 1. As a consequence, the fidelity relaxation time of this state is finite in the
thermodynamic limit and the state cannot be considered as an asymptotic QMBS.

S3. ENTANGLEMENT ENTROPY OF THE EXACT AND ASYMPTOTIC QMBS

In this section we review the calculation of the entanglement entropy for the states |n, k⟩, which proceeds along the
lines of calculations performed in [1, 2].

We first divide the lattice into two parts, A and B. Typically, one considers A as the set of lattice sites with j ≤ L/2
and B the rest, but this is not necessary. The key observation is that it is always possible to split the J+

k operators
as a sum of an operator acting on A and of an operator acting on B:

J+
k = J+

k,A + J+
k,B =

1

2

∑
j∈A

eikj
(
S+
j

)2
+

1

2

∑
j∈B

eikj
(
S+
j

)2
. (S38)

The state |⇓⟩ is a product state: |⇓⟩A ⊗ |⇓⟩B . Hence, for |n, π⟩, we obtain [1, 2]

|n, π⟩ = 1√
Nn,π

(
J+
π,A + J+

π,B

)n
|⇓⟩A ⊗ |⇓⟩B =

1√
Nn,π

n∑
m=0

(
n

m

)(
J+
π,A

)m
|⇓⟩A ⊗

(
J+
π,B

)n−m

|⇓⟩B , (S39)

where Nn,π is the normalization factor for the state |n, π⟩, given by
(
L
n

)
. Additional care must be used in truncating

the sum in the proper way: if A is composed of LA lattice sites, it is not possible to apply the J+
k,A operator more

than LA times; similarly for LB . Hence for simplicity, here we assume that n < LA, LB . Therefore, the expansion in
Eq. (S39) gives the Schmidt decomposition of the state, which is composed of the n+1 orthogonal states {Jm

k,ℓ |⇓⟩}nm=0

for the ℓ ∈ {A,B} part. In the presence of n+ 1 orthogonal states, the highest entropy state is the maximally mixed
one, where they all have the same Schmidt coefficients; in that case SA = log(n+ 1). If we consider a lattice of length
L and the bipartition with LA = LB = L/2, the states with an extensive number of bimagnons are those such that
n = αL, with 0 < α < 1, and thus these states satisfy the following SA ∼ logL + logα. As it is well-known, the
quantum many-body scars have an entropy scaling with the logarithm of the volume.

Let us now consider the asymptotic QMBS states, |n, k⟩. In this case, we use Eq. (S9) to obtain

|n, k⟩ = 1√
Mn,k

J+
k |n− 1, π⟩ = 1√

Mn,kNn−1,π

n−1∑
m=0

(
n− 1

m

)
J+
k,A(J

+
π,A)

m |⇓⟩A ⊗ (J+
π,B)

n−1−m |⇓⟩B

+
1√

Mn,kNn−1,π

n−1∑
m=0

(
n− 1

m

)
(J+

π,A)
m |⇓⟩A ⊗ J+

k,B(J
+
π,B)

n−1−m |⇓⟩B . (S40)

Note that unlike for the |n, π⟩, Eq. (S40) is in general is not the Schmidt decomposition of the state. Yet, if we
consider one subsystem, say A, the Schmidt states of a fixed magnetisation −LA + 2m are in the two-dimensional
subspace spanned by the following linearly independent states:(

J+
π,A

)m
|⇓⟩A , J+

k,A

(
J+
π,A

)m−1

|⇓⟩A . (S41)

Hence we can conclude that the total number of Schmidt states is at most 2n, and for an extensive number of
bimagnons n = αL, we obtain that in the highest entropy situation SA ∼ log 2 + logα+ logL. Thus, with respect to
the exact QMBS |n− 1, π⟩, the asymptotic QMBS |n, k⟩ has at most an additive correction of log 2.
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S4. VARIANCE OF THE EXACT QMBS FOR THE PERTURBED HAMILTONIAN

We consider the perturbed Hamiltonian H ′ = H + V , where H is the Hamiltonian (S11) with exact scars at finite
size with PBC and V = Jz

L

∑
j S

z
j S

z
j+1. Since |n, π⟩ is an eigenstate of H, the variance can be computed focusing only

on V :

∆H ′2 = ∆V 2 = ⟨n, π|V 2 |n, π⟩ − ⟨n, π|V |n, π⟩2

=
J2
z

L2

L∑
j,j′=1

(
⟨n, π|Sz

j S
z
j+1S

z
j′S

z
j′+1 |n, π⟩ − ⟨n, π|Sz

j S
z
j+1 |n, π⟩ ⟨n, π|Sz

j′S
z
j′+1 |n, π⟩

)
. (S42)

We can then use the structure of |n, π⟩ to compute various correlation functions that appear in Eq. (S42). We first
compute the two point correlation function to be

⟨n, π|Sz
j S

z
j+1 |n, π⟩ =

(
L−2
n−2

)
+
(
L−2
n

)
− 2
(
L−2
n−1

)(
L
n

) ≡ F2, (S43)

where we have used the action of Sz
j S

z
j+1 on the product basis states that compose |n, π⟩, i.e., Eq. (S8), and noting

that it takes the value of +1 if there are zero or two bimagnons on sites j and j+1, and −1 if there is one bimagnon.
Using similar ideas, we obtain that when j′ ̸= j − 1, j, j + 1, the four point correlation function reads

⟨n, π|Sz
j S

z
j+1S

z
j′S

z
j′+1 |n, π⟩ =

(
L−4
n

)
− 4
(
L−4
n−1

)
+ 6
(
L−4
n−2

)
− 4
(
L−4
n−3

)
+
(
L−4
n−4

)(
L
n

) ≡ F4 (S44)

Note that F2 and F4 in Eqs. (S43) and (S44) are numbers that only depend on L and n, and are independent of j;
and we have assumed that n ≥ 4 and PBC. When j′ = j− 1, j, j+1, we obtain the following expressions for the “four
point” correlation functions

⟨n, π|Sz
j−1

(
Sz
j

)2
Sz
j+1 |n, π⟩ = ⟨n, π|Sz

j

(
Sz
j+1

)2
Sz
j+2 |n, π⟩ = ⟨n, π|Sz

j S
z
j+1 |n, π⟩ = F2, ⟨n, π|

(
Sz
j

)2 (
Sz
j+1

)2 |n, π⟩ = 1.
(S45)

Combining Eqs. (S42)-(S45), and using translation invariance, we obtain that

∆H
′2 =

J2
z

L2

∑
j

∑
j′ ̸=j−1,j,j+1

(F4 − F 2
2 ) +

∑
j

(1− F 2
2 ) + 2

∑
j

(F2 − F 2
2 )

 = J2
z

[
F4

(
1− 3

L

)
− F 2

2 +
2

L
F2 +

1

L

]
(S46)

Using Eq. (S46), we find that when n/L = ν, where ν is a constant, ∆H ′2 asymptotically scales as ∼ 16ν2(1−ν)2

L . On

the other hand, when n is kept finite, ∆H ′2 asymptotically scales as ∼ 16n(n−1)
L3 .

S5. DYNAMICS OF INITIAL STATES THAT ARE NOT ASYMPTOTIC QMBS

In this section, we study the dynamics of certain initial states, that are not asymptotic QMBS, under the Hamil-
tonian H in Eq. (1) of the main text. We present this study in order to further support our claim that the dynamics
of |n, k = π − 2π/L⟩ is special.

A. Initial state with finite energy variance

First, we consider the states |n, k = 0⟩, which are in the family of states in Eq. (4) of the main text, but are not
asymptotic QMBS since they have a finite energy variance in the thermodynamic limit, as evident from Eq. (5) of the
main text. Note that a state with finite energy variance was already discussed in Ref. [3], reaching similar conclusions.
In Fig. S2 we study the dynamics of |n, k = 0⟩ by presenting similar numerical results for the time-evolution of the
latter state. The dynamics of the observable Sz2(t) is “activated” on a short time-scale of order J−1 that does not
depend on L (see the first panel of Fig. S2). The dynamics reaches a “pre-thermal” plateau [4] that increases to the
initial value for L → ∞. Note that this result does not contradict the fact that at finite size and in the long-time
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FIG. S2. First and second panel: The properties of the state e−iHt |n, k⟩ for n = L/2 and k = 0 as a function of time. First
panel: time evolution of the squared magnetization Sz2(t). Second panel: time evolution of the fidelity with the initial state
F (t). Third and fourth panel: The properties of the state e−iHt |+−+−+− . . .⟩ as a function of time. Third panel: time
evolution of the squared magnetization. Fourth panel: time evolution of the fidelity with the initial state F (t); in the inset we

show the bare data, whereas in the main plot we rescale time by a factor
√
L to display a clear collapse.

limit, observables should relax to their thermal value predicted by the diagonal ensemble. However, the thermalization
timescale is much longer than the typical times that we can probe numerically using MPS-based methods. We have
performed long-time simulations using exact diagonalization on small system sizes, and verified that this is indeed
the case. Although the apparently long thermalization time may lead one to consider these states as asymptotic
QMBS, the study of the fidelity with the initial state F (t) is qualitatively very different. This is shown in the second
panel of Fig. S2: on the same time-scale J−1 the state becomes essentially orthogonal to the initial one, and the data
for different sizes are basically indistinguishable. The data on the fidelity relaxation time can be understood as a
consequence of the finite energy-variance of the state |n = L/2, k = 0⟩.

B. Initial Product State

It is also interesting to contrast the dynamics of the asymptotic QMBS with that of an uncorrelated product
state; we consider here the staggered state |. . .+−+−+− . . .⟩ which has the same zero magnetisation as the states
considered in the main text and the same average squared magnetisation as the asymptotic QMBS, equal to one. The
data on the dynamics of Sz2(t) collapse on the same curve for all L considered (third panel of Fig. S2); the fidelity
relaxation time instead becomes shorter with increasing L (fourth panel of Fig. S2). The behaviour is consistent
with expectations for the time evolution of generic product states [5, 6], and is radically different from that of the
asymptotic QMBS.

S6. SPECTRAL PROPERTIES OF THE HAMILTONIAN H ′

In this section, we analyze the spectrum of the Hamiltonian H ′ = H +V discussed in the main text where H is the
spin-1 XY Hamiltonian exhibiting exact QMBS and the perturbation reads:

V =
Jz
L

∑
j

Sz
j S

z
j+1. (S47)

Our goal is to better clarify the disappearance of the exact QMBS that is present for Jz = 0 and that is absent for
Jz = 1. In Fig. S3 we discuss the spectral properties of the model for several values of Jz ranging from 0 to 1 for a
spin chain of length L = 10. The plots show the bipartite entanglement entropy of all eigenstates and the expectation
value of Sz2 =

∑
j(S

z)2. At these system sizes, we observe the presence of a clear outlying state for Jz ≲ 0.2 in both
the entanglement entropy and the observable. For Jz ≲ 0.6 we can observe a state that is an outlier in what concerns
the expectation value of Sz2, but that has an elevated entanglement entropy, comparable to that of other eigenstates
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FIG. S3. Spectral properties of the Hamiltonian H ′ = H + V in the zero magnetization sector Sz = 0 for several values
of Jz, ranging for Jz = 0 to Jz = 1; results are obtained by performing exact diagonalization on a spin chain of length
L = 10. The parameters of the simulation are {J, h,D, J3} = {1, 0, 0.1, 0.1} and Jz is varied. In the first line we plot the
bipartite entanglement entropy SE of the eigenstates as a function of their energy E; in the second line we focus instead on the
expectation value Sz2

E of the observable Sz2 =
∑

j(S
z
j )

2 on the eigenstate with energy E. The plots highlight the behaviour of
the exact scar of the model at Jz = 0 and that disappears as Jz increases.

with the same energy. For larger values of Jz it is difficult to identify a unique outlier QMBS, although the spectrum
maintains a few states that are not collapsed on the main curve. It is important to stress that these simulations have
been performed at finite size and that a proper scaling towards the thermodynamic limit could make disappear the
outliers that we have shown for Jz ̸= 0. We also considered the case of negative values of Jz and obtained results very
similar to those in Fig. S3, which are not reported here for brevity.

S7. UNIVERSAL RESCALING OF FIDELITIES

In this section, we present the data collapse of the fidelities for the asymptotic QMBS for various system sizes
presented in the main text. Such a data collapse occurs at short times, once the time is rescaled by a factor that
depends on the size of the system, as shown in Fig. S4. In the left panel, we present data for the asymptotic QMBS
|n, k = π − 2π/L⟩ time-evolved with the spin-1 XY Hamiltonian H of Eq. (1) of the main text, which includes the
term proportional to J3, and the collapse is obtained by rescaling the time as τ = t/L. In the right panel, we present
data for the state |n, π⟩ time-evolved with the Hamiltonian H ′ = H + V ; the collapse is obtained by rescaling the
time as τ = t/L1/2.

It is interesting to link these results to the energy-time uncertainty relation in Eq. (6) of the main text, whose proof
is presented in many quantum mechanics textbooks and will not be reviewed here. The overlap of the time-evolved
state with the initial one is related to the expectation value of the Hamiltonian and of its powers as [6]

⟨Ψ| e−iHt |Ψ⟩ ≈ 1− it ⟨Ψ|H |Ψ⟩ − 1

2
t2 ⟨Ψ|H2 |Ψ⟩+ i

6
t3 ⟨Ψ|H3 |Ψ⟩+ . . . (S48)

and thus we can express the fidelity as

F (t) = | ⟨Ψ| e−iHt |Ψ⟩ |2 ≈ 1− t2
(
⟨Ψ|H2 |Ψ⟩ − ⟨Ψ|H |Ψ⟩2

)
+ . . . (S49)
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FIG. S4. Rescaling of the fidelities F (t) plotted in Fig. 2 and Fig. 4 of the main text.

The short-time fidelity dynamics is thus completely dictated by the energy-variance of the initial state with respect
to the Hamiltonian of the dynamics.

Note that the precise scaling of the relaxation time depends on the definition. The fidelity of an initial state at
short times decays as F (t) ∼ exp

(
−∆H2t2

)
[6], where ∆H2 is the variance, this gives a timescale τ ∼ 1/∆H. On

the other hand, one can define the fidelity relaxation time as the timescale at which fidelity decays to the the typical
fidelity between two many body states, which scales as exp(−L) [6], this adds an extra factor of

√
L. In this work, we

use the former definition, and are mostly interesting in the relative decay timescales between initial states of different
variances.

It is interesting to study a state with a Gaussian energy spread, for which the calculation of the time-dynamics of
the fidelity is exactly possible. In fact here it is possible to show that it minimizes the inequality and has a fidelity F (t)
whose dynamics happens on the shortest possible timescale. Consider indeed an initial state that is a Gaussian linear
superposition of energy eigenstates with average energy E0 and energy variance σ2 (we introduce also a normalisation
prefactor α ∈ C): Assuming that the density of states in the energy window [E0−σ,E0+σ] is approximately constant
and takes the value ρ(E0), the scalar product between the time-evolved state and the initial one is given by:

⟨Ψ0| e−iHt |Ψ0⟩ ≈
∫

|α|2e−
(E−E0)2

2σ2 e−iEtρ(E)dE = |α|2
√
2πσ2e−iE0te−

σ2t2

2 ρ(E0). (S50)

The normalisation of the state, computed for t = 0, requires that |α|2
√
2πσ2ρ(E0) = 1. The fidelity F (t) is the

squared modulus of this scalar product and hence F (t) = exp
[
−σ2t2

]
; we can define the typical time scale of the

fidelity dynamics as τ = 1/(2σ), and the energy-time inequality is satisfied and minimised.

In general terms, we thus expect that the dynamics of the fidelity at short times takes place on time-scales that
are the shortest possible and minimize the energy-time inequality. This short-time behaviour is indeed verified by the
numerics plotted in Fig. S4. In the left panel we have τ ∼ L and σ ∼ 1/L; in the right panel we have τ ∼

√
L and

σ ∼ 1/
√
L. Note that this timescale also matches the rigorous lower bounds on relaxation times for weak perturbations

of models with exact QMBS [3] by setting the perturbation strength λ = 1/L, although we note the latter is the
observable relaxation time, which we generically expect to be different from the fidelity relaxation time we discuss.
However, it is important to keep in mind that the numerics has been performed only at short times and that long-time
behaviours would need further investigation.
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S8. HIGHER DIMENSIONAL GENERALISATIONS OF ASYMPTOTIC QMBS

Finally, we show that the existence of the asymptotic QMBS is not limited to one-dimensional systems, but can be
easily generalised to higher-dimensional lattices. As an example, we consider a simple cubic Bravais lattice in d > 1
dimensions with primitive vectors ti and i = 1, . . . d; the vectors are adimensional and orthonormal: ti · tj = δij . The
lattice has linear dimension L and is composed of Ld sites; periodic boundary conditions (PBC) are applied. On each
site of the lattice there is a spin-1 degree of freedom and we define the spin-1 operators Sα

r , with α = x, y, z. We then
consider a nearest-neighbor XY model with external magnetic field:

H = J
∑
r

d∑
i=1

(
Sx
r S

x
r+ti + Sy

rS
y
r+ti

)
+ h

∑
r

Sz
r . (S51)

As discussed in [2, 7], this model in Eq. (S51) exhibits exact QMBS for any finite value of L and for any dimension
d. Note that when d > 1, the model of Eq. (S51) is non-integrable, and unlike in the one-dimensional case in Eq. (1)
of the main text, we need not add the anisotropy term proportional to D or the longer range term proportional to J3
to break integrability or unusual symmetries. Starting from the fully-polarised state |⇓⟩, we define the quasiparticle

creation operator J+
k = 1

2

∑
r e

ik·r (S+
r )

2
.

The exact QMBS states then read |n,π⟩ = 1√
Nn,π

(J+
π )

n |⇓⟩ where π is the vector with all d components equal to

π. It is easy to show that H |n,π⟩ = h(−Ld + 2n) |n,π⟩, hence the state is an exact QMBS in the middle of the
spectrum of the Hamiltonian [2, 7, 8]. The states that we are interested in are:

|n,k⟩ = 1√
Nn,k

J+
k (J+

π )n−1 |⇓⟩ , (S52)

where k is any vector of the reciprocal space confined to the first Brillouin zone (1BZ). Similar to the one-dimensional
case, it is possible to show that as long as the momentum k is chosen compatible with PBC in all directions, we can
show that ⟨n,k|n′,k′⟩ = δn,n′δk,k′ . With these states, we can directly repeat the proof in Sec. S2 mutatis mutandis.
We find that the average energy is given by ⟨n,k|H |n,k⟩ = h(−Ld + 2n), and the energy variance is given by

∆H2 =
4J2

∑d
i=1 cos

2
(
ki

2

)
1 + (n−1)Ld

Ld−n
δk⃗,π⃗

= 4J2
d∑

i=1

cos2
(
ki
2

)
. (S53)

Thus, if we consider k with components ki = π+ 2π
L mi and keep the mi ∈ Z fixed while L→ ∞, the variance reduces

to zero while being orthogonal to the exact QMBS. For such states, we expect the same phenomenology of asymptotic
QMBS discussed for the one-dimensional case.
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Universal survival probability for a d-dimensional run-and-tumble particle
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We consider an active run-and-tumble particle (RTP) in d dimensions and compute exactly the
probability S(t) that the x-component of the position of the RTP does not change sign up to time
t. When the tumblings occur at a constant rate, we show that S(t) is independent of d for any finite
time t (and not just for large t), as a consequence of the celebrated Sparre Andersen theorem for
discrete-time random walks in one dimension. Moreover, we show that this universal result holds for
a much wider class of RTP models in which the speed v of the particle after each tumbling is random,
drawn from an arbitrary probability distribution. We further demonstrate, as a consequence, the
universality of the record statistics in the RTP problem.

The first time tf at which a stochastic process reaches a
fixed target level is a fundamental observable with many
applications. Statistics of tf plays a crucial role in various
situations, including e.g., the encounter of two molecules
in a chemical reaction [1], the capture of a prey in a
hunting scenario [2], or the escape of a comet from the
solar system [3, 4]. In the context of finance, agents often
use limit orders to buy/sell a stock only when its price
is below/above a target value. Thus, it is important to
estimate if and when that target value will be reached and
this question has been intensively studied during decades
(for recent reviews see [2, 5–9]). Due to the ubiquity of
these problems, novel applications are constantly being
identified, raising in turn new challenging questions.

In recent years, tremendous efforts have been devoted
to the study of statistical fluctuations in active matter
systems [10–13]. In contrast to a passive matter such
as a Brownian motion (BM), whose dynamics is driven
by thermal fluctuations of the environment, this class of
active non-equilibrium systems is characterized by self-
propelled motility based on continuous consumption of
energy from the environment. For example, models of
active matter have been used to describe vibrating gran-
ular matter [14], active gels [15, 16], bacteria [17, 18]
or collective motion of “animals” [15, 19–21]. In this
context, one of the most studied model is the run-and-
tumble particle (RTP) [22, 23], also known as “persistent
random walk” [24, 25]. In the simplest version of the
model, an RTP performs a ballistic motion along a cer-
tain direction at a constant speed v0 ≥ 0 (“run”) during
a certain “time of flight” τ . Following this run, it “tum-
bles”, i.e., chooses a new direction uniformly at random
and then performs a new run along this direction again
with speed v0 during a random time τ and so on (see
Fig. 1). Typically these tumblings occur with constant
rate γ, i.e. the τ ’s of different runs are independently
distributed via exponential distribution p(τ) = γe−γτ ,
though other distributions will also be considered later.
Despite its simplicity, this RTP model exhibits complex
interesting features such as clustering at boundaries [11],

0 01 1O

l

l

l

3

1 4

5l

l6

2l

ln

FIG. 1: Typical trajectory of a RTP in two dimensions. The
particle starts at the origin O, chooses a random direction and
moves ballistically in that direction for a distance l1 = v0 τ1 ,
where v0 is constant and τ1 is a random time drawn from the
exponential distribution p(τ) = γ e−γτ . At the end of this
first flight, the particle tumbles instantaneously and chooses a
new random direction and again moves ballistically a distance
l2 = v0τ2 with τ2 drawn independently from the same p(τ).
Then the particle tumbles again and so on.

non-Boltzmann distribution in the steady state in the
presence of a confining potential [22, 26–29], motility-
induced phase separation [23], jamming [30] etc. Variants
of the RTP model where the speed v ≥ 0 of the particle is
renewed after each tumbling by drawing it from a proba-
bility density function (PDF) W (v) [31, 32] or where the
RTP undergoes random resetting to its initial position at
a constant rate [34, 35] have also been studied.

In the d = 1 case, the first-passage properties of the
RTP model and of its variants have been widely stud-
ied [24, 36–39]. Several recent studies investigated the
survival probability of an RTP in d = 1, both in the ab-
sence and in the presence of a confining potential/wall
[27, 37–40]. The d = 1 case is analytically tractable be-
cause the velocity has only two possible directions ±v0,
which simplifies the problem in d = 1. However, in d > 1,
the first-passage problems become much more difficult

ar
X

iv
:2

00
1.

01
49

2v
1 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  6

 J
an

 2
02

0



2

10
4 t

10
-2

10
-1

S
(t

)

half-Gaussian
Exponential

Lévy ( =1.5)

Lévy ( =0.5)

0 2 4 6 8 10

t
0

0.1

0.2

0.3

0.4

0.5

0.6

S
(t

)

Theory
d=1
d=2
d=3
half-Cauchy W(v)

2� 10
4

μ

μ

FIG. 2: Survival probability S(t) as a function of time t,
for γ = 1. The continuous blue line corresponds to the exact
result in Eq. (1). The symbols correspond to simulations
with the choices d = 1, 2, 3, W (v) = δ(v − 1) and p(τ) = e−τ

and one case where d = 2, W (v) = 2/(π(1 + v2)) with v > 0
(half-Cauchy) and p(τ) = e−τ . They all fall on the analytical
blue line for all t. Inset: Numerical computation of S(t)
in d = 2 for different distributions p(τ): (i) half-Gaussian,
(ii) exponential, (iii) asymmetric Lévy distribution with Lévy
index µ = 3/2 and (iv) asymmetric Lévy with µ = 1/2. In all
these cases, S(t) ∼ t−θ for large t with θ = 1

2
in cases (i)-(iii)

and θ = µ/2 = 1/4 for case (iv) corresponding to µ = 1/2.

because the orientation of the velocity is a continuous
variable. Consequently, exact results are difficult to ob-
tain in d ≥ 2, though approximation schemes have been
developed recently for the mean first-passage time in a
confined geometry [41].

In this Letter we consider an RTP in d-dimensions,
starting from the origin with a random velocity, and com-
pute exactly the probability S(t) that the x-component
of the RTP does not change sign up to time t. It is useful
to view S(t) as the “survival probability” of the RTP in
the presence of an absorbing hyperplane passing through
the origin and perpendicular to the x-axis. For a passive
particle executing Brownian motion (BM), it is clear that
S(t) is independent of d, since each component of the
displacement performs an independent one-dimensional
BM [42]. In contrast, for an RTP in d dimensions, the
different spatial components are coupled (see Fig. 1) and,
consequently one may expect that S(t) would depend on
the dimension d and the speed v0. Performing first simu-
lations in d = 1, 2, 3 (see Fig. 2) we found, rather amaz-
ingly, that S(t) is completely independent of both d and
v0, at any finite time t (and not just at large times only) !

The principal goal of this Letter is to understand and
prove this remarkably universal result valid even at finite
t. We compute S(t) exactly for all t in arbitrary dimen-
sion d, and demonstrate that it is indeed independent of
the dimension d and speed v0 for any time t and is given
by a simple formula

S(t) =
1

2
e−γt/2 (I0 (γt/2) + I1 (γt/2)) , (1)

where I0(z) and I1(z) are modified Bessel functions.
When t → 0, S(t) goes to the limiting value 1/2, which
is just the probability that the x-component of the initial
direction is positive. On the other hand, at late times it
decays as S(t) ∼ 1/

√
πγt. By mapping our d-dimensional

process to an effective 1d-process we show below that the
universality of this result (1) is inherited from the univer-
sality of the Sparre Andersen (SA) theorem [43] for the
survival probability of a one-dimensional discrete-time
random walk. In the special case d = 1, as a bonus, we
recover here using a completely different method, the re-
sult in Eq. (1) obtained in previous works [24, 37, 38]
via Fokker-Planck approaches. In Fig. 2, we compare
our formula for S(t) in (1) with numerical simulations
for d = 1, 2 and 3, finding an excellent agreement at all
t. Furthermore, this universal result (1) also holds for
a broader class of RTP models where the speed v, and
not just the direction, is also renewed afresh after each
tumbling, chosen each time independently from the PDF
W (v), with v ∈ [0,∞). The standard RTP model cor-
responds to the choice W (v) = δ(v − v0) but this also
includes fat tailed PDF W (v) such as the half-Cauchy
distribution: W (v) = 2/[π (1 + v2)] (v ≥ 0), as shown in
Fig. 2 . Our main result thus states that for the most
common RTP model with exponentially distributed time
of flights p(τ) = γe−γτ , the survival probability S(t) at
all t is not only independent of the dimension d, but
also on the velocity distribution W (v) and is given by
Eq. (1). We further show that this universal behavior
ceases to hold if the distribution of the τ ’s is not an ex-
ponential. In fact, if p(τ) has a well defined first moment
then one still has S(t) ∝ t−1/2 at large times but S(t) is
not universal for finite time t. Finally, for very fat tailed
distribution such that the first moment is not defined,
e.g. for p(τ) ∝ τ−1−µ for large τ with µ < 1 (in the 1d
case this corresponds to Lévy walks, see e.g. [44]), then
S(t) ∝ t−µ/2 as t→∞ but again the finite t behavior of
S(t) is not universal.

Interestingly, the SA theorem was also used re-
cently [36] to compute first-passage statistics in a variant
of the one dimensional RTP model. In this “wait-then-
jump model” the particle waits a random time during
tumbling and then jumps instantaneously to a new posi-
tion. Combining the SA theorem with additional combi-
natorial arguments, the authors of Ref. [36] derived nice
results for general jump distributions in their ‘wait-then-
jump’ model. Unfortunately, their clever method can
not be adapted to compute the survival probability in
the standard RTP model considered here, where the tra-
jectory of the particle is continuous in time. In fact our
method turns out to be more general: it not only pro-
vides an exact solution for the standard RTP problem in
d-dimensions and its generalization to RTP’s with an ar-
bitrary speed distribution W (v), but also recovers the re-
sults of Ref. [36] by a simpler non-combinatorial method
(see [45] for details).
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To sketch the derivation of our main result in Eq. (1),
we consider a typical trajectory of an RTP in d-
dimensions, starting at the origin O at t = 0 (see Fig. 1).
For simplicity, we start with the case W (v) = δ(v − v0).
Note that in a fixed time window t, the number of tum-
blings n undergone by the particle is a random vari-
able and varies from trajectory to trajectory. We will
count the starting point O as a tumbling, which implies
n ≥ 1. The time τ between two tumblings is drawn from
p(τ) = γe−γτ independently after each tumbling and we
denote the time interval after the ith tumbling as τi. Note
that the duration τn of the last interval travelled by the
particle before the final time t is yet to be completed.
Hence, the probability of no tumbling during that time
interval is

∫∞
τn
p(τ)dτ = e−γτn . Thus, the joint distribu-

tion of the time intervals {τi} = {τ1, τ2, ..., τn} and the
number of tumblings n, for a fixed duration t, is given by

P ({τi}, n|t) =

[
n−1∏

i=1

γ e−γ τi

]
e−γ τn δ

(
n∑

i=1

τi − t
)
, (2)

where the δ function enforces the constraint that the to-
tal time is t. Let {li} = {l1, l2, ..., ln} denote the straight
distances travelled by the particle up to time t (see Fig.
1). Clearly li = v0τi and li ≥ 0 for all i. Consequently,
using Eq. (2), the joint distribution of {li} and the num-
ber of tumblings n is given by

P ({li}, n|t) =
1

γ

[
n∏

i=1

γ

v0
e−γ li/v0

]
δ

(
t−

n∑

i=1

li
v0

)
.

(3)
We now want to write the joint distribution of the x-
components of these random vectors {~li} with given
norms {li}. To proceed, we consider a random vec-

tor ~l in d dimensions whose norm l = |~l| is fixed and
whose direction is uniformly distributed. Let x denote
the x-component of this random vector ~l. The distri-
bution of this x-component given the fixed norm l is
Pd(x|l) = (1/l)fd(x/l), with (for derivation see [45])

fd(z) =
Γ(d/2)√

π Γ((d− 1)/2)
(1− z2)(d−3)/2 θ(1− |z|) , (4)

where Γ(y) is the Gamma function and θ(y) is the Heav-
iside step function: θ(y) = 1 if y ≥ 0 and θ(y) = 0
if y < 0. We denote as xi the x-component of the
vector ~li. Since at each tumbling the new direction is
drawn independently, the joint probability distribution
of the x-components, given the distances {li} factorises
as P ({xi}|{li}) =

∏n
i=1(1/li)fd(xi/li). Using this result

and Eq. (3), we can now write the joint probability dis-
tribution of {xi}, {li} and n as

P ({xi}, {li}, n|t) = P ({xi}|{li})P ({li}, n|t)

=
1

γ

[
n∏

i=1

1

li
fd

(
xi
li

)
γ

v0
e−γ li/v0

]
δ

(
t−

n∑

i=1

li
v0

)
.

(5)

By integrating over the {li} variables, we obtain the
joint distribution of the xi’s and n, P ({xi}, n|t). Due to
the presence of the delta-function in (5), it is convenient
to compute its Laplace transform with respect to (w.r.t)
t. After integrating over the li’s, we obtain (see [45])

∫ ∞

0

dt e−s t P ({xi}, n|t) =
1

γ

(
γ

γ + s

)n n∏

i=1

p̃s(xi), (6)

where we have defined

p̃s(x) =

∫ ∞

0

dl

l
fd

(x
l

) (γ + s)

v0
e−(γ+s) l/v0 . (7)

One can easily check that p̃s(x) is non-negative and nor-
malised to unity (see [45]): it can thus be interpreted as
a PDF, parametrized by s, d, γ and v0. Moreover, due to
the symmetry of fd(z) = fd(−z), p̃s(x) is also symmetric,
i.e., p̃s(x) = p̃s(−x). While the PDF p̃s(x) in Eq. (7)
can be computed explicitly for arbitrary d, we will show
that its precise expression is not relevant for our purpose.
All that matters for our purpose is that it is continuous
and symmetric in x. By performing a formal inversion
of the Laplace transform in Eq. (6), we derive the joint
distribution of the xi’s and n, given t,

P ({xi}, n|t) =

∫
ds

2π i
es t

1

γ

(
γ

γ + s

)n n∏

i=1

p̃s(xi) , (8)

where the integral is over the Bromwich contour (imag-
inary axis in this case) in the complex s plane. We see
from Eq. (8) that the d-dimensional RTP (see Fig. 1),
when projected in the x-direction, constitutes an effec-
tive one-dimensional random walk (RW) where the incre-
ments xi’s are now correlated in a nontrivial way. Our
goal is now to compute the survival probability S(t) for
this RW, starting from x0 = 0.

To proceed, we notice that the survival probability S(t)
of this x-component process up to time t is, by definition,
the probability of the event that the successive sums x1,
x1+x2, . . ., x1+x2+. . . xn are all positive. Here, the num-
ber of steps n of the RW, i.e. the number of tumblings in
the initial RTP problem, in the fixed time interval [0, t]
is itself a random number. Hence, to compute S(t) we
need to sum over all possible values of n ≥ 1. This yields

S(t) =

∞∑

n=1

∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxn Θn({xi})P ({xi}, n|t) ,

(9)
where we used the notation Θn({xi}) = θ(x1)θ(x1 +
x2) . . . θ(x1+x2+. . .+xn) to constrain the partial sums to
be positive. By inserting the expression of P ({xi}, n|t)
given in (8) into Eq. (9) we obtain

S(t) =

∫
ds

2π i
es t

1

γ

∞∑

n=1

(
γ

γ + s

)n
qn , (10)
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where we have defined the multiple integral

qn =

∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxn Θn({xi})

n∏

i=1

p̃s(xi) . (11)

In fact, qn in Eq. (11) has a very simple and nice in-
terpretation. Consider a discrete-time continuous-space
random walk starting at the origin 0 in one dimension. At
each step k ≥ 1, the position of the random walker Xk

jumps by a random distance xk drawn, independently
at each step, from the continuous and symmetric PDF
p̃s(x), i.e. Xk = Xk−1 +xk, starting from X0 = 0. Then,
qn in (11) just denotes the probability that the walker
stays on the positive side up to step n. Since the jump
distribution p̃s(x) is continuous and symmetric, we can
use the Sparre Andersen theorem [43] which states that
qn is universal, i.e. independent of p̃s(x), and simply
given by qn =

(
2n
n

)
2−2n for n ≥ 0. Note that this for-

mula is independent of the jump distribution for all n,
and not just asymptotically for large n. The generating
function of qn is thus also universal and given by

∞∑

n=0

qn z
n =

1√
1− z . (12)

This formula has been used recently in several statistical
physics problems [7, 46], in particular in the context of
record statistics [47–51] (see also below and in [45] for the
record statistics in the RTP problem). Here we use this
result (12) choosing z = γ/(γ + s) in Eq. (10), taking
care of the fact that the sum in Eq. (10) does not include
the n = 0 term. This leads to our amazingly universal
result

S(t) =

∫
ds

2π i
es t

1

γ

[√
γ + s

s
− 1

]
. (13)

This result is evidently independent of the dimension d
and the speed v0. The dimensional dependence appears
in Eq. (10) through the PDF p̃s(x) which however disap-
pears as a consequence of the SA theorem. The Laplace
inversion in Eq. (13) can be exactly done and we obtain
the explicit expression for S(t) presented in Eq. (1). Let
us emphasize, once more, that the result (1) is valid at
all times t and in any dimension d.

In fact, the result (1) turns out to be valid for a
much broader class of d-dimensional RTP models where
the speed during a flight is itself a random variable,
drawn from a generic speed distribution W (v) – while
the time of flights are still exponentially distributed, i.e.
p(τ) = γ e−γτ . For a general W (v), all the steps of our
calculation leading to S(t) in (10) and (11) go through,
except that p̃s(x) in Eq. (7) gets modified to [45]

p̃s(x) =

∫ ∞

0

dl

l
fd

(x
l

) ∫ ∞

0

dvW (v)
(γ + s)

v
e−(γ+s) l/v ,

(14)

which is normalized to unity and is both continuous and
symmetric. Using the SA theorem, we then conclude that
S(t) is again independent of the precise form of p̃s(x) and
is given by the same universal formula (1). Hence, S(t)
in (1) is independent, at all time t, of the dimension d as
well as the speed distribution W (v) – which we have also
checked numerically (see [45]).

The universal result (1) is derived assuming p(τ) is
exponential. Does this result hold for other flight time
PDF’s p(τ)? For non-exponential p(τ) it is difficult to
compute S(t) exactly for all t. With our method, this
amounts to compute the survival probability of an effec-
tive 1d RW of n steps where the last jump (corresponding
to the last incomplete run in the original RTP) differs
from the (n − 1) first ones (the complete runs of the
RTP). For the exponential jump distribution with rate
γ, the weight of the last jump differs from the (n − 1)
first ones by a constant pre-factor γ [see Eq. (2)] and
we can still use the SA theorem, which requires an iden-
tical jump distribution for each step. Unfortunately, for
other p(τ), this trick can not be used and the SA theorem
can no longer be applied. Our numerical simulations in
the inset of Fig. 2 indeed indicate that S(t) is no longer
given by (1) for non-exponential p(τ). For such distribu-
tions, even if computing the exact expression of S(t) for
any finite t seems challenging, it is reasonable to expect
that the RTP and the aforementioned “wait-then-jump”
model [36] behave, at late times, in a qualitatively similar
way. In particular, the survival probability should decay,
at large time t, as S(t) ∝ t−θ with the same exponent
θ for both models. From the “wait-then-jump” model,
one can then show [36] (see also [45]) that θ = 1/2 if
p(τ) admits a well defined first-moment while, if the first
moment is not defined, e.g. for p(τ) ∝ τ−1−µ for large τ
with µ < 1, then θ = µ/2. In the inset of Fig. 2 we nu-
merically verify these predictions for θ for the RTP with
different p(τ), finding a good agreement.

As an interesting application, our universal result for
S(t) with an exponential p(τ) in Eq. (1) can further
be used to derive the universal properties of other in-
teresting observables for the x-component process of the
d-dimensional RTP. For instance, we show in [45] that the
statistics of the number of lower records SN (t) in time
t for this effective 1-d process is also universal for all t
and can be computed exactly. The statistics of the num-
ber of records is an important problem with a variety of
applications ranging from climate science to finance [51],
but with very few exact analytical results. Here we show
that the record statistics in the RTP problem is not only
exactly solvable but is also universal. For example, we
show that the mean number of lower records 〈N(t)〉 at
all times t is given by the universal formula [45]

〈N(t)〉 =
e−

γt
2

2

(
(2γt+ 3)I0

(
t

2

)
+ (2γt+ 1)I1

(
γt

2

))
.

To conclude, we computed exactly the probability S(t)
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that the x-component of an RTP in d-dimensions does
not cross the origin up to time t. For an RTP with a
constant tumbling rate, we demonstrated that S(t) is re-
markably universal at all t, i.e., independent of d as well
as the speed distribution W (v). These results are used
to further compute the universal record statistics for an
RTP in d-dimensions. It would be interesting to see if
such universality extends to other other observables in
RTP as well as to other models of active self-propelled
particles.

We would like to thank A. Dhar and A. Kundu for
stimulating discussions at the earliest stage of this work.
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[51] C. Godrèche, S. N. Majumdar, and G. Schehr, J. Phys.

A: Math. Theor. 50, 333001 (2017).



Universal survival probability for a d-dimensional run-and-tumble particle:
supplemental material

Francesco Mori,1 Pierre Le Doussal,2 Satya N. Majumdar,1 and Grégory Schehr1

1LPTMS, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
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I. DERIVATION OF THE SURVIVAL PROBABILITY S(t)

In this section we give the details of the derivation of Eq. (1) in the main text, i.e. of the probability S(t) that
the x-component of the run-and-tumble particle (RTP) does not take negative values up to time t. We perform
the computation in the most general setup, where the velocity v is drawn after each tumbling from a distribution
W (v) with positive support and normalized to unity. It is possible to recover the usual RTP model by setting
W (v) = δ(v−v0). We consider a single RTP moving in d-dimensions, starting at the origin O and evolving for a total
time t. The particle initially chooses a random direction and a random velocity v1 and moves ballistically in that
direction during a random time interval τ1 that is drawn from an exponential distribution p(τ) = γ e−γτ . The distance
travelled during this flight l1 = v1τ1 is thus also a random variable. After that, the particle tumbles instantaneously,
i.e., it chooses randomly a new direction and a new velocity. Then, it moves ballistically in that direction for an
exponentially distributed time τ2 drawn independently from the same distribution p(τ) = γ e−γτ and so on. More
precisely, in a small time interval dt:

• With probability γ dt, the particle changes its direction of motion and velocity randomly.

• With the complementary probability (1 − γdt), the particle retains its direction and moves forward in that
direction by a distance v dt, where v is the constant velocity of the current flight.

Note that the number n of tumblings is also random. We consider the starting point O as a tumbling. Thus, we
always have n ≥ 1. As explained in the letter, the last time interval τn will not be completed yet. Consequently,
its distribution is given by the probability e−γ τn that no tumbling happens during the interval τn. At variance
with the previous intervals, each of which is distributed independently according to the normalized distribution
p(τ) = γ e−γ τ , the distribution of τn is not normalized to unity. Hence, the joint distribution of the time intervals
{τi} = {τ1, τ2, . . . , τn} and the number of tumblings n, for a fixed duration t of the particle, is given by

P ({τi}, n|t) =

[
n−1∏

i=1

γ e−γ τi

]
e−γ τn δ

(
n∑

i=1

τi − t
)
. (1)

Let {li} = {l1, l2, . . . , ln} denote the straight distances travelled by the particle up to time t and {vi} = {v1, v2, . . . , vn}
the magnitude of the velocities in each flight. Clearly li = vi τi and li ≥ 0 for all i. Thus, using Eq. (1), the joint
distribution of {li}, {vi} and the number of tumblings n is given by

P ({li}, {vi}, n|t) =
1

γ

[
n∏

i=1

W (vi)
γ

vi
e−γ li/vi

]
δ

(
t−

n∑

i=1

li
vi

)
. (2)

By integrating over the speed variables {vi} we obtain the joint distribution of {li} and n:

P ({li}, n|t) =
1

γ

∫ ∞

0

dv1 . . .

∫ ∞

0

dvn

[
n∏

i=1

W (vi)
γ

vi
e−γ li/vi

]
δ

(
t−

n∑

i=1

li
vi

)
. (3)

As explained in the main text, the joint distribution of the x-components of the random vectors {~li} with given norms
{li} can be written as (see Sec. II for the derivation of this result):

P ({xi}|{li}) =

n∏

i=1

Pd(xi|li) =

n∏

i=1

1

li
fd

(
xi
li

)
(4)

where

fd(z) =
Γ(d/2)√

π Γ((d− 1)/2)
(1− z2)(d−3)/2 θ(1− |z|) . (5)

Here Γ(y) is the Gamma function and θ(y) is the Heaviside step function: θ(y) = 1 if y ≥ 0 and θ(y) = 0 if y < 0.
We can then write down explicitly the joint distribution of the x-components {xi}, the norms {li} and the number of
tumblings n at fixed total time t as

P ({xi}, {li}, n|t) = P ({xi}|{li}) P ({li}, n|t)

=
1

γ

∫ ∞

0

dv1 . . .

∫ ∞

0

dvn

[
n∏

i=1

1

li
fd

(
xi
li

)
W (vi)

γ

vi
e−γ li/vi

]
δ

(
t−

n∑

i=1

li
vi

)
, (6)
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where we used the results in Eqs. (3) and (4). Having obtained this joint distribution we can now integrate over the
{li} variables to obtain the marginal joint distributions of {xi} and n, given t

P ({xi}, n|t) =
1

γ

∫ ∞

0

dl1 . . .

∫ ∞

0

dln

∫ ∞

0

dv1 . . .

∫ ∞

0

dvn

[
n∏

i=1

1

li
fd

(
xi
li

)
W (vi)

γ

vi
e−γ li/vi

]
δ

(
t−

n∑

i=1

li
vi

)
. (7)

The result in Eq. (7) then provides us an effective x-component process {xi} projected from the d-dimensional RTP
of fixed duration t. To further simplify this x-component process, we take a Laplace transform with respect to t that
decouples the integrals over the {li} variables

∫ ∞

0

dt e−s t P ({xi}, n|t) =
1

γ

∫ ∞

0

dl1 . . .

∫ ∞

0

dln

∫ ∞

0

dv1 . . .

∫ ∞

0

dvn

[
n∏

i=1

1

li
fd

(
xi
li

)
W (vi)

γ

vi
e−(γ+s) li/vi

]

=
1

γ

(
γ

γ + s

)n n∏

i=1

∫ ∞

0

dli
li
fd

(
xi
li

) ∫ ∞

0

dviW (vi)
(γ + s)

vi
e−(γ+s) li/vi

=
1

γ

(
γ

γ + s

)n n∏

i=1

p̃s(xi) (8)

where we have defined

p̃s(x) =

∫ ∞

0

dl

l
fd

(x
l

) ∫ ∞

0

dvW (v)
(γ + s)

v
e−(γ+s) l/v . (9)

Note that in getting from the first to the second line above, we have multiplied and divided by a factor (γ+s)n so that
the function p̃s(x), which depends on the parameters s, d, γ and on the speed distribution W (v), can be interpreted
as a probability density function (PDF) of a random variable x. Manifestly p̃s(x) is non-negative and normalized to
unity. Indeed, integrating over x one gets

∫ ∞

−∞
p̃s(x) dx = (γ + s)

∫ ∞

0

dl

∫ ∞

−∞

dx

l
fd

(x
l

) ∫ ∞

0

dv

v
W (v) e−(γ+s) l/v

= (γ + s)

∫ ∞

0

dv

v
W (v)

∫ ∞

0

dl e−(γ+s) l/v
∫ 1

−1
dz fd(z)

=

∫ ∞

0

dvW (v) = 1, (10)

where we used the fact that fd(z) given in Eq. (5) is supported over the finite interval z ∈ [−1, 1] and is normalized
to unity and that W (v) is normalized to unity. As we will see below, the precise expression for p̃s(x) is not relevant,
as long as it is continuous and symmetric in x. Note that this property for p̃s(x) will hold for general factorized jump
distributions P ({xi}|{li}) =

∏n
i=1 Pd(xi|li) as in Eq. (4), provided the conditional distribution Pd(x|l) is symmetric in

x, i.e. Pd(x|l) = Pd(−x|l). Finally, inverting the Laplace transform in Eq. (8) formally, we have the joint distribution
of {xi} and n for a fixed t

P ({xi}, n|t) =

∫
ds

2π i
es t

1

γ

(
γ

γ + s

)n n∏

i=1

p̃s(xi) , (11)

where the integral is over the Bromwich contour (imaginary axis in this case) in the complex s plane.
The survival probability S(t) of this x-component process up to time t is the probability of the event that the

successive sums x1, x1 + x2, . . ., x1 + x2 + . . . xn are all positive. We recall that the number of tumblings n is also a
random variable. Thus, summing over n one obtains

S(t) =
∞∑

n=1

∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxn [θ(x1) θ(x1 + x2) . . . θ(x1 + x2 + . . .+ xn)] P ({xi}, n|t) , (12)

where P ({xi}, n|t) is the joint distribution of {xi} and n for fixed t. Plugging the expression for P ({xi}, n|t) given
in Eq. (11) gives

S(t) =

∫
ds

2π i
es t

1

γ

∞∑

n=1

(
γ

γ + s

)n ∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxn [θ(x1) θ(x1 + x2) . . . θ(x1 + x2 + . . .+ xn)]

n∏

i=1

p̃s(xi)

=

∫
ds

2π i
es t

1

γ

∞∑

n=1

(
γ

γ + s

)n
qn , (13)
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FIG. 1. Plot of S(t) evaluated numerically for different velocity distributions W (v) and an exponential distribution p(τ) in
dimension d = 2. The solid line corresponds to the exact analytical result in Eq. (18).

where we have defined the multiple integral

qn =

∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxn [θ(x1) θ(x1 + x2) . . . θ(x1 + x2 + . . .+ xn)]

n∏

i=1

p̃s(xi) . (14)

However, as mentioned in the text, this quantity qn in Eq. (14) has the following interpretation. Consider a one-
dimensional discrete-time random walk, starting at the origin x = 0 and making independent jumps at each step with
jump length drawn from the PDF p̃s(x). Then qn is just the probability that the walker does not visit the negative
axis up to step n. Notably, since p̃s(x) is continuous and symmetric, the Sparre Andersen theorem [1] states that qn
is universal, i.e., independent of p̃s(x) and is given by:

qn =

(
2n

n

)
2−2n n = 0, 1, 2, . . . (15)

Note that this formula is valid for any n, and hence the universality holds for all n, and not just asymptotically for
large n. The generating function of qn is thus also universal

∞∑

n=0

qn z
n =

∞∑

n=0

(
2n

n

) (z
4

)n
=

1√
1− z . (16)

Using this result (16) in Eq. (13) and noticing that the sum in Eq. (13) does not include the n = 0 term leads to the
result

S(t) =

∫
ds

2π i
es t

1

γ

[√
γ + s

s
− 1

]
, (17)

which is Eq. (13) in the main text. Note that this result is universal in the sense that it does not depend on the
dimension d or on the speed distribution W (v). Indeed, W (v) and d appear only in Eq. (13) through the PDF p̃s(x).
However, we have seen that as a consequence of the Sparre Andersen theorem the result is completely independent
of the specific form of p̃s(x), as long as it is symmetric and continuous. As explained in the main text, the Laplace
inversion in Eq. (17) can be explicitly performed leading to

S(t) =
1

2
e−γt/2 [I0(γt/2) + I1(γt/2)] (18)

where I0(z) and I1(z) are modified Bessel functions, as given in Eq. (1) in the main text. In Fig. 1 we show a plot of
S(t) evaluated numerically for different velocity distributions W (v) and an exponential distribution p(τ) in dimension
d = 2, which shows a very good agreement with our exact result (18).
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II. DERIVATION OF THE FORMULA IN EQ. (5) FOR THE MARGINAL DISTRIBUTION Pd(x|l)

We consider a random vector ~l of fixed magnitude l in d-dimensions and compute the marginal distribution Pd(x|L)

of its x-component, given fixed l. The PDF of a random vector ~l of fixed magnitude l is simply

P (~l) =
1

Sd ld−1
δ
(
|~l| − l

)
, (19)

where

Sd =
2πd/2

Γ(d/2)
(20)

is just the surface area of a d-dimensional sphere of unit radius. It is convenient to rewrite Eq. (19) as

P (~l) =
2

Sd ld−2
δ
(
|~l|2 − l2

)
. (21)

Let |~l|2 = z21 + z22 + . . . z2d where zk denotes the component of the vector ~l along the k-th direction. Therefore, the
marginal distribution Pd(x|l), for instance along the x direction, is obtained by keeping z1 = x fixed while integrating
over the other components

Pd(x|l) =

∫
P (~l) δ(z1 − x) dz1 dz2 . . . dzd

=
2

Sd ld−2

∫
δ
(
z22 + z23 + . . .+ z2d − (l2 − x2)

)
dz2 dz3 . . . dzd , (22)

where we used Eq. (21) in going from the first to the second line above. Let R2 = z22 + z23 + . . . + z2d. Then the
(d− 1)-dimensional integral in Eq. (22) can be performed in the radial coordinate

Pd(x|L) =
2Sd−1
Sd ld−2

∫ ∞

0

δ
(
R2 − (l2 − x2)

)
Rd−2 dR (23)

where we recall Sd−1 is the surface area of a (d − 1)-dimensional unit sphere. The single radial integral in Eq. (23)
can be trivially done by making a change of variable R2 = u

Pd(x|l) =
Sd−1
Sd ld−2

∫ ∞

0

δ
(
u− (l2 − x2)

)
u(d−3)/2 du

=
Sd−1
Sd ld−2

(l2 − x2)(d−3)/2 θ(l − |x|) . (24)

Using the formula for Sd in Eq. (19) and rearranging the terms, we get

Pd(x|l) =
1

l
fd

(x
l

)
, (25)

where

fd(z) =
Γ(d/2)√

π Γ((d− 1)/2)
(1− z2)(d−3)/2 θ(1− |z|) , (26)

as given in Eq. (4) in the main text. One can check easily that fd(z) is normalized to unity over the support
z ∈ [−1, 1].

III. SURVIVAL PROBABILITY FOR RANDOM WALKS WITH SPATIO-TEMPORAL
CORRELATIONS

As mentioned in the main text, the RTP model is a particular case of a random walk (RW) with spatio-temporal
correlation. Let us consider a RW on the real line. Let

(x1, τ1), (x2, τ2), . . . , (xj , τj), . . . (27)
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be a sequence of independent identically distributed pairs of random variables corresponding to the step length xi
and the associated time τi. We assume that each pair (xi, τi) is distributed according to the some joint PDF p(x, τ),
which is assumed to be continuous in x and spatially symmetric: p(x, τ) = p(−x, τ). After n steps the RW will be in
position Xn at time Tn, where

Xn =
n∑

k=0

xk, Tn =
n∑

k=0

τk . (28)

To study the probability S(t) that the negative side of the x-axis is not reached up to time t we also need to specify
how the walker moves when taking a step. One possibility is that in order to take a step xi in a time τi the walker
moves with constant velocity vi = xi/τi, as in the case of the RTP. Another possibility is that the walker remains in
its position for a time τi and then takes an instantaneous jump xi. It turns out that for this latter “wait-then-jump
model” the survival probability S(t) can be computed exactly for any distribution p(x, τ). This result was recently
obtained by Artuso et al. using a combinatorial lemma [2] combined with the Sparre Andersen theorem. Here we
propose an alternative non-combinatorial derivation based on our technique presented in Sec. I. It is convenient to
derive the probability π(t) that the first entrance to the negative axis happens at time t. One can then obtain the
survival probability S(t) using the relation

S′(t) = −π(t) . (29)

In fact, Artuso et. al. [2] computed exactly the Laplace transform of π(t), rather than of S(t), but these two are
simply related due to the relation (29). In order to compare to the result of the RTP in Eq. (18), we will compute
S(t) for the “wait-then-jump model”.

Consider a trajectory of the “wait-then-jump model” up to time t. By definition, in the “wait-then-jump model”
there are n complete jumps such that

∑n
i=1 τi = t, where each pair (xi, τi) is drawn independently from the PDF

p(x, τ). This corresponds to imposing that there is a jump at time t. Note that the number of jumps n in time t is a
random variable, as in the RTP. The joint PDF of {(xi, τi)}1≤i≤n and of n, at fixed total time t is then given by

P ({(xi, τi)}, n|t) =
n∏

i=1

p(xi, τi) δ

(
n∑

i=1

τi − t
)
, (30)

where the delta function enforces the constraint on the total time. We integrate over the τ variables to obtain the
marginal of {xi} and n

P ({xi}, n|t) =

∫ ∞

0

dτ1 . . .

∫ ∞

0

dτn

n∏

i=1

p(xi, τi) δ

(
n∑

i=1

τi − t
)
. (31)

Taking a Laplace transform with respect to t we decouple the integrals over the τ variables

∫ ∞

0

dt P ({xi}, n|t) e−st =
n∏

i=1

∫ ∞

0

dτip(xi, τi) e
−s τi . (32)

It is useful to rewrite the right-hand side of Eq. (32) as

∫ ∞

0

dt P ({xi}, n|t) e−st = c(s)n
n∏

i=1

p̃s(xi) , (33)

where c(s) is defined as

c(s) =

∫ ∞

0

dτ

∫ ∞

−∞
dx p(x, τ) e−sτ (34)

and

p̃s(x) =
1

c(s)

∫ ∞

0

dτ p(x, τ) e−sτ . (35)

Note that p̃s(x) can be interpreted as a probability density function. Indeed, it is clearly non-negative and normalized
to unity. Moreover, since we assume p(x, τ) to be continuous and symmetric with respect to x, p̃s(x) will also be
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continuous and symmetric. The probability that the walker enters in the positive axis for the first time at time t can
be simply written as

π(t) =
∞∑

n=1

∫ ∞

0

dx1 . . .

∫ ∞

0

dxn P ({xi}, n|t) Θn({xi}) , (36)

with the notation

Θn({xi}) = θ(X1) θ(X2) . . . θ(Xn−1)θ(−Xn), (37)

where Xi’s are the partial sums defined in Eq. (28) and θ(x) is the Heaviside step function: θ(x) = 1 if x > 0 and
θ(x) = 0 otherwise. In other words, Θn({xi}) enforces that the negative axis is reached for the first time at step n.
Taking a Laplace transform of both sides of Eq. (36) and using Eq. (33), we obtain

π̂(s) =
∞∑

n=1

c(s)nfn , (38)

where

fn =

∫ ∞

0

dx1 . . .

∫ ∞

0

dxn

n∏

i=1

p̃s(xi)Θn({xi}) . (39)

Notably, fn can be interpreted at the probability of first passage to the negative x-axis for a RW

Xk = Xk−1 + ηk y0 = 0 , (40)

where ηk is a random number extracted from the PDF p̃s(xi). Then, since p̃s(xi) is continuous and symmetric,
according to the Sparre Andersen theorem fn is universal and its generating function can be computed as follows.
Clearly, fn = qn−1 − qn for n ≥ 1, where qn is the probability that the random walker stays positive up to step n.
Taking a generating function, we get

∞∑

n=1

fn z
n =

∞∑

n=1

[qn−1 − qn] zn = 1− (1− z)
∞∑

n=0

qn z
n , (41)

where we used q0 = 1. Since, p̃s(x) is a continuous and symmetric PDF, the Sparre Andersen theorem can be applied
which states that

∑∞
n=0 qn z

n = 1/
√

1− z. Hence, from Eq. (41) one gets

∞∑

n=1

fn z
n = 1−

√
1− z . (42)

Using this result (42) in Eq. (38) we obtain

π̂(s) = 1−
√

1− c(s) . (43)

where c(s) is given in Eq. (34). This is indeed the result of Artuso et. al. [2] obtained originally using combinatorial
method. Our derivation above is non-combinatorial and a bit simpler in our opinion.

From Eq. (43) one can compute the Laplace transform of the survival probability S(t). Indeed, using Eq. (29) it
is easy to show that

S̃(s) =

∫ ∞

0

dt S(t) e−st =
1− π̃(s)

s
. (44)

Using Eq. (43) we obtain that

S̃(s) =

√
1− c(s)
s

, (45)

where c(s) is given in Eq. (34). To compare with the RTP model in d dimensions, let us now choose

p(x, τ) = p(x|τ)p(τ) =
1

v0τ
fd

(
x

v0τ

)
p(τ) , (46)
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where fd(z) is given in Eq. (26). Then we get from Eq. (34),

c(s) =

∫ ∞

0

dτ

∫ ∞

−∞
dx p(x, τ) e−sτ =

∫ ∞

0

dτ

∫ ∞

−∞
dx

1

v0τ
fd

(
x

v0τ

)
p(τ) e−sτ (47)

=

∫ ∞

0

dτ e−sτp(τ)

∫ ∞

−∞
dx

1

v0τ
fd

(
x

v0τ

)
=

∫ ∞

0

dτ e−sτp(τ)

∫ ∞

−∞
dz fd (z) (48)

=

∫ ∞

0

dτ e−sτp(τ) = p̃(s) . (49)

where we have used the fact that fd(z) is normalized to unity in going from the second to the third line above. Note
that p̃(s) is simply defined as the Laplace transform of p(τ). Then, using Eq. (45), we obtain that

S̃(s) =

√
1− p̃(s)
s

. (50)

In the most relevant case of an exponential distribution p(τ) = γ e−γτ one obtains that c(s) = γ/(γ+s). Consequently,

Eq. (50) gives S̃(s) = 1/
√
s(γ + s). Inverting the Laplace transform explicitly, we then get the exact survival

probability at all t for this specific “wait-then-jump model” with exponential time distribution

S(t) = e−γ t/2 I0(γ t/2) , (51)

where I0(z) is again the modified Bessel function. The result in (51) is manifestly different from the RTP result in
Eq. (18) (also in Eq. (1) of the main text). This clearly shows that the exact result in Eq. (45) for the “wait-then-jump
model” can not be used to derive our main result for the RTP in Eq. (1) of the main text. Note however that for late
times the result in Eq. (51) has the same asymptotic behavior as the RTP result, namely S(t) ∼ 1/

√
πγt.

Moreover, as explained in the main text, Eq. (50) can be useful to compute the late time behavior of S(t) for
the RTP model with a generic time distribution p(τ). Indeed, one expects that S(t) ∼ t−θ when t → ∞ (and this
is confirmed by our numerical simulations shown in Fig. 3 of the Letter). Moreover, for late times, it is natural to
conjecture that the exponent θ is the same for the RTP model and for the “wait-then-jump model”. Here, we compute
the exponent θ for different time distributions p(τ) in the “wait-then-jump” setup. It is useful to distinguish two
cases, depending on whether p(τ) has a well defined first moment or not.

The case where p(τ) has a well defined first moment. In this case, the Laplace transform p̃(s) can be expanded, for
small s, as

p̃(s) ' 1− 〈τ〉 s+ o(s) , (52)

where 〈τ〉 =
∫∞
0

dτ τ p(τ) is the first moment of τ . Using Eq. (50) we obtain that, for small s

S̃(s) ∼
√
〈τ〉
s
. (53)

Inverting the Laplace transform gives for late times that

S(t) ∼
√
〈τ〉
π t

. (54)

Hence, if 〈τ〉 is finite we obtain that θ = 1/2. Note that for the exponential jump distribution with rate γ, one has
〈τ〉 = 1/γ and this formula (54) yields back S(t) ∼ 1/

√
πγt, as it should.

The case where p(τ) has a diverging first moment. If the average value of τ is diverging, i.e. if p(τ) ∼ τ−µ−1 for
τ →∞ with 0 < µ < 1, then p̃(s) can be expanded for small s as

p(s) = 1− (a s)µ + o(sµ) , (55)

where a denotes a microscopic time scale. Using Eq. (50) we obtain that, when s→ 0,

S̃(s) ∼ sµ/2−1 . (56)

Inverting the Laplace transform we get that when t→∞
S(t) ∼ t−µ/2 , (57)

and, hence, in this case θ = µ/2.
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t
X0 = 0

X1

X2

X3

X4

X5

X6

FIG. 2. Illustration of a trajectory of the RTP (black solid line) together with the positions of the associated random walk
X0 = 0, X1, . . . Xn with n = 6, up to time t (dots). The lower records are indicated in red, the first position X0 being counted
as a lower record. Note that the final position Xn can in principle be also a record – although not in the above figure. The
observable SN (t) is the probability that the random walk has exactly N lower records up to time t. For N = 1, S1(t) coincides
the survival probability up to time t.

IV. UNIVERSAL RECORD STATISTICS FOR THE RTP

In this section we show that our results for the survival probability S(t) for a d-dimensional RTP can be used
to compute the statistics of records for the x-component of the RTP process. The universality of S(t) for the RTP
with an exponential distribution of the flight times (corresponding to a constant tumbling rate γ) also renders the
statistics of the records for the x-component universal in this problem, i.e. independent of the dimension d as well
as the speed distribution W (v). The statistics of records for a stochastic sequence has been extensively studied and
has found many applications from climatology to finance [3]. In general, it is quite hard to obtain exact results for
the record statistics for a correlated sequence. Below, we see that, using our method as detailed in the main text, we
can compute the exact record statistics of the x-component of the RTP in d dimensions and show that it is universal.
This is one of the rare examples of an exact solution for the record statistics for a correlated sequence.

Let us start by defining a record. We consider a trajectory in d dimensions of the RTP of duration t starting at
the origin. Let n denote the number of runs in this trajectory, which itself is a random variable. We now look at the
x-components of the n successive runs and denote them by x1, x2, · · · , xn. The x-component of the positions of the
RTP are denoted by X0 = 0, X1 = x1, X2 = x1 + x2, X3 = x1 + x2 + x3, . . . (see Fig. 2). The joint distribution of the
xi’s and n has been computed in Eq. (8) of the main text and is given by

P ({xi}, n|t) =

∫
ds

2π i
es t

1

γ

(
γ

γ + s

)n n∏

i=1

p̃s(xi) , (58)

where p̃s(xi) is given in Eq. (14) of the main text for a general speed distribution W (v) and general dimension d.
Therefore, the Xi’s can be viewed as the position of a one-dimensional discrete-time random walker with correlated
steps given in Eq. (58). A lower record happens at step k iff the value Xk is lower than all the previous values, i.e.,
Xk < min{X0 = 0, X1, · · · , Xk−1} (see Fig. 2). By convention, X0 = 0 is a lower record. Note that the final position
Xn can also be a record. A natural question is then: how many records occur in time t? We denote by SN (t) the
probability that there are exactly N lower records up to time t. Clearly, when N = 1 this corresponds to the event
that the position has never gone below 0 up to time t. But this precisely the survival probability S(t) that we have
computed in the main text, thus S1(t) = S(t). We can then think of SN (t) as a natural generalization of the survival
probability S(t). One can similarly define upper records for the x-component of the RTP, whose statistics are exactly
identical to the lower records, due to the x→ −x symmetry of the RTP. An alternative physical picture of this record
process is as follows: whenever the particle achieves a new lower record, one can imagine that the absorbing barrier
gets pushed to this new record value. For example, before the second record happens the absorbing barrier is at
X0 = 0. If the second lower record happens at step k with value Xk < 0 (for example in Fig. 2 the second record
happens at k = 2), the absorbing barrier gets shifted to Xk, till the occurence of the next lower record (see Fig. 2).

Thanks to our mapping to the one-dimensional discrete-time random walk via Eq. (58), we can use the known
results for the record statistics of an n-step discrete-time random walk, whose steps are i.i.d. variables, each drawn
from p̃s(xi) which is continuous and symmetric, and given in Eq. (14) in the main text. It is well known that
the probability qN (n) that a n-step random walk has exactly N lower records is universal, i.e. independent of the
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distribution p̃s(xi) [4]. In particular, its generating function with respect to n is given by [4]

∞∑

n=N−1
qN (n)zn =

(1−
√

1− z)N−1√
1− z . (59)

The result in Eq. (58) conveniently translates the results for any observable in the discrete-time n-step random walk
problem to the RTP in continuous time t. The statistics of records is one such observable. Therefore, combining Eq.
(58) gives (for N ≥ 2)

SN (t) =

∫
ds

2π i
es t

1

γ

∞∑

n=N−1

(
γ

γ + s

)n
qN (n) (60)

where the integral is over the Bromwich contour (imaginary axis in this case). Recall that, for N = 1, S1(t) = S(t)
where S(t) is given in Eq. (1) of the main text. Using (59) for z = γ/(γ + s) in (60) one finds, for N ≥ 2

SN (t) =

∫
ds

2π i
es t

1

γ

√
γ + s

s

(
1−

√
s

γ + s

)N−1
. (61)

The inverse Laplace transform on the right hand side of Eq. (61) can be performed explicitly for the first few values
of N , yielding

S1(t) = S(t) =
1

2
e−γt/2 (I0 (γt/2) + I1 (γt/2)) , (62)

S2(t) = S(t) , (63)

S3(t) = e−γt/2I1 (γt/2) . (64)

The fact that S2(t) = S1(t) = S(t) at all t is quite remarkable and is far from obvious. These results for N = 2 and
N = 3 are plotted in Fig. 4 and one sees that S3(t) exhibits a maximum at some characteristic time t∗3 (actually for
all N ≥ 3, SN (t) exhibits a maximum at some characteristic time t∗N which can be shown to grow linearly with N for
large N). It seems hard to evaluate explicitly SN (t) for higher values of N . One can however compute the generating

function S̃(z, t) of SN (t), i.e.

S̃(z, t) =
∞∑

N=1

zNSN (t) =

∫
ds

2π i
es γt

[
1 + s

s+ 1−z
z

√
s(1 + s)

− z
]
, (65)

where we have made the change of variable s→ s/γ. Clearly SN (t) is universal, i.e. independent of the dimension d
and the speed distribution W (v). From this expression, we can compute the average number of records 〈N(t)〉 up to
time t and we get, for all t (see also Fig. 3)

〈N(t)〉 =
1

2
e−γt/2

(
(2γt+ 3)I0

(
t

2

)
+ (2γt+ 1)I1

(
γt

2

))
. (66)

For large t, it grows like 〈N(t)〉 ≈ 2
√
γt/
√
π.

The Bromwich integral on the right hand side of Eq. (65) can be computed explicitly. Skipping details, we get

S̃(z, t) =
z(1− z)
1− 2z

S(t)− z3

1− 2z
e−

(1−z)2

1−2z γt − z3(1− z)
(1− 2z)2

γ

∫ t

0

e−
(1−z)2

1−2z γ(t−t′)S(t′)dt′ , (67)

where S(t) is given in Eq. (62). By setting z = 1 in Eq. (67), we can check the normalization condition, i.e.∑∞
N=1 SN (t) = S̃(z = 1, t) = 1, for t > 0. We can also check, by expanding the generating function in (67) in powers

of z up to order z3, that we recover the results for SN (t) for N = 1, 2, 3 in Eqs. (62-64). For generic N , we can check
by expanding in powers of z and performing the integral over t′ in Eq. (67) that, for all N , SN (t) has the following
structure,

SN (t) = e−γt/2 (P0,N (γt)I0(γt/2) + P1,N (γt)I1(γt/2)) + e−γtQN (γt) , (68)

where P0,N (x), P1,N (x) and QN (x) are some polynomials.
One can also extract the asymptotic behaviors of SN (t) at small and large time t. At small time, from Eq. (60),

one sees that the large s behavior of the Laplace transform of SN (t) is ∼ γN−2 qNN−1/s
N−1, for N ≥ 2. Using the

known expression of qNN−1 = 2−N+1, from Ref. [4], one obtains

SN (t) ∼ (γt)N−2

(N − 2)!
qNN−1 =

1

2N−1(N − 2)!
(γt)N−2 . (69)
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FIG. 3. Plot of the average number of records 〈N(t)〉 vs t. The solid line is given by the exact formula (66) while the symbols
represent numerical simulations in d = 1, 2, 3, 4 with γ = 1 and v0 = 1.

0 2 4 6 8 10
t

0

0.1

0.2

0.3

0.4

0.5

S
2(
t)

d=1
d=2
d=3
d=4
Theory

0 2 4 6 8 10
t

0

0.05

0.1

0.15

0.2

0.25

S
3(
t)

d=1
d=2
d=3
d=4
Theory

a) b)

FIG. 4. Plot of S2(t) in (a) and S3(t) in (b) for different dimensions d = 1, 2, 3 and d = 4 (symbols correspond to numerical
simulations) and an exponential distribution p(τ) = γe−γτ with γ = 1. The solid line corresponds to the exact results for
S2(t) = S(t) in (63) and S3(t) in (64).

One sees explicitly that the small time behavior of SN (t) is dominated by trajectories where the RTP goes downwards
at time t and is breaks a record at time t.

The behavior of SN (t) for large time is easily obtained from the small s of the Laplace transform in Eq. (61) and
one finds, at leading order,

SN (t) ∼ 1√
πγt

, (70)

independently of N . This behavior indicates that SN (t) is dominated by the probability that, after breaking exactly
N lower records, the particle needs to stay above the value of the N th record, which, for large t, coincides with the
survival probability S1(t) ∼ 1√

πγt
.
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SUMMARY

Extracellular matrices contain fibril-like polymers often organized in parallel arrays. Although their role in
morphogenesis has been long recognized, it remains unclear how the subcellular control of fibril synthesis
translates into organ shape. We address this question using the Arabidopsis sepal as a model organ. In
plants, cell growth is restrained by the cell wall (extracellular matrix). Cellulose microfibrils are the main
load-bearing wall component, thought to channel growth perpendicularly to their main orientation. Given
the key function of CELLULOSE SYNTHASE INTERACTIVE1 (CSI1) in guidance of cellulose synthesis, we
investigate the role of CSI1 in sepal morphogenesis. We observe that sepals from csi1 mutants are shorter,
although their newest cellulosemicrofibrils aremore aligned compared to wild-type. Surprisingly, cell growth
anisotropy is similar in csi1 and wild-type plants. We resolve this apparent paradox by showing that CSI1 is
required for spatial consistency of growth direction across the sepal.

INTRODUCTION

Living organisms display an amazing variety of forms. Although a

given form may be achieved through several morphogenetic tra-

jectories, morphogenesis often involves elongation or aniso-

tropic growth (i.e., increased growth along one axis of the organ).

Elongated forms may result from coordinated cell rearrange-

ments such as intercalation,1,2 from patterned heterogeneity in

the physical properties of cells,3–6 or from guidance of growth

by a matrix surrounding cells or tissues, usually a material rein-

forced by fibrils.7–9 Here, we consider the link between fibril

arrangement and elongation.

The nature of fibrils and the guidance of fibril synthesis largely

vary between kingdoms. In several rod-shaped bacteria, the

synthesis of peptidoglycans is guided by MreB, an actin homo-

logue, following membrane curvature10,11 and driving bacterial

elongation. In Drosophila oocytes, microtubules guide the polar

secretion of collagen in the surrounding epithelium.8,9 Collagen

deposition is associated with a global rotation of the oocyte in-

side the matrix, yielding a circumferential arrangement of fibrils

and a mechanically anisotropic extracellular matrix, which is

required for oocyte elongation.7,12 Finally in plants, cells are sur-

rounded by a cell wall composed of cellulose microfibrils

embedded in a matrix of pectins, hemicelluloses, and structural

proteins. Cellulose microfibrils may lead to mechanical anisot-

ropy of the cell wall and channel growth.13 Despite increasing

knowledge about the link between cellulose microfibrils arrange-

ment and cellular growth,13–15 how this yields well-defined organ

forms remains poorly understood.

Cellulose chains are polymerized at the plasma membrane by

complexes of cellulose synthase (CESA) and bundle into microfi-

brils in the cell wall. CESA complexes are associated with other

proteins, such as KORRIGAN, which is involved in targeting

CESA to themembrane16,17; CELLULOSECOMPANION1,which

stabilizes themicrotubules guiding the CESA18; and CELLULOSE

SYNTHASE INTERACTIVE PROTEIN 1 (CSI1), which binds
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Figure 1. csi1 sepals are shorter because of reduced elongation rates

(A) Representative front, top, and side views of WT, csi1-3, and csi1-3 csi3-1 double mutant fully grown sepals (stage 12 of flower development), obtained from

projections of confocal images. Cell walls were stained using propidium iodide. The dotted lines show sepal maximal width and length as measured along the

outer (abaxial) surface of the sepal.

(B and C) Comparison of length andwidth amongWT, csi1-3, and csi1-3 csi3-1 double mutant sepals, measured as in (D) (n = 39, 67, and 11 sepals, respectively).

t test p values between WT and csi1-3 = 23 10�11 and 0.93 for length and width, respectively. t test p values betweenWT and csi1-3 csi3-1 double mutant = 33

10�8 and 0.01 for length and width, respectively.

(D) Representative time series of sepal growth in WT (top) and csi1-3 (bottom). Cell membranes are labeled using a pATML1::RCI2A-mCitrine construct. Colored

dashed lines indicate measured sepal length and width. Time between acquisitions = 24 h.

(legend continued on next page)
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microtubules and CESA complexes.19–21 Two genes with func-

tions related to CSI1 have been identified: expression of CSI2 is

restricted to pollen, while mutations of CSI3 alone yield no visible

phenotype.22 The function of CSI1 has been characterized in the

cotyledon23,24 (embryonic leaf) and in the hypocotyl (embryonic

stem).25 In the cotyledon of csi1 mutants, the guidance of

CESA complexes by microtubules is not lost24 although detailed

quantification of CESA complexes colocalization with cortical mi-

crotubules shows that the guidance is reduced in the mutant.23

csi1 mutants exhibit hyper aligned cellulose microfibrils in the

hypocotyl,25 probably because in the absence of microtubule

guidance, CESA are mostly guided by previously deposited

cellulose microfibrils.26 Strangely, this hyperalignment of cellu-

lose in csi1 hypocotyls was not associated with longer hypo-

cotyls, suggesting decreased cell/organ growth anisotropy19,20

and calling into question the link between microfibrils alignment

and anisotropic growth. In this work we addressed this link,

from cellular to tissue scale.

Although the hypocotyl is an excellent system for plant cell

biology, growth of etiolated hypocotyls is stereotyped5 and

mostly uniaxial, making it difficult to conclude about the relation

between cellulose microfibrils deposition and growth direction

in amorphogenetic context. We chose to investigate this relation

in the Arabidopsis sepal, the green leaf-like organ that protects a

flower before its opening. Sepal shape and size are robust,27

despite variability in areal cell growth28,29 andputatively in growth

direction. We studied the links among cellulose organization,

growth anisotropy, and main growth direction, from cell to organ

scale, using csi1 and other mutations to test our conclusions.

RESULTS

csi1 sepals are shorter because of reduced elongation
rates
Because Arabidopsis sepals are curved, we used three-dimen-

sional (3D) confocal microscopy to quantify their shape parame-

ters (Figure 1A). We found that csi1-3 sepals were shorter

compared with wild-type (WT) but had a similar width (Figures

1B and 1C). This phenotype was similar for the csi1-6 allele

and was rescued when complemented with pCSI1::RFP-CSI1

(Figures S1A–S1C). We also compared mutant alleles between

them and did not find any significant difference (see Table S1).

The csi3-1 mutant has been shown to present no phenotype,

but the csi3-1 csi1-3 double mutant is more affected than

csi1-3, suggesting that CSI3 partially takes over the functions

of CSI1 in csi1-322. We therefore analyzed sepal shape in the

csi1-3 csi3-1 double mutant. We found sepals of csi1-3 csi3-1

to be even shorter compared with csi1-3 alone (Figure 1A). Alto-

gether, these data show that sepal elongation involves CSI1 and

CSI3 functions. Sepal contours (as seen from front, Figure 1A)

also differed between genotypes, with for instance a narrower

base for csi1-3. We quantified curvature and found that csi1-3

sepals were significantly more curved compared with WT

(Figures S1D and S1E). To understand the differences in final

length between WT and csi1-3 sepals, we considered sepal

morphogenesis and performed live imaging of developing sepals

(Figure 1D). As we used dissected inflorescences grown in vitro,

we first checkedwhether our in vitro growth conditions produced

similar organs compared with normally grown plants. We

compared sepal length and width between inflorescences

growing in the two conditions (Figure S1F). We found that sepal

dimensions are similar throughout development showing that

in vitro conditions do not affect sepal morphogenesis. In order

to compare developmental trajectories between the two geno-

types, WT and csi1-3, we developed a common temporal frame

for all sepals. Because width is similar between WT and csi1-3

sepals at a given developmental stage.30 (stage 12 in Figure 1C;

other stages in Figure S1G), we used width to shift the time of

each live imaging sequence and put all sepals into the same

time frame, further referred to as registered time (Figures S1H–

S1K). The outcome is shown in Figures 1E and 1G, with a com-

mon initial time (0 h) that corresponds to stage 5 of flower

development.

We found that sepal growth can be approximately decom-

posed in two different phases, see Figure S1F. In the first, overall

sepal growth is isotropic, with length and width increasing simi-

larly, up to a size of about 500 mm, corresponding to stage 7 of

flower development (Figure S1G) and to a time of about 75 h in

our registered time frame. Differences between WT and csi1-3

are small in this isotropic growth phase. In the second phase,

sepal growth is anisotropic and trajectories of WT and csi1-3

appear to diverge (Figure S1F), which is most visible at stages

11 and 12 of flower development (Figures S1G and 1B). We

quantified the rate of increase in dimensions of WT and csi1-3

sepals during this second phase. We found no differences con-

cerning width except for the last time interval (Figure 1H). Rate of

increase in length is however smaller in csi1-3 throughout devel-

opment (Figure 1F) showing that sepals from csi1-3 plants are

shorter because they elongate less compared with the WT all

along the second phase of sepal morphogenesis, and not

because of an early arrest of growth.

Giant cells in csi1 sepals are snaky
When characterizing sepal morphology, we noticed altered cell

shapes in csi1. More specifically, we observed that giant cells

are approximately straight in WT whereas they are snaky in

(E and G) Sepal length (E) and width (G) as a function of time. Temporal sequences were registered with regard to time to define a common starting time using

width, which can be mapped to developmental stages (see Figure S1).

(F and H) Relative growth rates in length (F) and width (H) as a function of registered time. Comparisons weremade over a sliding 24 hwindow, which corresponds

to the imaging interval. Asterisks at the bottom indicate significant differences (p value of Mann-Whitney test < 0.05, see exact p values and sample number in

Table S1). WT is in blue and csi1-3 in yellow. The lines correspond to median, the shading to the interquartile range, and the points to individual sepals. Here and

elsewhere, the boxes extend from the first to the third quartiles of the distributions, the line inside the box indicates the median, the whiskers span the full range of

the data (except when outliers are present, corresponding to points further than 1.5 3 interquartile range from the corresponding quartile), and the points

correspond to individual values. Statistical significance: n.s., non-significant; *p < 0.05, **p < 0.005, and ***p < 0.0005.

See also Figure S1.
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csi1-3 (Figure 2A). To quantify ‘‘snakiness’’ we computed the ra-

tio between the small side of the rectangle that wraps the cell and

the radius of the largest circle fitting inside the cell (Figure 2B).

Cells that are straight will present similar values for these two

parameters, while snaky cells will have the small side of the rect-

angle bigger than cell radius (Figure 2B). Following quantifica-

tion, we observed that giant cells from csi1-3 sepals are indeed

more snaky than in WT (Figures 2A and 2C). This phenotype was

similar for the csi1-6 allele and rescued in the complementation

of csi1-6 with pCSI1::RFP-CSI1 (Figures S2A and S2B). We

compared mutant alleles between them and did not find any sig-

nificant difference (see Table S1). We also analyzed cell shapes

of the csi1-3 csi3-1 double mutant which presented even higher

levels of snakiness (Figures 2A and 2C). Because we wondered

whether snakiness is associated with reduced sepal elongation,

we considered the katanin1-2 (ktn1-2) mutant, the sepals of

which are even more rounded than in csi1.31 We found that

ktn1-2 sepals do not present snaky cells, with lower levels of

snakiness than in WT (Figures 2A and 2C). Accordingly, reduced

elongation and cell snakiness are uncoupled. We also investi-

gated changes in cell size between WT and csi1-3 and found

no significant differences during sepal morphogenesis (Fig-

ure S2C). Altogether, it appears that CSI1 function is required

to make giant cells straight. In order to understand the origin of

snakiness, we then investigated cell growth in area and cell

growth anisotropy.

A

B C

Figure 2. csi1 sepals have snaky giant cells

(A) Representative confocal images of cells of WT,

csi1-3, and csi1-3 csi3-1 double mutant and

ktn1-2 mature sepals. Cell area is color coded.

(B) Illustration of the quantification of snakiness.

(C) Boxplot of the quantification of cell snakiness

(n = 75 cells from 4 sepals for WT, 101 cells from 5

sepals for csi1-3, 44 cells from 3 sepals for csi1-3

csi3-1 double mutant, 80 cells from 3 sepals for

ktn1-2). p value of Mann-Whitney test = 8 3 10�3,

6 3 10�6, and 3 3 10�2 for the comparison be-

tweenWT and csi1-3, csi1-3 csi3-1 double mutant

and ktn1-2, respectively. Note that values for

ktn1-2 are smaller than for WT.

See also Figure S2.

At cellular scale, neither areal
growth nor growth anisotropy can
explain differences in sepal length-
to-width ratio
We sought to understand the cellular

basis of the differences in sepal elonga-

tion rates. We first focused on the

simplest aspect of growth: cell areal

growth. We imaged sepals in dissected

inflorescences with cellular resolution,

segmented and tracked over time the

surface of outer epidermal cells from the

live imaging sequences of highest quality

among those used for Figures 1E–1H

(n = 4 for WT and for csi1-3). We quanti-

fied cell areal growth as the ratio of cell

surface area between two consecutive time points (area at the

second time point over the first time point, if a cell has divided,

we fuse the daughter cells to compute this ratio). We found cell

areal growth slightly higher in WT compared with csi1-3 when

looking at the whole sepal, which may explain the difference in

final sepal area (Figures 3A and 3B). In order to test this, we built

a geometric model to assess the effect of cell growth (see Data

S1). Briefly, we described average sepal shape at each time

point for WT and csi1. We gave the model the initial dimensions

of WT and csi1-3 sepals and grew the shapes on the basis of the

measured average cellular growth. We thus predicted the final

dimensions of sepals and compared these predictions to the

final dimensions of sepals. In particular, the model predicted a

value of 0.79 for the ratio of csi1-3 final sepal area to WT final

sepal area, in agreement with the estimation of 0.83 from obser-

vations of stage 12 sepals. Although these differences in areal

growth explain the differences in area of mature sepals between

csi1 and WT, they are not informative about sepal shape.

We also examinedwhether a possible difference in base-to-tip

growth gradient could explain the differences in sepal shape

(Figures S3A and S3B). We found similar trends between WT

and csi1-3 growth gradients overall. We therefore examined

other growth parameters.

Other parameters that could explain macroscopic differences

are the main direction in which cells are growing (i.e., the direc-

tion of maximal growth), and the ratio of growth in this direction
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A

B D

C

Figure 3. Cell areal growth is slightly reduced in csi1, but cell growth anisotropy levels are similar

(A) Top view of representative time series, with areal growth of cells color-coded. Growthwas calculated as the ratio of cell surface area between consecutive time

points. The first sepal images are at the beginning of the 100–124 h interval. Time between acquisitions = 24 h. The initial time point of each series was chosen so

that sepals have similar width.

(B) Quantification of areal growth as a function of registered time, measured as shown in Figure 1F. The lines correspond tomedian, the shading to the interquartile

range, and the points to average values for individual sepals (four series for each genotype). Time registration and symbols are the same as for panels Figures 1E–

1H. n = 4 sepals forWT and csi1-3. p value of t test between sepal values = 0.1, 0.9, 0.5, and 0.2 for time intervals 76–100 h, 100–124 h, 124–148 h, and 148–172 h,

respectively.

(legend continued on next page)
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to growth in the perpendicular direction (i.e., the direction of min-

imal growth), which is known as cell growth anisotropy. Using the

same live imaging data, we quantified cell growth anisotropy

(Figures 3C and S3C). We found no strong differences between

WT and csi1-3 (Figure 3D). To assess thismore quantitatively, we

used our geometric model (Data S1), in which we grew sepals

numerically using measured values of growth anisotropy and

we predicted the final aspect ratio (length-to-width ratio) of se-

pals. The prediction of the change between WT and csi1-3 final

aspect ratio (reduction of 7%) was three times smaller than in ob-

servations (reduction of 19%), showing that cell growth anisot-

ropy alone cannot account for differences in final sepal shape.

We then reconsidered cell growth anisotropy and investigated

its mechanistic basis by comparing cell wall structure between

WT and csi1-3.

Cellulose in csi1 is more aligned in the most recently
deposited layer compared to WT but is less aligned over
the whole cell wall thickness
We compared cellulose microfibrils patterns between the cell

walls of WT and csi1-3 sepals. To expose the inner surface of

the outer epidermal wall before imaging, we gently scratched in-

ner sepal tissues and removed protoplasts using chemical treat-

ment, until we had only the outer cell wall remaining. Because

this method did not require grinding, this allowed us to ensure

the observation of the external wall of the epidermis, as

confirmed by optical microscopy (Figure S4A). We then used

atomic force microscopy (AFM) to visualize recently deposited

cellulose microfibrils in the outer wall of the abaxial epidermis

of sepals32: a nanometer-sized probe was used to scan the pro-

toplast-facing surface of the wall sample andmeasure the height

of contact (Figures 4A, 4B, and S4B). Maps presented various

orientations of microfibrils (Figures 4A and 4B). There was also

a proportion of regions with only one apparent orientation (2 of

62 for WT, 12 of 100 for csi1-3), although the difference between

these proportions was not significant (p value of normal Z test =

0.08). Therefore, we developed an index to quantify to what

extent the microfibrils are aligned (Figure 4C). Briefly, microfibrils

orientation distribution was decomposed into Gaussians and the

alignment index was computed as the normalized maximum

angular distance between these Gaussians (Figure S7). For

maps with only one obvious orientation this yields an index of

1, while maps with a less anisotropic orientation of microfibrils

present indices closer to 0. We found that cellulose microfibrils

were locally more aligned in csi1-3 compared with WT. This

weak but significant difference in cellulose alignment is consis-

tent with the results on guidance of CESA by CSI1 in the hypo-

cotyl.19–21 Given the debate about CSI1 function in cotyle-

dons,23,24 we assessed whether CSI1 contributes to guidance

of CESAs in the sepal. We used total internal reflection fluores-

cence (TIRF) microscopy to image simultaneously microtubules

(p35S::mCHERRY-TUA5) and CESA (pCESA3::GFP-CESA3)

localized close to the sepal surface, in WT or in the csi1-1mutant

(Figure S4C). We found that the colocalization of CESA dots with

cortical microtubules was not abolished in csi1-1, although

significantly weaker than in WT (reduction of about 30%; Fig-

ure S4D). This suggests that, in sepals, CSI1 contributes to

CESA guidance, while other mechanisms may partially compen-

sate for the absence of CSI1, consistent with our results on

recently synthesized cellulose microfibrils.

Higher anisotropy of microfibrils arrangement is usually asso-

ciated with a higher cell growth anisotropy,13–15 which would be

expected to yield longer sepals. Surprisingly, higher anisotropy

of microfibrils arrangement in csi1-3 is associated with similar

levels of cellular growth anisotropy. Because AFM only shows

relatively small regions of the most recently deposited layer,

we examined the cell wall in its entire thickness.

We first used cellulose staining with calcofluor white and

confocal microscopy to examine cellulose at the scale of a few

hundreds of nanometers (optical resolution). The staining was

rather inhomogeneous and we could not detect any difference

between csi1-3 and WT sepals (Figure S4E). We then used

Raman spectroscopy to study the wall at the scale of a micro-

meter (optical resolution for Raman microscopy). Polarized

Raman microspectroscopy is an imaging mode that provides

spatial information on the molecular structure of the cell wall,

including crystallinity and, thanks to light polarization, main

orientation of the functional groups of cell wall polymers.33,34

Cellulose that forms microfibrils is an example of such polariza-

tion-sensitive polymer, as its chains can be strongly ordered

(aligned) in the cell wall. This makes polarized Raman micro-

spectroscopy well suited for the assessment of cellulose organi-

zation in the cell wall. We thus compared the Raman spectra of

outer cell walls of csi1-3 andWT sepal epidermis (Figures 4D, 4E,

S4F, and S4G) with two reference samples composed of pure

crystalline cellulose (Figure S4H) or pure amorphous cellulose

(Figure S4I). We considered the integrated intensity ratio of two

spectral bands: one centered at 1,096 cm�1 that is related to

C-O-C linkages and the other centered at 2,898 cm�1, related

to C-H and H-C-H linkages. If cellulose microfibrils are aligned,

the signal intensity of these two bands is anticorrelated (one is

maximal while the other is minimal, at the same polarizer

angle).35 We defined the 0� polarizer angle as that for which

the signal of 1,096 cm�1 band attains the maximum value, and

90� as an angle of the minimal signal (Figures 4D, 4E, and

S4F–S4I). First, we found that for the crystalline cellulose such

computed signal intensity ratio changes dramatically when the

polarizer angle changes, as expected for a highly organized ma-

terial, depicting a strongly anisotropic cellulose arrangement

(Figures 4F and S4H). Also as expected, amorphous cellulose

(C) Representative time series, with cellular growth anisotropy color coded. Growth anisotropy of a cell, computed as the ratio between growth in the maximal

growth direction and growth in the minimal growth direction, was quantified on the basis of relative displacements of three-way wall junctions: a value of 1 means

that growth is isotropic, and the highest values of anisotropy are above 2 (the color scale was capped at 2 to avoid saturation).

(D) Quantification of cellular growth anisotropy as a function of registered time, corresponding to all times series as in (C). WT is in blue and csi1-3 in yellow. The

lines correspond to median, the shading to the interquartile range, and the points to average values for individual sepals (four series for each genotype). n = 4

sepals for WT and csi1-3. p value of t test between sepal values: 0.2, 0.7, 0.9, 0.7 for time intervals 76–100 h, 100–124 h, 124–148 h, and 148–172 h, respectively.

See also Figure S3.
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Figure 4. Recently deposited cellulose microfibrils are more aligned in csi1 than in wild-type (WT), whereas cellulose over the whole wall is

less aligned in csi1 than in WT

(A and B) Representative height maps, obtained with atomic force microscopy (AFM), of WT and csi1-3 outer epidermis cell wall imaged from the protoplast side

after removing internal tissues and epidermis protoplasts of the sepal (maps corresponding to the median value of the alignment index for each genotype). Yellow

squares outline regions used for the index assessment.

(C) Alignment index of cellulose microfibrils, with high values corresponding to more aligned microfibrils. Boxplots for WT and csi1-3 (n = 5 and 6 stage 12 sepals

and n = 60 and 89 regions of 4003 400 nm from 9 and 14 cells, respectively; means = 0.5 and 0.59 forWT and csi1-3, respectively; p value of Mann-Whitney test =

0.005).

(D and E) Representative Raman spectra of cell walls fromWT and csi1-3 sepals and purified extract of crystalline and amorphous cellulose collected at different

polarization angles (0� is shown in D and 90� in E). Spectrum fragments include two cellulose-specific bands: centered at 1,096 cm�1 (related to C-O-C linkage),

and at 2,898 cm�1 (CHx, x = 1,2 linkages).

(legend continued on next page)

Cell Reports 42, 112689, July 25, 2023 7

Article
ll

OPEN ACCESS



presented no obvious maximum, but rather a constant signal in-

tensity independent of the polarizer angle, indicating an isotropic

material (Figures 4F and S4I). In both WT and csi1-3, changes in

the signal intensity ratio lie between the reference samples indi-

cating an intermediate anisotropy of cellulose microfibrils

arrangement (Figure 4F). Furthermore, csi1-3 cell wall is more

similar to amorphous cellulose than WT cell wall (Figure 4F).

This indicates that, at micrometric scale, the arrangement of cel-

lulose is less anisotropic in csi1-3 sepals.

We also investigated potential differences in cell wall compo-

sition that could affect growth, using high-performance anion-

exchange chromatography coupled with pulsed amperometric

detection (HPAEC-PAD). We did not observe any strong modifi-

cation of the monosaccharide composition of the non-cellulosic

compounds of the cell wall (with the exception of the fucose con-

tent, no difference was statistically significant) nor of the cellu-

lose content in csi1-3 when compared with the WT (Figure S4K).

Temporal consistency of growth direction is weakly
impaired in csi1

Considering that microfibrils arrangement in recently deposited

wall layers in csi1-3 is more anisotropic than in WT, we inter-

preted the Raman results as an indication that microfibrils orien-

tation varies more either along the cell wall or across cell wall

thickness in the mutant. To test this, we looked at variation along

the surface of the cell wall in our AFM data. For cells that had

several regions that were imaged with high cellulose microfibrils

alignment, we measured the main microfibrils orientation on

each map and quantified the circular variance associated with

each cell (Figure 4G). We found no significant differences be-

tween WT and csi1-3, favoring the hypothesis that the differ-

ences observed between the AFM and the Raman results

come from variations of cellulose microfibrils orientation across

the thickness of the wall. If microfibrils orientation across the

cell wall layer kept changing in csi1, we would expect cell growth

to be less persistent over time (cells cannot maintain growth

direction over a long period of time). Indeed, cell capacity to

maintain a growth direction over extended periods of time likely

depends on how long they are able to keep a consistent rein-

forcement of their cell walls (dependent on orientation of cellu-

lose microfibrils).

As found above, neither variations in cell areal growth nor in

cellular growth anisotropy explain differences in final organ

shape between WT and csi1-3. We therefore tested whether

temporal changes in growth direction may explain the macro-

scopic phenotype. To quantify temporal persistence of growth

directions, we projected cell growth directions at consecutive

time intervals (computed from3 consecutive segmented images)

on the image corresponding to the intermediate time point and

quantified the angle between the two vectors corresponding to

the maximal growth direction (Figures 5A–5C and S5A). We

found temporal variations of growth direction to be higher in

csi1-3 cells compared with WT, with medians of 34� and 29�,
respectively, however these differences were not significant

when comparing sepals (see p values in the legend of Figure 5

and in Table S1). The microtubules that guide CESAs in WT are

known to vary not only temporally but also spatially.36,37 We

thus decided to investigate how cells grow with respect to their

neighbors as this may be affected in csi1-3.

Spatial consistency of growth direction is lower in csi1

Given that csi1 sepals present snaky giant cells, we hypothe-

sized that there may be spatial changes in growth direction

that explain the macroscopic phenotype. We assessed spatial

consistency by measuring the angle between the directions of

maximal growth of all pairs of neighboring cells (Figures 5D–

5G). A small angle means that the two cells grow in a similar di-

rection. In order to assess the meaning of these values, we

computed a theoretical maximum for this angle. When we as-

signed random orientations to cell growth on a sepal mesh, we

found a median of 45� for the angle between growth directions

of two cells. In live imaging data, we found that the median angle

between the main growth directions of cells in csi1-3 is higher

compared with WT, 30� and 25�, respectively (Figures 5G;

Table S1). These values are smaller than 45�, which means

that there is some level of spatial consistency in the two geno-

types, with higher consistency for WT than for csi1-3. Because

the definition of cell growth direction is not meaningful in the

case of cells with nearly isotropic growth, we also computed

the same metrics for cells with a growth anisotropy higher than

a threshold of 1.4 and ended up with the same conclusion (Fig-

ure S5B). These results show that CSI1 plays a role in the spatial

consistency of growth direction. Finally, we modified the geo-

metric model to assess whether the differences in consistency

of growth direction are sufficient to explain the differences in final

sepal shape. We started frommeasured initial sepal dimensions;

we used the valuesmeasured here for spatial variability in growth

direction and implemented them as random variations in cell

growth direction. Predicted final sepal dimensions are similar

to the values measured experimentally (Data S1). In addition,

this model predicted a reduction of 14% in length-to-width ratio,

which better accounts for the observed reduction of 19% than

without spatial variability of growth direction (prediction of 7%,

see above). Additionally, weaker consistency of growth direction

in csi1-3, compared with WT, may explain altered cell shape in

csi1-3. Indeed, a group of cells on one side of a giant cell in

(F) Overall cellulose alignment in the outer epidermal cell walls assessed by ratio of integrated intensity changes from cellulose-specific bands accompanying

polarizer angle changes in the 0�–180� range. Analysis of WT and csi1-3 was compared with two reference samples: crystalline and amorphous cellulose. Each

ratio value was normalized by the sum of all ratios for the sample to better illustrate the relative changes between samples. The values from 120� to 180� have
been duplicated from the 0�–60� values to show periodicity. The lines correspond to median, the shading to the interquartile range for sepals. n = 4 sepals for WT

and csi1-3. p values of Mann-Whitney test for each angle between WT and csi1-3 = 0.02, 0.44, 0.33, and 0.02 for angles 0�, 30�, 60�, and 90�, respectively.
(G) Angular variability within a cell of the main cellulose microfibrils orientation on the wall surface facing the protoplast, computed on the basis of AFM maps

obtained from individual cells. Angular variability is defined as the circular variance and is therefore bounded between 0 and 1. n = 7 and 8 sepals, for WT and

csi1-3, respectively. p value of t test between values of angular variability in WT and csi1-3 = 0.78.

See also Figure S4.
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csi1may grow nearly perpendicularly to the axis of the giant cell,

while another group of cells, on the other side, could grow paral-

lel to this axis, leading to the snaky phenotype. Snakiness is ex-

pected to be enhanced when the function of CSI1 is further

impaired and this is indeed the case as shown for the csi1-3

csi3-1 double mutant (Figure 2A).

We also examined spatial heterogeneity of cell areal growth.

Differences in spatiotemporal correlations of areal growth be-

tweenWT and csi1 are expected to only affect variability of sepal

contours and not average sepal aspect ratio.27 However, they

may play a role in the formation of snaky cells. Thus for each

pair of neighboring cells we computed the ratio of the higher

divided by the smaller areal growth of the two cells. We found

no significant difference when comparing the ratio for WT and

csi1-3 sepals (Figure S5C).

Sepal mechanical anisotropy is reduced in csi1

We next examined how the difference in sepal length-to-width

ratio between WT and csi1 could emerge from cell wall me-

chanics. csi1-3 shows reduced anisotropy of cellulose arrange-

ment across the outer abaxial cell wall and reduced spatial con-

sistency in the abaxial epidermis. This would imply lower sepal

mechanical anisotropy in csi1-3 compared with WT, provided

that observations on the abaxial epidermis extend to other cell

layers or that the epidermis has a major role in sepal mechanics.

We first examined sepal cross-sections with transmission

A

B

C

G
D E F

Figure 5. Spatial consistency of growth direction is decreased in csi1

(A) Illustration of the quantification of temporal changes shown in (B and C). Maximal growth directions of the cells for the preceding time interval and for the

following time interval are represented by magenta and green lines, respectively. Cells are colored depending on the angle between growth directions at

consecutive time intervals. Color bar is the same as in (B).

(B) Representative maps with cell color coded depending on the angle between growth directions at consecutive time intervals. Sepals were partially segmented

and their outer contours are indicated by the dashed white line.

(C) Angle betweenmaximal growth directions at consecutive time intervals. Points represent themedian angle for a given sepal. Boxplots were constructed using

all cells. n = 4 sepals 3 4 time points for each genotype. p value of t test between the values for sepals = 0.1.

(D) Schematic drawing explaining the quantification of spatial consistency of maximal growth direction shown in (E) and (F). The angle is measured between the

3D vectors corresponding to the maximal growth directions of each pair of neighboring cells.

(E and F) Representative images of maximal growth direction (white lines, with line length proportional to cell growth anisotropy) and of angle between growth

directions of pairs of neighboring cells visualized by the color of their common anticlinal wall (the red color bar spans angles from 0� to 90�) in WT (E) and in

csi1-3 (F).

(G) Angle between maximal growth directions in neighboring cells. Boxplots were constructed using all pairs of neighboring cells. Points represent the median

angles for individual sepals. n = 4 sepals 3 4 time points for each genotype. p value of t test between the values for individual sepals = 0.002.

See also Figure S5.
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electron microscopy and found that the external cell wall of the

abaxial epidermis wasmuch thicker than other walls, suggesting

an important contribution of this wall to sepal mechanics. Inter-

estingly, cell walls in csi1-3 are thicker than in WT, which may

explain reduced areal growth in the mutant (Figure S6A). Next,

to assess differences in sepal mechanical anisotropy, we as-

sessed shrinkage of the whole sepal upon osmotic treatment,27

which integrates tissue mechanical properties across the width,

length, and thickness of the sepal. We determined sepal shape

parameters with our imaging pipeline (Figure 6A). We measured

shrinkage inwidth (length) as the ratio of sepal width (length) after

treatment to before treatment; we defined shrinkage anisotropy

as the ratio of shrinkage in length to shrinkage in width

(Figures 6B and S6B–S6D). We found significant differences be-

tween WT and csi1-3 in the shrinkage in width (Figure S6D) but

no differences in the shrinkage in length (Figure S6C). Conse-

quently, csi1-3 shrinks less anisotropically than WT (Figure 6B).

We performed independent measurements of the mechanical

properties in length via tensile testing38 (Figure S6E). Sample

mounting only allowed quantification of the properties along

the long axis of the sepal. We measured the force required to

deform sepals up to a controlled value of relative displacement

(strain). At large strain values, csi1-3 sepals appeared softer

than WT sepals (Figure S6E). Nevertheless, the two genotypes

appeared more similar at strain values in the range of osmotic

treatments (Figure S6F). We therefore quantified the slope of

the stress/strain curve in this lower range (Figure S6G) and we

did not detect any difference in modulus between csi1-3 and

WT, consistent with shrinkage in length in osmotic treatments.

Altogether, we conclude that sepal mechanical anisotropy is

reduced in csi1.

DISCUSSION

We investigated the link between the arrangement of cellulose

microfibrils in the cell wall and sepal morphogenesis using the

csi1 mutant. We found that despite increased anisotropic

arrangement of recently deposited cellulose microfibrils, sepals

are less elongated in this mutant, similar to hypocotyls. This

could not be ascribed to cell growth anisotropy alone which is

comparable between csi1 and WT. However, we found that

growth directions in csi1 cells are spatially less consistent and

temporally slightly less persistent than inWT. This lack of consis-

tency in csi1 may explain shorter sepals and snaky cells and is

likely associated with mechanically less anisotropic organs.

Although newly synthesized cellulosemicrofibrils in csi1 hypo-

cotyls appear highly aligned,25 we observed that they were not

as strongly aligned in csi1 sepals. When guidance by cortical mi-

crotubules was impaired, previous studies showed that CESAs

follow previous microfibrils, follow cortical microtubules, or

move along a straight line.26,39 In the Arabidopsis sepal, we

found that the csi1-1 mutation reduces colocalization of CESA

with microtubules, suggesting less CESAmoving along microtu-

bules. The relative weight of these modes of CESA motion may

depend on the organ, possibly because of different proteomes

between the three types of organs,40 potentially explaining dif-

ferences in the csi1 phenotype between hypocotyl, cotyledon,

and sepal. In addition, other matrix polysaccharides are also

likely involved in guidance of CESA.41–43

Here, we found that CSI1 does not influence the degree of

cellular growth anisotropy but rather cell growth direction.

Disruption of CSI1 function increased spatial and temporal vari-

ations of growth direction. As proposed in,26 synthesis along

previous fibrils could provide memory of the wall state and

help resisting perturbations by forming a template for CESA

when cellulose synthesis starts again,18,44,45 whereas guidance

by microtubules provides the control needed for morphogenetic

events46 or to keep track of an organ-level direction of polarity.

Similar ideas might extend to the extracellular matrix in animals,

with regimes in which direction of matrix synthesis is steady,47

and other regimes associated with morphogenetic events.48,49

How cells in a tissue all align in the same direction has been

partly elucidated in animals. Cell polarity may be oriented by

an instructive signal formed by a large-scale gradient or by polar-

ity of neighboring cells via surface proteins.50,51 Similar ideas

have been proposed for plants,50,52 in which the coupling be-

tween polarities of neighboring cells would involve a large set

of actors.53 Although CSI1 could have other functions than guid-

ance, such as in delivery of CESA to the plasmamembrane54 and

in regulation of microfibril length as observed for the secondary

cell wall,55 our work suggests that CSI1 contributes to growth

coordination by translating cell polarity into growth direction,

A

B

Figure 6. csi1 sepals are mechanically less anisotropic

(A) Representative front view of sepals before and after plasmolysis in 0.4 M

NaCl for 1 h.

(B) Boxplot of anisotropy of sepal shrinkage upon osmotic treatment. Points

represent individual sepals (n = 33 sepals for WT, 43 for csi1-3, p value of t

test = 0.04).

See also Figure S6.
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through CESA guidance by microtubules. Whereas we did not

observe any twisting phenotype in sepal, csi1 mutation leads

to twisting of other organs such as the leaf,55,56 hypocotyl or

shoot.57 Instead, csi1 sepal featured snaky cells. Interestingly,

Drosophila mutant oocytes with deficient polarity also show

snaky cell files.58 Organ twisting and cell snakiness could be in-

terpreted as impaired orientation by large-scale instructive

signals.

Plant hormones are good candidates for such organ-level sig-

nals. In particular, auxin presents gradients and its movement is

polarly facilitated by PIN proteins,59 notably in lateral organs

such as the leaf.60 PIN1 polarity is coupled with microtubule

orientation,61 supporting a potential role for auxin in orienting

cell growth direction. Indeed, sepals with affected auxin polarity

displayed reduced length,62 although it is unclear whether this in-

volves lack of consistency of growth direction. Mechanical

stress is another potential organ-level instructive signal, and

studies in animals suggest that it may orient cell polarity.63,64 In

plants, microtubules align with maximal stress direction,37,65

which may explain the transverse orientations of microtubules

seen in sepal.36

Here, we propose that during organ morphogenesis, the main

role of guidance of CESA by microtubules is to enable growth di-

rection to follow large-scale signals. Interestingly, chemical

perturbation of the consistency of cortical microtubules orienta-

tion in the root reduces overall organ elongation.66 We extend

these results by describing consistency of cell growth direction

and pinpoint the role of CSI1 in consistency. It would be worth-

while to examine whether similar ideas apply to elongation of an-

imal organs. For instance, cell division is oriented during limb

bud elongation in the mouse,67 but the spatial consistency of di-

vision orientation has not been assessed.

Altogether, our work illustrates the potential of deciphering the

basis of the robustness of morphogenesis by assessing spatial

and temporal variability of growth and of its regulators, from sub-

cellular to organ scale, and by combining experimental and theo-

retical approaches.

Limitations of the study
The limitations of our study stemmainly from the cuticular ridges

on the sepal surface and from the diffusion of light by the sepal.

This makes it difficult to obtain information about internal cell

walls or about internal cell layers using optical microscopy.

Indeed we could not assess the degree of alignment of cellulose

in internal walls nor cell growth in inner layers. Nevertheless, the

sepal deflation assay integrates the effect of all cell layers. In

addition, like in other studies, it is challenging to establish causal

links between different spatial and temporal scales, because of

difficulty to induce perturbations that are precisely controlled in

space and time. We tried to address this issue by combining

several experimental approaches and a geometrical model of

sepal growth. This geometrical model accounts for average

cell behavior but does not fully account for correlations between

growth parameters of neighboring cells due to shared edges and

vertices. We could conclude that consistency of cell growth di-

rection is involved in overall organ elongation, but we could not

fully assess the contribution of other growth parameters to the

csi1 phenotype.
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Vincken, J.-P., Visser, R.G.F., Höfte, H., Vernhettes, S., and Trindade,

L.M. (2014). KORRIGAN1 Interacts Specifically with Integral Components

of the Cellulose Synthase Machinery. PLoS One 9, e112387. https://doi.

org/10.1371/journal.pone.0112387.

17. Robert, S., Bichet, A., Grandjean, O., Kierzkowski, D., Satiat-Jeunemâıtre,
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34. Borowska-Wykręt, D., and Dulski, M. (2019). Raman Spectroscopy in

Nonwoody Plants. In Plant Cell Morphogenesis: Methods and Protocols

Methods in Molecular Biology, F. Cvr�cková and V. �Zárský, eds. (Springer),
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Apex culture medium (ACM, MS basal salt) Duchefa Biochemie M0221.0010

Plant preservation mixture (PPM) Plant Cell Technology KY-PPM100

Chloroform Chempur CAS 67-66-3

Sodium dodecyl sulfate Sigma CAS 151-21-3

a-amylase Sigma-Aldrich CAS 9014-01-1

Chloral hydrate Aldrich CAS 302-17-0

Pectinase from Aspergillus niger Serva/Sigma CAS 9032-75-1

Fluorescent Brightener 28 (Calcofluor White) Pol-Aura CAS 4404-43-7

ClearSee:

Urea

Sodium deoxycholate

Xylitol

Sigma-Aldrich

Sigma-Aldrich

Sigma-Aldrich

CAS 57-13-6

CAS 302-95-4

CAS 87-99-0

Paraformaldehyde Sigma-Aldrich CAS 30525-89-4

Glutaraldehyde Sigma-Aldrich CAS 111-30-8

Uranyl Acetate Polysciences CAS 6159-44-0

Osmium tetroxide Polysciences CAS 20816-12-0

Epoxy Embedding Kit:

MNA

Epon 812

DDSA

DMP-30

Sigma-Aldrich

Sigma-Aldrich

Sigma-Aldrich

Sigma-Aldrich

CAS 25134-21-8

CAS 25038-04-4

CAS 26544-38-7

CAS 90-72-2

TFA Pierce CAS 76-05-01

Experimental Models: Organisms/Strains

Arabidopsis thaliana, ecotype Col-0 N/A N/A

Arabidopsis thaliana, ecotype Col-0,

pAR169 (ATML1p::mCirtrine-RCI2A line

Roeder et al.29 N/A

Arabidopsis thaliana, ecotype Col-0,

pCESA3::GFP-CESA3 p35S::mCHERRY-TUA5

Schneider et al.23 N/A

Arabidopsis thaliana, ecotype Col-0,

pCESA3::GFP-CESA3 p35S::mCHERRY-

TUA5 in csi1-1/pom2-8 background

Schneider et al.23 N/A

Arabidopsis thaliana, ecotype Col-0, csi1-3 Alonso et al.68 SALK_138584

Arabidopsis thaliana, ecotype Col-0, csi1-6 Alonso et al.68 SALK_115451

Arabidopsis thaliana, ecotype Col-0, ktn1-2 McElver et al.69 SAIL_343_D12

Arabidopsis thaliana, ecotype Col-0, csi3-1 Lei et al.22 GABI_308G07

Arabidopsis thaliana, ecotype Col-0,

pCSI1::RFP-CSI1 in csi1-6

Gu et al.19 N/A

Arabidopsis thaliana, ecotype Col-0, csi1-3 csi3-1 This paper N/A

Software and algorithms

MorphoGraphX Barbier de Reuille et al.70 https://www.mpipz.mpg.de/MorphoGraphX

MorphoRobotX N/A https://www.MorphoRobotX.org

WITec Suite Five Oxford Instruments https://raman.oxinst.com

GRAMS/AITM Spectroscopy Software ThermoFisher https://www.thermofisher.com/order/

catalog/product/INF-15000

OriginLab and OriginPro 2023 OriginLab Corporation https://www.OriginLab.com

Excel Microsoft 365 N/A

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact
Requests should be sent to the lead contact, Arezki Boudaoud (arezki.boudaoud@polytechnique.edu).

Materials availability
Seeds from the double mutant csi1-3 csi3-1 are available upon request.

Data and code availability
d All datasets andmicroscopy files reported in this paper have been deposited at Zenodo and are publicly available as of the date

of publication at the https://doi.org/10.5281/zenodo.7998638.

d All original codes have been deposited at Zenodo and are publicly available as of the date of publication. DOIs are listed in the

key resources table.

d Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Arabidopsis thaliana plant lines used for live imaging and analysis of mature sepal cell shape were pAR169 (ATML1p::mCirtrine-

RCI2A,29) and csi1-3 x pAR169. Plant lines used for CESA imaging harbored pCESA3::GFP-CESA3 p35S::mCHERRY-TUA5 con-

structs in WT and in csi1-1/pom2-8 backgrounds.23 In all other cases the plants used were Col-0, csi1-3 (SALK_138584,68),

csi1-6 (SALK_115451,68), ktn1-2 (SAIL_343_D12,69), csi3-1 (GABI_308G07,22), and pCSI1::RFP-CSI1 in csi1-6.19 All mutant lines

are transfer DNA insertion lines. csi1-1 has weak expression at the RNA level, whereas csi1-3 and csi1-6 are likely null mutants.19

The double mutant was obtained by crossing csi1-3 with csi3-1. All lines have a Col-0 background. Plants were grown on soil at

22�C in culture rooms with long day conditions (16 h light/8 h darkness). For in vivo imaging, inflorescences were cut off from the

plants, dissected up to the desired bud (all buds used in this study were comprised between the 10th and 20th organ initiated along

the inflorescence27) and grown into apex culture medium plates72 supplemented by 0.1%V/V plant preservative mixture (PPM; Plant

Cell Tech). Plates were then stored in growth cabinets with the same lighting/temperature conditions as in culture rooms.

METHOD DETAILS

Confocal imaging and analysis
Whole sepal images were collected using a LSM700 confocal microscope (Zeiss, Germany) equipped with a 5x air objective (NA =

0.25). Propidium iodide (PI) was excited using a 555 nm laser and the emitted light filtered through a 560–630 nm band-pass filter.

Live imageswere collected using an SP8 confocal microscope (LeicaMicrosystems, Germany) equippedwith a 253 long-distance

water objective (NA = 0.95). mCitrine was excited using a 514 nm laser and the emitted light filtered through a 520–550 nm band-

pass filter.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

ImageJ (Fiji) https://fiji.sc/

JPK Data Processing JPK Instruments AG https://www.jpk.com

MATLAB Mathworks, Nattick, MA, USA https://www.mathworks.com/

Geometric model for sepal growth See Data S1 N/A

Custom code in python This paper https://doi.org/10.5281/zenodo.7998638

Custom code in MATLAB This paper https://doi.org/10.5281/zenodo.7998638

Other

CaF2 coverslips LaserOptex http://www.laseroptex.com/

cs/cs.html CAMS 1602

Crystalline cellulose Halocynthia roretzi Ruel et al.71

Amorphous cellulose Halocynthia roretzi Ruel et al.71

Carbon Film 200 Mesh, Cu, 50/bx Electron Microscopy Sciences CF200-Cu-50

AFM rectangular Si cantilevers with resonant

frequency of about 325 kHz, tip radius 8 nm

MikroMasch, Estonia HQ:NSC15

16 Cell Reports 42, 112689, July 25, 2023

Article
ll

OPEN ACCESS

mailto:arezki.boudaoud@polytechnique.edu
https://doi.org/10.5281/zenodo.7998638
https://fiji.sc/
https://www.jpk.com
https://www.mathworks.com/
https://doi.org/10.5281/zenodo.7998638
https://doi.org/10.5281/zenodo.7998638
http://www.laseroptex.com/cs/cs.html
http://www.laseroptex.com/cs/cs.html


Samples used for whole sepal measurements were stained in PI at 100mM final concentration in water for 15 min prior to imaging.

Sepals used for osmotic treatments were then plasmolyzed for 1h in 0.4M NaCl solution supplemented with PI at 100mM.

Geometric model for sepal growth
We built a parsimonious model for cell growth, starting from measurements, and we predicted differences in final size and aspect

ratio between wild-type (WT) and csi1-3 sepals. We used the geometric description of growth introduced by Goodall and Green.73

The details are provided in Data S1.

Atomic Force Microscopy (AFM)
Samples of recently formed cell wall surface (i.e., the protoplast-facing surface) were prepared for AFM measurements using a

modified protocol of Wuyts et al.74 Briefly, the sepals were plasmolyzed in 0.4 M NaCl for 10 min and fixed in 70% ethanol (first

kept under vacuum for 1 h at room temperature, next fixed for at least 24 h at 4�C). Afterward they were treated with absolute

chloroform for 10 min (to remove membranes and cuticle), rehydrated in decreasing ethanol series (70%, 50%, 30%) followed

by deionized water (5 min in each medium), placed in protoplast lysis buffer of sodium dodecyl sulfate and sodium hydroxide

(1% SDS in 0.2M NaOH) for 3 h, treated with 0.01% a-amylase (Sigma-Aldrich; from Bacillus licheniformis) in PBS (Phosphate

Buffered Saline) (pH 7.0) in 37�C overnight (to remove residual starch), moved to over-saturated water solution of chloral hydrate

(200 g/50 mL) for 4 h (to remove protoplast remnants), and rinsed in water (3 3 15 min). Superficial cell walls of the abaxial

epidermis were then gently peeled off from the sepal and placed on the glass slide such that the protoplast facing wall surface

was exposed. In order to better visualize the cellulose microfibrils in some samples, pectins were removed by treatment with

2% pectinase (Serva, Heidelberg, FRG; from Aspergillus niger) in sodium-phosphate buffer (pH 5.7) at room temperature for

30 min, or the buffer alone. The samples were then rinsed in water and dried at room temperature, during which the wall became

attached to the glass slide by adhesion.

Atomic Force Microscopy (AFM) measurements were performed with a NanoWizard�3 BioScience (JPK Instruments, Berlin, Ger-

many) operating in intermittent contact mode, using HQ:NSC15 rectangular Si cantilevers (MikroMasch, Estonia) with spring

constant specified as 40 N/m, cantilever resonant frequency of about 325 kHz, and tip radius 8 nm. All scans were conducted in

air in laboratory conditions (22�C, constant humidity of 45%). Images were obtained using the JPK Data Processing software

(JPK Instruments). We examined both giant and non-giant epidermal cells of sepals (5 sepals inWT; 6 in csi1-3) from stage 12 flowers.

In WT we obtained 16 AFM maps from 9 cells, in csi1-3 - 32 maps from 14 cells.

Raman spectroscopy
Sample preparation for Raman microspectroscopy followed the AFM protocol up to the treatment with chloral hydrate and rinsing in

water.74 Such prepared sepals were put on glass slides (1 mm thick), immersed in pure deionized water to preserve environmental

conditions, and covered by CaF2 0.15–0.18 mm thick coverslips (CAMS1602, Laser Optex).

Raman data were collected using WITec confocal Raman microscope CRM alpha 300R, equipped with an air-cooled solid-state

laser (l = 532 nm), an thermoelectrically cooled CCD camera, and Zeiss C-Apochromat (100x/1.25 NA) water immersion objective.

The excitation laser radiation was coupled to the microscope through a single-mode optical fiber (50 mmdiameter). Raman scattered

light was focused onto a multi-mode fiber (50 mm diameter) and monochromator with a 600 line mm�1 grating. The spectrometer

monochromator was calibrated using the emission of a Ne lamp, while the signal of a silicon plate (520.7 cm�1) was used for checking

beam alignment.

Surface Raman imaging was applied to differentiate the signal of the cuticular ridges and cell wall. Data were collected in a central

fragment of the cell in a 10 mm3 10 mm area using 303 30 pixels (=900 spectra) and an integration time of 40 ms per spectrum. The

precision of the horizontal movement of the sample during measurements was ±0.2 mm. The lateral resolution (LR) was estimated

according to the Rayleigh criterion LR = 0.61l/NA as LR = 427 nm. All spectra obtained during Raman imaging were collected in

the 120 - 4000 cm�1 range with a resolution of 3 cm�1 and at 30 mW on the sample.

The output data were processed by performing a baseline correction using an autopolynomial function of degree 3, submitted to an

automatic cosmic rays removal procedure by comparing each pixel (i.e., each CCD count value at each wavenumber) to its adjacent

pixels and finally smoothed by Savitzky–Golay filter. Chemical images were generated using cluster analysis (CA). K-means

approach with the Manhattan distance for all Raman imaging maps was carried out to distinguish signal of cuticular ridges and

cell wall. The clusters representing cuticular ridges were excluded from further analyses. Every spectrum obtained from the cell

wall cluster was normalized by dividing by its total area using WITec Project Five Plus software. The procedure was repeated for

ten non-giant pavement cells located in the basal half of different sepals.

Every time data were gathered for 13 consecutive orientations of the polarization plane (the angular range 0–180�), each rotated by

15�. From such obtained set of 13 averaged spectra after the K-means cluster analysis, the spectrumwith maximal signal intensity of

the C-O-C band (1096 cm�1) was chosen to represent angular position 0�, while the other spectra represent angle-dependent inte-

grated intensity alteration with minimum at 90�. Once positions of the two angular extrema were recognized, the 4 spectra (every 30�

from 0� to 90�) were used for further analysis. For each spectrum the spectral parameters like band position, full width at half

maximum, intensity and integrated intensity were determined by deconvolution of the spectra through the peak fitting procedure

facilitated by GRAMS/AI 9.2 software. For each spectrum, the Voigt function with the minimum number of the components was
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used to reproduce the experimentally observed band arrangement. The applied procedure allows one to separate cellulose-specific

bands, e.g. 1096 cm�1 (C-O-C) and 2898 cm�1 (CHx, x = 1,2) from non-cellulose bands originating from other polysaccharides pre-

sent in the cell wall. Finally, the ratio of integrated intensity around the C-O-C and CHx bands was calculated to follow the angle-

dependent character of the sample and estimate the extent of cellulose microfibrils ordering. The ratio of integrated intensity values

estimated for those two regions was calculated for different polarizer angles (every 30� from 0� to 90�) and normalized by the sum of

the four values.

Data fromWT and csi1-3mutant were comparedwith purified reference samples of crystalline (Halocynthia roretzi) and amorphous

(DMAc/LiCl) cellulose.71

Imaging of cellulose with confocal microscopy
For visualization of cellulose fibrils in confocal microscopy isolated sepals (stage 10) were cleared using the modified ClearSee pro-

tocol.75 In short, the samples were fixed in 4% paraformaaldehyde bufferd with 1x PBS (pH 7.4) for at least 1 h under vacuum, and

subsequently for 3 h in room temperature. Next they were rinsed three times in PBS and put in a plastic container filled with ClearSee.

The closed container with samples was placed in a rocking incubator for 3 weeks, the liquid was changed every day for 1 week, and

every 2–3 days for the remaining 2 weeks. The samples were then stained with Calcofluor White for 1 h, washed in ClearSee by gentle

shaking for 10 min, and analyzed using inverted confocal microscope Olympus FV-1000 equipped with 60x oil objective

(UPLanSApo; NA = 1.35). Calcofluor White was excited using a 405 nm laser and the emitted light filtered through a 425–525 nm

band-pass filter. Images were processed using ImageJ.

Assessment of cell wall thickness using electron microscopy
Isolated sepals (stage 10–11) were fixed in solution of 2.5% glutaraldehyde buffered in 50 mM phosphate buffer (pH 7) in 4�C over-

night, rinsed three times in 50 mM phosphate buffer, postfixed with 1% OsO4 for 2 h, rinsed in the diH2O, dehydrated in ethanol and

embedded in Epon resin.76 Ultrathin cross sections (cut at half of sepal length, perpendicular to the long sepal axis), 90 nm thick, were

examined in field emission scanning electron microscope UHR FE-SEM Hitachi SU 8010, operated in transmission mode (STEM) at

accelerating voltage of 25 kV.

Imaging of cellulose synthase complexes and cortical microtubules
To analyze the colocalization of Cellulose Synthesis complexes (CESA) with cortical microtubules (CMT), we dissected flower buds at

stages 7–9, just before formation of cuticular ridges,77 which would prevent visualization of CESA. Buds were placed between cover-

slip and microscope slide for imaging. Total Internal Reflection Fluorescence (TIRF) Microscopy was done using the inverted Zeiss

microscope (AxioObserver Z1) equipped with azimuthal-TIRF iLas2 system (Roper Scientific), Prime 95B Camera (https://www.

photometrics.com/) using a 100x Plan-Apochromat objective (numerical aperture 1.46, oil immersion) as previously described.78

Time lapses were acquired during at least 10 min (one frame every 30s), acquisition time for GFP-CeSA3 (CESA channel) and

mCH-TUA6 (CMT channel) were 500ms and 300ms respectively. Focal planes were adjusted manually.

Cell wall monosaccharide composition
In order to have enough material for the quantification of monosaccharide composition, we dissected the 4 sepals (the two lateral

and the adaxial sepals, in addition to the abaxial sepal, which is used elsewhere in this study) of about 100 stage 12 flowers from

secondary inflorescences of WT and csi1-3 plants, for each of 4 replicates. Freshly collected sepals were submerged into 96%

ethanol incubated for 30 min at 70�C. The sepals were then washed once with 96% ethanol and twice with acetone at room tem-

perature. The remaining pellet of AIR was dried in a fume hood overnight at room temperature. The monosaccharide composition

of the noncellulosic fraction was determined by hydrolysis of 1–2 mg of AIR with 2 M TFA for 1 h at 120�C. The TFA-insoluble

material was washed twice with 1 mL ethanol 70� and further hydrolyzed with 72% (v/v) sulfuric acid for 1h at 20�C. The sulfuric

acid was then diluted to 1 M with water and the samples further incubated at 100�C for 3 h in order to hydrolyze the crystalline

cellulose fraction.

The TFA and sulfuric acid hydrolysates were diluted 100 times and filtered using a 20 mmfilter caps. Themonosaccharides of these

fractions were quantified by HPAEC PAD on a Dionex ICS-5000 instrument (Thermo Fisher Scientific) equipped with a CarboPac

PA20 analytical anion exchange column (3 mm3 150 mm).79 The following separation conditions were applied: an isocratic gradient

of 4 mMNaOH from 0 to 6 min followed by a linear gradient of 4 mMNAOH to 1mMNaOH from 6 to 19 min. At 19.1 min, the gradient

was increased to 450 mM NaOH to elute the acidic sugars.

Extensometry
The seeds of Arabidopsis thaliana WT and csi1-3 mutant were sterilized using 70% EtOH with Tween 20 and 95% EtOH. Subse-

quently, the seeds were plated on vertical plates containing 1/2MS medium with 1% sucrose and 0.7% agar at pH 5.6. Afterward,

the seeds were stratified at 4�C for 36 h and grown for 6 days with 16 h of light per day at 22�C. Following this, the seedlings were

transferred to soil and grown for 3 weeks, with regular watering of the plants. At the stage 15b, the sepals were dissected and

affixed to laboratory tags (Tough-TagsTM, Sigma-Aldrich). Subsequently, they were immersed in a water bath to ensure a stable

osmotic environment for the sample. Throughout the course of the experiment, the samples were maintained in a hydrated state
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by misting water onto their surfaces. The samples were fixed to the micro-extensometer (ME), which was equipped with a force

sensor (10g Futek, LSB200, Miniature S-Beam Jr. Load Cell) and connected to a micro-robotic actuator (SmarAct GmbH, SLC-

1780). The MorphoRobotX software (https://www.MorphoRobotX.org), a fully automated system, managed the ME. It regulated

the positioner, documented the force variation during displacement, and aided in obtaining the stiffness data of the sample.

The Cheese software was utilized to control a DigiMicro 2.0 digital microscope camera (dnt GmbH), which captured the images

of the sample under the exerted force. To ensure adequate illumination, additional AmScope LED rings were situated within the

camera’s field of view. The stiffness of the sample was quantified as the ratio of force to width, with respect to the percentage of

displacement.38

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses
Analysis and statistical testing were performed with custom made python scripts. Statistical testing for differences between sample

means was performed using the scipy.stats library.80 When the samples were typical cellular properties of sepals, we chose to use

median of the cell property over a sepal, and to test for differences between sepal medians because medians are more robust to

outliers. Details of all statistical comparisons are provided in Table S1.

Cell and organ growth
Whole sepal measurements were performed following.81 Quantification of macroscopic growth rates was done by measuring manu-

ally sepal curved length and width using oriented images in ImageJ.

Live imaging data was analyzed using MorphoGraphX,70 which included segmentation, lineage tracking and computation of the

cell areas and principal directions of growth. Principal growth directions of each cell were computed based on the relative displace-

ment of three-way cell junctions between consecutive imaging time points. Growth anisotropy was then calculated as the ratio be-

tween magnitudes associated with the maximum and minimum principal directions of growth.

Quantification of cellulose microfibrils arrangement on protoplast-facing wall surface
Anisotropy of cellulosemicrofibrils arrangement was assessed for square regions (400 nm3 400 nm) with distinct microfibrils chosen

from measured height images of 2 mm3 2 mm AFM scans (2–4 regions per scan). Histogram of microfibrils orientation was obtained

for each region using Directionality tool (https://imagej.github.io/plugins/directionality) of Fiji (Fourier components method). In the

Directionality tool, alignment is assessed for a single curve fitted to the highest peak while in most cell wall regions the distribution

of microfibrils orientation was multimodal. Thus, we developed a bespoke protocol written in MATLAB (Mathworks, Nattick, MA,

USA) to quantify microfibrils arrangement using the following steps (see Figure S7 for details): (i) smooth the histogram by a moving

average; (ii) obtain a series of least square approximations of the histogram by a sumof an increasing number of Gaussianmodels (up

to 8); (iii) choose the approximation with the lowest number of Gaussians with adjusted R2>0.94; (iv) exclude Gaussians with half-

width bigger than 180�; (v) concatenate Gaussians with peaks separated by less than 10�; (vi) exclude Gaussians with height smaller

than ¼ of the highest peak; (vii) compute the alignment index as the relative maximal angular distance between the remaining

Gaussian peaks. The index values are between 0 and 1: the lower the value, the less aligned fibrils, index value equal to 1 means

that there is only one Gaussian.

Angular variability was computed for cells on which at least three AFM regions with alignment index greater than 0.78� were ob-

tained. Angles were periodised and circular variability was measured using the Python astropy package.82,83

Analysis of colocalization of cellulose synthase complexes with cortical microtubules
In order to better visualize cellulose synthases (CESA) moving at the membrane (see below), we used projections of all frames of

CESA channel (covering 10 min or more) and the first image from the cortical microtubule (CMT) channel. In order to determine

the proportion of CESA particles in projections that co-localize with CMTs, we followed classical approaches in colocalization anal-

ysis.84,85 We used Mander’s overlap coefficient86 for pixels with intensities above the thresholds automatically determined by the

approach of Costes et al.,87 as implemented in the plugin ‘Coloc 2’, which is included in the Fiji distribution of ImageJ. First, the back-

ground of each of the two channels was removed with ‘Process>Subtract background. ’ by using the Otsu threshold, a rolling ball

radius of 10 mm, and disabling smoothing. Objects too big to be compatible with CESA particles23,24 or corresponding to CESA par-

ticles moving inside cytoplasm were removed by creating a mask eliminating big regions as follows. After removing the background,

we applied a local threshold to the CESA channel using ‘Image>Adjust>Auto Local Threshold’ with the Otsu method, a rolling ball

radius of 10 mm, and white objects selected; the resulting binary image was then inverted (‘Edit>Invert’) and opened morphologically

(‘Process>Binary>Open’). The resultingmask was then combinedwith a polygonal region of interest selected based on the presence

of CMT patterns in cells (due to the use of TIRF, CMT are more visible for cells that are in contact with the microscope cover). Last,

colocalization was quantified for each region using ‘Analyze>Colocalisation>Coloc 2’ for the CESA channel vs. the CMT channel and

the mask obtained as above, and the default parameters (in particular PSF value of 3). We recorded Mander’s tM1 and used it as a

colocalization score.
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Spatial consistency of growth direction
To obtain a default value of spatial consistency, we computed the median angle between neighboring cells in a sepal, ascribing a

random orientation to each cell. Indeed, themaximal angle between two cells is 90�, but three neighboring cells cannot all be oriented

at 90� to each other. Here, we used one example of segmented sepal mesh and we replaced growth direction with a random vector

that is tangential to the surface of the epidermis because we are only considering growth of the sepal outer surface. In practice, the

random vector was drawn on the plane best-fitting centroids of neighboring cells. We then applied the same pipeline used for the

quantification of spatial consistency of growth direction.
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Generalized Lotka-Volterra equations with random, non-reciprocal interactions:
the typical number of equilibria

Valentina Ros
Université Paris-Saclay, CNRS, LPTMS, 91405, Orsay, France

Felix Roy and Giulio Biroli
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We compute the typical number of equilibria of the Generalized Lotka-Volterra equations describ-
ing species-rich ecosystems with random, non-reciprocal interactions using the replicated Kac-Rice
method. We characterize the multiple-equilibria phase by determining the average abundance and
similarity between equilibria as a function of their diversity (i.e. of the number of coexisting species)
and of the variability of the interactions. We show that linearly unstable equilibria are dominant,
and that the typical number of equilibria differs with respect to the average number.

Systems of many degrees of freedom with hetero-
geneous and non-reciprocal (asymmetric) interactions
emerge naturally when modelling neural networks [1–8],
natural ecosystems [9–12], economic networks or agents
playing games [13–16]. The dynamics of these systems
are characterized by a large number of attractors such as
equilibria, limit cycles and chaotic attractors. Systems
admitting an energy landscape, as it is the case for sym-
metric interactions, only display equilibria, which are the
stationary points of the landscape. A rugged landscape is
central in the theory of glassy systems, since local minima
are associated to metastable states; as a consequence, in-
depth investigations and refined tools for counting and
classifying local minima of highly non-convex landscapes
have been developed extensively in the context of glassy
physics [17–20]. Most of these studies focused on sys-
tems admitting an energy landscape, though. Recently,
the interest in non-conservative systems (devoid of an
energy landscape) has grown substantially and pioneer-
ing works have shown that such systems can also display
many equilibria [21–25]. Developing a general theory in
order to count them and to investigate their stability is
a challenging goal, with potentially relevant implications
for understanding the dynamics.

Here we address this problem for a prototypical non-
conservative dynamical system, the random Generalized
Lotka-Volterra model (rGLV), which describes the dy-
namics of population sizes of multiple species with pair-
wise interactions between them. The rGLV equations are
used extensively in theoretical ecology to describe well-
mixed ecosystems [26–31], and they are related to models
used in evolutionary game theory and in economic the-
ory [32–35]. They are known to admit a multiple equi-
libria phase when the variability of the random interac-
tions is strong enough [27, 36–38], an interesting feature
for theoretical ecology [39, 40]. Our main result is a full
characterization of multiple equilibria in terms of average
abundance, diversity and stability as summarized in the

FIG. 1: Quenched complexity Σ(ϕ, σ) of uninvadable
equilibria for uncorrelated interactions (γ = 0). Black
lines correspond to vanishing complexity; the green
dotted line to the diversity ϕMay(σ) above which

equilibria are linearly unstable (red area); the orange
dotted line to the transition between the unique

(σ < σc) and the multiple (σ > σc) equilibria phases.

phase-portrait of Fig. 1. There is a general expectation
that the vast majority (if not all) of the equilibria are
linearly unstable when the interactions are asymmetric
[24, 41]; our analysis confirms this surmise, which directly
implies a complex dynamical behavior, as the system can
never settle in a fixed point, even at long times. In or-
der to properly count the typical number of equilibria,
we combine random matrix theory with standard tools
in the theory of glasses. We thus go beyond the previous
analysis performed for systems with asymmetric interac-
tions [21–24, 42], which focused on the average number of
equilibria. The latter is in fact much larger than the for-
mer and not representative of the typical behavior of the
rGLV model, as we shall show below (and as it happens
in many other disordered and glassy systems).

The rGLV equations determine the dynamics of a pool
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of S ≫ 1 species. They read

dNi(t)

dt
= Ni(t)Fi(N⃗), (1)

where Ni(t) ≥ 0 is the abundance of species i at time t.

The vector F⃗ represents the growth rates or forces:

Fi(N⃗) = κi −Ni −
µ

S

S∑
j=1

Nj −
σ√
S

S∑
j=1

aijNj . (2)

Here κi are the carrying capacities, µ, σ are the average
interaction strength and the variability, and aij are com-
ponents of a random matrix encoding the fluctuations in
the interactions between the different species [77]. To de-
scribe interactions where aij and aji are correlated but
not exactly the same, we take them as two variables with
a joint Gaussian distribution defined by covariances:

⟨aijakl⟩ = δikδjl + γ δilδjk, |γ| ≤ 1 (3)

corresponding to ⟨a2ij⟩ = ⟨a2ji⟩ = 1 and ⟨aijaji⟩ = γ. In
the extreme case γ = ±1 one obtains perfect correlations
aij = ±aji, while for γ = 0 the interactions are uncor-
related. We focus on κi = κ, but the calculation can be
easily generalized to heterogeneous κi.

FIG. 2: Complexity of equilibria as a function of their
diversity, for γ = 0. Main panel: Complexity in the
multiple equilibria phase (at σ = 4). A difference

between quenched (magenta) and annealed (blue) is
apparent. All the equilibria are unstable (ϕ > ϕMay).
Inset: Annealed complexity in the unique equilibrium
phase (at σ = 1), negative except at the diversity

predicted by the cavity formalism consistent with the
existence of a unique equilibrium.

Equilibria are configurations N⃗∗ satisfying

dN∗
i

dt
= N∗

i Fi(N⃗
∗) = 0 ∀ i, N∗

i ≥ 0. (4)

Numerical simulations and analytical results [27, 30, 36,
41, 43, 44] reveal two distinct regimes for large S: a

unique equilibrium regime in which any arbitrary ini-
tialization of the population vector converges to a fixed

equilibrium N⃗∗ which is globally stable, and a multi-
ple equilibria regime. The transition between the two
regimes takes place at σc =

√
2(1 + γ)−1 [43]. Charac-

terizing the multiple equilibria phase when −1 < γ < 1
is still an open challenge as mappings to physical sys-
tems work only for γ = 1 [27, 33, 36, 38, 45, 46] and
γ = −1 [47]. In the former case the problem is conser-
vative and the force is obtained as the derivative of an
energy, Fi(N⃗) = −∂iL(N⃗) with L(N⃗) =

∑S
i=1 Ni[

Ni

2 −
κi+

µ
2

∑S
j=1 Nj +

σ
2
√
S

∑S
j=1 aijNj ]. Stable equilibria are

identified with metastable states (local minima of the en-
ergy). Spin-glass techniques [36, 38] can be used to show
that there exist exponentially many (in S) metastable
states, the relevant ones being marginally stable, which
makes the system critical [48] and hence very fragile to
non-conservative perturbations [41, 49–51]. This formal-
ism requires the existence of an energy landscape. When
−1 < γ < 1, Dynamical Mean Field Theory [44] has
provided information on the dynamics but not directly
on the equilibria. Here we tackle this challenge by the
Kac-Rice formalism [52–55]. To study the typical num-
ber of equilibria for γ ̸= 1 we make use of the so called
quenched Kac-Rice formalism introduced in [56].
There are many equilibria solving (4), that differ by

which species are present. We classify their typical num-

ber as a function of their diversity : each equilibrium N⃗∗

has a certain number of absent species (N∗
i = 0), and a

number s(N⃗∗) of present species (N∗
i > 0). The diversity

is defined as ϕ(N⃗∗) = s(N⃗∗)/S ∈ [0, 1]. This quantity is
a central property in ecology, which also sets the stability
of the equilibria [57], as we recall below. Our counting of
equilibria at varying ϕ is also motivated by the fact that
it is not known a priori which equilibria will affect the sys-
tems dynamics (and how), at variance with equilibrium
frameworks where the relevant equilibria are marginally
stable minima, usually the more numerous ones (see how-
ever [58]). Therefore, determining the range of diversities
where equilibria are present is crucial. We focus on un-

invadable equilibria, such that Fi(N⃗
∗) < 0 for any i such

that N∗
i = 0 (notice that similar constraints appear natu-

rally in constraint satisfaction problems, too [59]). These
equilibria are relevant as they are stable with respect to
small positive fluctuations in the abundance of the absent
species. The total number NS(ϕ) of uninvadable equilib-
ria with diversity ϕ scales exponentially with S [60]. As
known from glassy physics, NS(ϕ) is a random variable
which in general does not concentrate around its average
(it is not self-averaging). In this case the typical number
is obtained by focusing on the large-S limit of its log-
arithm, which does concentrate around a deterministic
value Σ(ϕ):

lim
S→∞

log [NS(ϕ)]

S
= lim

S→∞

⟨log [NS(ϕ)]⟩
S

≡ Σ(ϕ). (5)

Σ(ϕ) governs the exponential scaling of the typical value
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of NS(ϕ): borrowing the terminology from glassy physics,
we refer to it as the quenched complexity. The computa-
tion of the average of the logarithm is done via the replica
trick:

⟨logNS(ϕ)⟩ = lim
n→0

log ⟨Nn
S(ϕ)⟩
n

. (6)

When evaluated at n = 1 the right hand of side of
eq. (6) gives the annealed complexity associated with
the average number of equilibria [24, 61–63]: Σ(A)(ϕ) ≡
limS→∞

1
S log ⟨NS(ϕ)⟩. When NS(ϕ) is not self averaging,

Σ(A) > Σ: the average of NS(ϕ) is dominated by expo-
nentially rare ecosystems displaying an unusually large
number of equilibria. It is therefore much larger than
the typical value, which captures the properties of the
ecosystems occurring with probability that is not sup-
pressed exponentially in S.
The main steps of the replicated Kac-Rice computa-

tion are explained in the SI. The value of ⟨Nn
S(ϕ)⟩ can

be determined by introducing n copies of the ecosystem
and by finding the probability that any n given vectors

N⃗a, a = 1, · · · , n satisfy Eq. (4) simultaneously, together
with the uninvadability condition. This is a function of
order parameters measuring properties of the equilibria,
like the amount of correlation between them. The num-
ber of equilibria is dominated (according to a large devi-
ation principle) by specific values of these order param-
eters. The order parameters are the first two empirical

moments of the vectors N⃗a and F⃗ a, i.e. the 2n quantities:

ma ≡ lim
S→∞

∑S
i=1 N

a
i

S
, pa ≡ lim

S→∞

∑S
i=1 F

a
i

S
(7)

as well as the n(n+1) +n(n−1) correlations (or overlaps):

qab ≡ lim
S→∞

N⃗a · N⃗b

S
, ξab ≡ lim

S→∞

F⃗a · F⃗b

S
,

zab ≡ lim
S→∞

N⃗a · F⃗b

S

(8)

where zaa = 0 follows from (4). These order parameters
encode the correlations in the location of the different
fixed points in configuration space, which emerge because
all the fixed points arise from the same interactions be-
tween the species. We consider a symmetric ansatz for
the order parameters, i.e. ma = m, qab = δabq1 + (1 −
δab)q0, pa = p, ξab = δabξ1 + (1 − δab)ξ0zab = (1 − δab)z,
which is the simplest approximation that takes such cor-
relations into account. Under this assumption, the mo-
ments can be written as an integral over all possible val-
ues of the order parameters:

⟨Nn
S(ϕ)⟩ =

∫
dx eS n Ā(x;ϕ)+o(nS), (9)

with x = (m, p, q1, q0, ξ1, ξ0, z), see the SI for details of
the calculation of Ā and for its explicit expression. The
large deviation principle then implies that asymptotically

Σ(ϕ) = Ā(x⋆;ϕ), (10)

where x⋆ is the solution of the saddle-point equations
δĀ(x;ϕ)

δx

∣∣∣
x⋆

= 0. This results in self-consistent equations

for the typical properties of equilibria at fixed ϕ, such as
their typical average abundance m∗ or the typical simi-
larity between two equilibria q∗0 .
The Kac-Rice computation allows us to determine the

linear stability of the equilibria at each given ϕ with re-
spect to perturbations N∗

i → N∗
i + δN∗

i of the popula-
tions of coexisting species. This depends on the spectral
properties of the matrix:

Hij(N⃗
∗) =

(
∂Fi(N⃗

∗)

dNj

)
i,j:N∗

i ,N
∗
j >0

. (11)

For stable equilibria all the eigenvalues of (11) have neg-
ative real part. The asymmetry of the matrix aij implies
that (11) are themselves asymmetric random matrices
[64]. The typical eigenvalue density (neglecting possible

isolated eigenvalues) of Hij depends on N⃗∗ only through
its diversity ϕ. For

ϕ < ϕMay =
1

σ2(1 + γ)2
. (12)

the density has support on the negative real sector; there-
fore a typical equilibrium with ϕ < ϕMay (if it exists)
is stable. At ϕ = ϕMay, the support of the eigenvalue
density touches zero and the corresponding equilibrium
is marginally stable; for larger ϕ the equilibrium is un-
stable. The criterion (12) for linear stability is related
to that identified by May in [57], and we henceforth re-
fer to it as the May stability bound. More details on the
Kac-Rice computation, with a thorough discussion of the
structure of the equations and their resolution, are given
in [65].
We now present our main results, focusing on the case

of uncorrelated interactions γ = 0 and setting κ = 1. We
find that although the saddle point values x∗ depend ex-
plicitly on µ, the complexity at fixed diversity does not,
allowing us to discuss the behavior of Σ(ϕ) as a function
of σ only. As shown in Fig. 1, when σ > σc there is a
range of diversities ϕ ∈ [ϕa(σ), ϕb(σ)] for which Σ(ϕ) > 0
(a negative annealed Σ(ϕ) signifies that no equilibria ex-
ist typically [55]). The rGLV equations thus admit an ex-
ponentially large number of uninvadable equilibria with
a continuous distribution of diversities. All the equilibria
are unstable, as their diversity exceeds the May stability
bound, Eq. (12). In Fig. 2 we show a cut at fixed σ of
the plot of Fig. 1. In addition to the quenched complex-
ity we show the annealed one for comparison. We find
that the complexity and the diversity ϕmax associated to
the typical, i.e. most numerous equilibria at the given σ
are overestimated by the annealed calculation. Annealed
and quenched complexity only coincide for small ϕ. The
point ϕcav where they begin to deviate from one another
turns out to coincide with the value of diversity predicted
by the cavity method discussed in Refs. [27, 30, 41]. The
cavity method assumes the existence of a unique stable
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equilibrium and allows one to characterizes its abundance
m and overlap q1, by imposing consistency relations be-
tween the properties of the system with S + 1 and S
species. The above result shows that despite being only
approximate for σ > σc, this method still captures the
properties of a given family of equilibria, even though
they are exponentially rare with respect to the typical
ones at ϕmax.
We have studied how the properties of equilibria

change as ϕ is increased. Fig. 3 shows that imposing
a larger diversity leads to less populated (lower average
abundance m∗) equilibria. Similarly, it leads to less cor-
related (lower overlap q∗0) equilibria. Fig. 4 shows the

FIG. 3: Typical averaged population size as a function
of diversity ϕ for σ = 4 and µ = 30, in the annealed
(blue) and quenched (magenta) calculation. More

diverse equilibria have a smaller averaged population
size m, which for ϕ > ϕcav is underestimated by the
annealed approximation. The inset is a zoomed plot.

σ-dependence of the special values of ϕ discussed above
(it corresponds to Fig.1 seen from the top). The grey
area is the support of the quenched complexity, which
increases with σ. When σ → σ+

c all the special values of
ϕ merge together and reach ϕMay. Correspondingly the
complexity vanishes.

Just above σc, where the complexity goes to zero, the
quenched and annealed calculations have great discrep-
ancies, see the inset of Fig. 4, probably due to the
larger correlation between equilibria. In fact, the aver-
age number of equilibria (annealed calculation) is dom-
inated by equilibria having a diversity ϕann

max for which
typically there are no equilibria, i.e. the quenched com-
plexity vanishes. This feature had already been identified
in Ref. [35] for a slightly different model arising in the
context of portfolio optimization (and describing, in its
ecological interpretation, species competing for a single
common resource).

For larger σ the cavity approximation underestimates
more strongly the diversity (and thus the instability) with
respect to that of typical equilibria at ϕmax. For σ < σc,
the complexity (annealed and quenched) is non-negative

only at ϕ = ϕcav, which now correctly describes the di-
versity of the system as there is a unique equilibrium [66].
The analysis of the multiple equilibria also allows us to
characterize thoroughly the transition to an additional
phase, the unbounded phase, where some abundances di-
verge as a function of time, see the SI.

FIG. 4: Diversity vs. variability diagram. The range of
possible diversities is indicated by the grey region.

Curves of maximal complexity are shown in magenta
(quenched) and blue (annealed). The black squares give

ϕcav. The orange dashed line corresponds to ϕMay

above which all equilibria are linearly unstable. Inset.
Zoom in the vicinity of σc =

√
2.

Finally, let us focus on the properties of the transi-
tion to the unique equilibrium phase at σc. Following
the terminology introduced in [23], this is a trivialization
transition and corresponds to the point at which the total
quenched complexity Σtot = Σ(ϕMax) first vanishes. The
way in which Σtot vanishes for σ → σc has been the focus
of several works. It has been studied in models with a
quadratic single-species confinement potential within an
annealed calculation [67, 68]. Importantly, it has also
been conjectured to be connected to the emergence of
chaos and of a finite Lyapunov exponent [62]. For the
rGLV model at γ = 0 we find that the complexity grows
quadratically with σ when entering the multiple equilib-
ria phase, Σtot ∼ (σ − σc)

2 as in [67, 68]. As found in
models of recurrent neural networks, the emergence of a
non-zero complexity is concomitant with the emergence
of a complex dynamical behavior, including chaos and
aging [44]. We notice that the annealed approximation
locates correctly the trivialization transition in this case,
and also captures the quadratic increase but with a differ-
ent prefactor. We do not expect this quadratic behavior
to be general, unless the total complexity in the vicin-
ity of σc is captured by the annealed framework. If this
is not the case, our calculation suggests that one should
find a different power law for γ ̸= 0 (see [65] and the SI
for more details).
In summary, we have characterized the multiple-

equilibria phase of the rGLV equations by computing
explicitly the complexity of uninvadable equilibria. On
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a technical ground our approach, giving access to the
quenched complexity, has allowed us to assess when and
to what degree the annealed calculation is precise: we
have found a transition at the value of diversity ϕcav,
below which the annealed calculation is exact and above
which the quenched calculation gives a quantitatively dif-
ferent result; the latter regime always includes the maxi-
mum of the complexity, which corresponds to the typical
equilibria.

We performed the calculation assuming a symmetry
of the order parameters with respect to permutations of
replicas: we are thus restricting the region of parameter
space where to look for solutions of the self-consistent
equations obtained from the variation of (10). For γ = 1
it is know that the symmetric assumption is an approxi-
mation, as (10) is optimized by parameters that break the
symmetry between the replicas. Verifying that Replica
Symmetry Breaking (RSB) is not needed for generic γ is
a challenge that we leave for further studies.

Our calculations show that for non-reciprocal uncorre-
lated interactions all the uninvadable equilibria are lin-
early unstable. This marks a difference with respect to
the symmetric case, where marginally stable equilibria
are present and correspondingly the dynamics is glassy.

With unstable equilibria, a chaotic dynamics is expected
in presence of migration [6] and signatures of it emerge
in theoretical models [69] and even in controlled exper-
iments [70]. Similarly to the case of landscape studies
which were instrumental to understand glassy dynamics
in terms of local minima and metastable states, it would
be very interesting to connect the properties of these un-
stable equilibria (more generally, of heteroclinic networks
formed by them [71]) to the dynamical behavior. We en-
visage that invadable equilibria also play a role in the
dynamics [72], and the calculation of their complexity is
ongoing, as well as the generalization to inhomogeneous
carrying capacities κi [67, 73, 74].
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Supplemental Material

We report in the following the main steps to obtain the quantity Ā(x;ϕ) appearing in Eq. (9) in the main text.
Moreover, we discuss additional results on the unbounded phase and on the vanishing of the total complexity, which
are mentioned in the main text. For a more detailed exposition of the formalism underlying this calculation, we refer
the reader to Ref. [65].

The Kac-Rice formula for the moments. The Kac-Rice formalism is a framework that allows one to
characterize the number of solutions of dynamical equations containing randomness: in particular, given that the
number of solutions is itself a random variable, the formalism gives a recipe to determine the moments of this random
variable. For an introduction to the formalism and to its application to the high-dimensional setting, see [52, 75] and
references therein. This formalism provides us with an expression for the moments of the number of equilibria at fixed
diversity, denoted with NS(ϕ) in the main text. To compute the n-th moment of this random variable, we need to

introduce n different configurations N⃗a of the ecosystem (with a = 1, · · ·n), which we refer to as replicas. Each N⃗a

represents a realization of the ecosystem at fixed values of the rand interaction terms aij . We let N = (N⃗1, · · · , N⃗n)

denote the concatenation of configurations of all replicas. In each configuration N⃗a, some species will be present

(Na
i > 0) while some others will be absent (Na

i = 0). We let Ia = I(N⃗a) be the index set collecting the indices of

the species that are present in the configuration N⃗a. Since we are interested in counting the equilibria having fixed
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diversity ϕ, we enforce that |Ia| = Sϕ for all a. We introduce the vectors of growth rates or forces F⃗ a = F⃗ (N⃗a) and

F(N) = (F⃗ 1, · · · , F⃗n). Let f denote the value taken by this random vector, and PN (f) the joint distribution of the

S-dimensional vectors F⃗ a evaluated at f⃗a,

P
(n)
N (f) =

∫ S∏
i,j=1

daijP({aij}ij) δ (F(N)− f) . (13)

We also introduce the following conditional expectation value:

D
(n)
N (f) =

〈 n∏
a=1

∣∣∣∣∣∣det
(
δF a

i

dNa
j

)
i,j∈Ia

∣∣∣∣∣∣
 ∣∣∣ F(N) = f

〉
. (14)

The latter is the expectation of the product of the absolute values of n determinants of the Sϕ × Sϕ matrices of
derivatives of the components of F, conditioned to F itself taking value f . The Kac-Rice formula for the n-th moment
of the number NS(ϕ) of uninvadable equilibria reads:

⟨Nn(ϕ)⟩ =
∑
I1

|I1|=Sϕ

· · ·
∑
In

|In|=Sϕ

n∏
a=1

∫
dN⃗a df⃗a

∏
i∈Ia

θ(Na
i ) δ(f

a
i )
∏
i/∈Ia

δ(Na
i )θ(−fa

i )D
(n)
N (f)P

(n)
N (f) .

(15)

We now briefly summarize how to determine the behaviour of the moments (15) for generic values of n to leading
exponential order in S, and how to extract the quenched (and annealed) complexity from it.

The order parameters and the complexity. By performing the averages over the random interactions aij ,

one sees that the quantities D
(n)
N (f) and P

(n)
N (f) in (15) depend on the vectors N⃗a and f⃗a only through their scalar

products. For a, b = 1, · · · , n we can therefore introduce a set of order parameters defined as follows:

Sqab = N⃗a · N⃗ b, Sξab = f⃗a · f⃗ b, Szab = N⃗a · f⃗ b, Sma = N⃗a · 1⃗, Spa = f⃗a · 1⃗, (16)

where 1⃗ = (1, · · · , 1)T is an S-dimensional vector with all entries equal to one. It follows that the integration over

N⃗a, f⃗a in (15) can be replaced by an integration over the order parameters, with the appropriate change of variables.
The calculation proceeds in a few steps that we briefly summarize. First, the order parameters are introduced in (15)
by means of the identities:

1 =

∫
dqab δ

(
N⃗a · N⃗ b

S
− qab

)
= S

∫
dqab

∫
dq̂ab
2π

eiq̂ab(N⃗a·N⃗b−Sqab), (17)

where the auxiliary variables q̂ab are conjugate parameters (and similarly for the other order parameters in (16)).
Then, we make use of the assumption that the order parameters are symmetric with respect to permutations of the
replicas, which implies that:

qab = δabq1 + (1− δab)q0, ξab = δabξ1 + (1− δab)ξ0, zab = (1− δab)z, ma = m, pa = p, (18)

and similarly for the conjugate ones. Let then x = (m, p, q1, q0, ξ1, ξ0) denote the collection of all of these order

parameters, and x̂ = (m̂, p̂, q̂1, q̂0, ξ̂1, ξ̂0) the collection of the conjugate ones. Performing the integration over N⃗a, f⃗a

at fixed values of x, x̂ and performing an expansion of the resulting expressions for large S, one then obtains the
following integral representation for the moments:

⟨Nn(ϕ)⟩ =
∫

dx idx̂ eSAn(x,x̂,ϕ)+o(S), (19)

where the function An(x, x̂, ϕ) depends only on the order parameters and on the conjugate parameters, as well as on
the number n of replicas. Given that S is large, the leading order contribution to the moments can be determined by
means of a saddle point approximation, by evaluating An(x, x̂, ϕ) at the stationary point x∗, x̂∗ which maximizes it.
This can be done in principle for arbitrary values of n. We recall that the annealed complexity is obtained taking the
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logarithm of (19) with n = 1, while the quenched complexity is obtained taking the limit n → 0 according to Eq. (6).
By choosing n = 1, we obtain:

A1(x, x̂, ϕ) = p1(x) + d(ϕ) +
(
q̂1q1 + ξ̂1ξ1 + m̂m+ p̂p+ ϕ̂ϕ

)
+ J1(x̂), (20)

with

p1(x) = − 1

2σ2q21

[
(κ− µm)2

(
q1 −

γ m2

1 + γ

)
− 2(κ− µm)q1

(
p+

m

1 + γ

)
+ ξ1q1

]
− 1

2
log(2πσ2 q1)−

1

2σ2(1 + γ)
,

(21)

J1(x̂) = log

1
2

√
π

ξ̂1
e

p̂2

4ξ̂1 Erfc

− p̂

2

√
ξ̂1

+
e−ϕ̂

2

√
π

q̂1
e

m̂2

4q̂1 Erfc

(
m̂

2
√
q̂1

) , (22)

and

d(ϕ) =
ϕ

π

∫ 1

−1

dx

∫ √
1−x2

0

dy log

{[
σ
√
ϕ(1 + γ)x+ 1

]2
+ σ2ϕ(1− γ)2y2

}
. (23)

This double integral can be evaluated explicitly, and one finds:

d(ϕ) =

{
1

4γσ2

(
1−

√
1− 4γσ2ϕ

)
+ ϕ log

(
1 +

√
1− 4γσ2ϕ

)
− ϕ

(
1
2 + log 2

)
ϕ ≤ ϕMay = 1

σ2(1+γ)2

1
2σ2

1
1+γ − ϕ

2 + ϕ
2 log(σ2ϕ) ϕ > ϕMay = 1

σ2(1+γ)2 .
(24)

As expected, the functional (20) does not depend on q0, ξ0, z and on the associated conjugate parameters, that have
a meaning only whenever more than one replica is present (n > 1). We consider now the case n → 0, relevant to
determine the quenched complexity. It can be shown that An(x, x̂, ϕ) admits the expansion:

An(x, x̂, ϕ) = n Ā(x, x̂, ϕ) + o(n). (25)

Explicitly, for general γ we find:

Ā(x, x̂, ϕ) = p̄(x) + d(ϕ) + q̂1q1 + ξ̂1ξ1 + m̂m+ p̂p+ ϕ̂ϕ− 1

2

(
q̂0q0 + ξ̂0ξ0

)
− ẑz + J̄(x̂), (26)

where d(ϕ) is as above, while

p̄(x) =
(κ− µm)

σ2(1 + γ)

m(q1 − q0 + zγ)

(q1 − q0)2
+

(κ− µm)

σ2

p

(q1 − q0)
− γ

2σ2(1 + γ)

z2(q1 + q0)

(q1 − q0)3
− ξ1

2σ2(q1 − q0)

− q0(ξ0 − ξ1)

2σ2(q1 − q0)2
− 1

2σ2(1 + γ)

[
1 +

2q0z

(q1 − q0)2

]
− 1

2σ2

(κ− µm)
2

q1 − q0
− log[2πσ2(q1 − q0)]

2
− q0

2[q1 − q0]
,

(27)

and where J̄(x̂) admits the following integral representation:

J̄(x̂) =

∫
du1du2

2π

√
q̂0ξ̂0 − ẑ2

exp

[
ξ̂0u

2
1 + q̂0u

2
2 − 2ẑu1u2

2(q̂0ξ̂0 − ẑ2)

]
×

× log

e−ϕ̂

√
π

2

1√
2q̂1 − q̂0

e
(u1−m̂)2

2(2q̂1−q̂0)Erfc

(
m̂− u1√
2(2q̂1 − q̂0)

)
+

√
π

2

1√
2ξ̂1 − ξ̂0

e
(u2−p̂)2

2(2ξ̂1−ξ̂0)Erfc

 −[p̂− u2]√
2(2ξ̂1 − ξ̂0)

 ,

(28)

derived under the assumptions:

2q̂1 − q̂0 > 0, 2ξ̂1 − ξ̂0 > 0, q̂0 < 0 ξ̂0 < 0, q̂0ξ̂0 − ẑ2 > 0. (29)

The saddle point equations fixing the values of the order and conjugate parameters can be obtained taking the
derivatives of these expressions, as we recall below. Once the saddle point values are determined by solving the
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appropriate system of equations, plugging the resulting values into A1 and Ā one obtaines the expression for the
annealed and quenched complexity, respectively.

The variational problem and the self-consistent equations. Given the explicit form of the functionals A1

and Ā, the last step to obtain the complexity is to determine the values x⋆, x̂⋆ of the order and conjugate parameters
that solve the stationarity conditions

δ Ā(x, x̂, ϕ)

δ x

∣∣∣
x⋆,x̂⋆

= 0 =
δ Ā(x, x̂, ϕ)

δ x̂

∣∣∣
x⋆,x̂⋆

, (30)

as well as the values x
(1)
⋆ , x̂

(1)
⋆ that optimize A1. In the quenched case, taking the variation of Ā(x, x̂, ϕ) with

respect to the 15 order and conjugate parameters we obtain two sets of equations of the form x = F1[x̂] and
x̂ = F2[x], respectively. These equations couple the 7 order parameters x with the 8 conjugate parameters x̂:
inverting one of these sets, one can express the order parameters as a function of the conjugate parameters,
x = f3[x̂]. The latter can then be fixed by solving the set of coupled self-consistent equations x̂ = F2[f3[x̂]]: once
the self-consistent values of the conjugate parameters x̂ are found, the order parameters can be determined and
the quenched complexity can be obtained computing the action Ā at the corresponding values of parameters.
The annealed calculation is formally analogous. This scheme can be implemented for generic values of γ. A de-
tailed discussion of the structure of the self-consistent equations and of the strategy to solve them can be found in [65].

On the unbounded phase. While the quenched complexity Σ(ϕ) is independent of µ, the typical properties of
the equilibria (given by the saddle-point values of the parameters m, q1, q0) change with µ; in particular, decreasing µ
at fixed σ, ϕ one finds that the solutions to the self-consistent equations m∗, q∗1 , q

∗
0 all increase and the system is driven

towards the unbounded phase, signalled by a divergence of these parameters [27, 30, 41, 76]. Given that we have
access to the distribution of equilibria as a function of diversity, for each σ we can define a µc(ϕ) such that for µ < µc

the system is in the unbounded phase. This curves is monotonically decreasing with ϕ, see Fig. 5. This suggests to
define the boundary of the bounded phase in the σ, µ diagram thorough µ∗ = maxϕ:Σ(ϕ)≥0 µc(ϕ) = µc(ϕa), to ensure
that none of the equilibria is in the unbounded phase, no matter their diversity. We remark that the unbounded
phase defined in this way has a larger extension with respect to that estimated via the cavity approximation, since
µ∗ > µc(ϕcav). On the other hand, for µ = µ∗ the most numerous equilibria having ϕ = ϕMax are still in the bounded
phase, so the phase boundary obtained using typical equilibria is yet different.

FIG. 5: Curve separating the unbounded (µ < µc) from the bounded (µ > µc) phase as a function of the diversity ϕ.

On the vanishing of the total complexity. We claimed in the main text that the total complexity Σtot =
Σ(ϕmax) vanishes as Σtot ∼ (σ − σc)

2 as σ → σ+
c for γ = 0, and that we expect this behavior to extend to γ ̸= 0

provided that the maximum of Σ(ϕ) in the vicinity of σc lies in a region of ϕ in which the annealed calculation is correct.
On the other hand, if at the maximum of Σ(ϕ) the quenched formalism has to be employed, we have indications of
the fact that the exponent controlling the vanishing of the complexity is a different one. We motivate these claims in
this subsection, and refer to Ref. [65] for the details. The total variation of Σtot with respect to σ is given by:

dΣtot

dσ
= ∂σĀ(x, x̂, ϕ)

∣∣∣
x∗,x̂∗,ϕmax

= ∂σp̄(x)
∣∣∣
x∗,x̂∗,ϕmax

+ ∂σd(ϕ)
∣∣∣
x∗,x̂∗,ϕmax

, (31)
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where we used the fact that (x∗, x̂∗, ϕmax) are a stationary point of Ā(x, x̂, ϕ). For σ < σc =
√
2(1 + γ)−1, the

system is in the unique equilibrium phase and a single, stable equilibrium exists. Its properties (described by the
order parameters m, q1) can be derived using the cavity method. For general γ and κ = 1, one finds [65] that at σc

the equilibrium satisfies m = µ−1 = −(1 + γ)p, q1 = (1 + γ)2ξ1 and ϕ = ϕmax = ϕMay = [σ(1 + γ)]−2. This implies:

∂σd(ϕ)
∣∣∣
σc,ϕmax

= −γ(1 + γ)

2
√
2

. (32)

In order for the complexity to vanish quadratically at σc, this term should be compensated by the one obtained
deriving the distribution of the forces p̄(x). If for σ > σc and ϕ = ϕmax the annealed calculation is exact, than one
can replace p̄(x) → p1(x), and use that for the values of parameters predicted by the cavity approximation it holds:

∂σp1

∣∣∣
σc,ϕmax

=
γ(1 + γ)

2
√
2

, (33)

which cancels exactly (32). Therefore, if Σtot is analytic at σc, it has to vanish quadratically (one can check that
the second derivative is not vanishing at the critical point). On the other hand, for γ = 0 we know that at ϕmax the
annealed calculation is never correct, for any σ > σc. Assuming that this is still true for γ = 0, imposing that (31)
vanishes and using the conditions given by the cavity approximation (in addition to q0 = (1+ γ)2ξ0 by symmetry) we
obtain the following conditions for the order parameters:

z

(1 + γ)(q1 − q0)2

(
γz(q1 + q0)

2(q1 − q0)
+ q0

)
= 0, (34)

which implies either z = 0, or z = 2q0(q1 − q0)/[γ(q1 + q0)]. Both these solutions however can be shown to be
incompatible with the quenched self-consistent equations for this order parameter [65] except for the case γ = 0, when
in fact it holds z = 0 at the transition point. Therefore, if for γ ̸= 0 the total complexity at σ ∼ σ+

c is quenched, one
should expect a different power law since the linear contribution is not vanishing. We remark that the symmetric case
γ = 1 is special, since the total complexity should vanish in a non-analytic way at the transition, due to the square
root term in (24) whose argument vanishes when ϕ = ϕMay, σ = σc.
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