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Using path-integral techniques, we compute exactly the distribution of the maximal height Hp of p

nonintersecting Brownian walkers over a unit time interval in one dimension, both for excursions p

watermelons with a wall, and bridges p watermelons without a wall, for all integer p � 1. For large p, we

show that hHpi �
ffiffiffiffiffiffi
2p

p
(excursions) whereas hHpi � ffiffiffiffi

p
p

(bridges). Our exact results prove that previous

numerical experiments only measured the preasymptotic behaviors and not the correct asymptotic ones. In

addition, our method establishes a physical connection between vicious walkers and random matrix

theory.
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Introduction.—Since the pioneering work of de Gennes
[1], followed up by Fisher [2], the subject of vicious (non-
intersecting) random walkers has attracted a lot of interest
among physicists. It has been studied in the context of
wetting and melting [2], networks of polymers [3] and
fibrous structures [1], persistence properties in nonequilib-
rium systems [4] and stochastic growth models [5,6]. There
also exist connections between the vicious walker problem
and the random matrix theory (RMT) [7–9], including for
instance Dyson’s Brownian motion [10]. These connec-
tions to RMT have rekindled recent interest in the vicious
walker problem and have led to new interesting questions.
However, despite extensive recent mathematical literature
on the subject, the connections to RMT have so far been
established using mostly combinatorial approaches. Given
the nonintersection constraint in the vicious walker prob-
lem, it is natural to expect a free Fermion approach to make
its connection to RMT physically more explicit. The aim of
this Letter is to present such an approach which, in addi-
tion, allows us to derive a variety of new exact results in the
vicious walker problem.

Physically, one-dimensional vicious walkers play an
important role in describing the elementary topological
excitations in the p� 1 commensurate adsorbed phases
close to the commensurate-incommensurate (C-IC) transi-
tion [11]. In the commensurate phase the elementary ex-
citations are pairs of dislocations at a given distance with p
nonintersecting domain walls emerging from one and ter-
minating at the other. This is just a ‘‘watermelon’’ pattern
configuration of p nonintersecting Brownian bridges [see
Fig. 1(b)]. The sizes of such defects and their fluctuations
become important near the phase transition. An important
quantity that characterises the transverse fluctuations of the
defect is the maximal height of the p vicious walkers in a
fixed time (here time signifies the fixed longitudinal dis-
tance between the pair). Such extreme value questions have
recently been studied extensively for a single Brownian
bridge or an excursion (with certain constraints) in the

context of the maximal height of a fluctuating interface
[12,13]. In this Letter, we obtain exactly the distribution of
the maximal height for p nonintersecting Brownian
bridges and excursions.
Motivated by the geometry of elementary excitations

discussed above, we thus focus on ‘‘watermelons’’ pattern
configurations [see Figs. 1(a) and 1(b)] where p noninter-
secting Brownian walkers x1ð�Þ< � � �< xpð�Þ, starting at

0 at time � ¼ 0, arrive at the same position at � ¼ 1. We
consider both ‘‘p watermelons with a wall’’ [Fig. 1(a)]),
where the walkers stay positive in the time interval [0, 1]
and ‘‘p-watermelons without wall’’ [Fig. 1(b)] where the
walkers are free to cross the origin in between. Our main
focus is on Hp, the maximal height of the top walker in [0,

1], Hp ¼ Max�½xpð�Þ0;� � � 1�.
In particular, we are interested in the cumulative distri-

bution FpðMÞ ¼ Prob½Hp � M� and in the moments hHs
pi.

For p ¼ 1, there exist well known results [14], e.g., hH1i ¼ffiffiffiffiffiffiffiffiffi
�=2

p
for an excursion, or hH1i ¼

ffiffiffiffiffiffiffiffiffi
�=8

p
for a bridge.

Recently, Bonichon and Mosbah (BM) [15], using an
algorithm based on exact enumerative formulas [16], con-
jectured, from numerical simulations, that for p > 1,
hHpinum ’ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:67p� 0:06
p

for watermelons with a wall

b)

a)

c)

FIG. 1. (a) Four watermelons with a wall. (b) Four water-
melons without a wall. (c) Illustration of the method to compute
F4ðMÞ using path-integral techniques where appropriate cutoffs
�i’s have been introduced.
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and hHpinum ’ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:82p� 0:46

p
for watermelons without

wall. These results stimulated several recent works [17–
21] aiming at an analytical derivation of these estimates.

On the other hand, exploiting the recent connection
between watermelons and the Airy processes [9,22], set-

ting ~xpð�Þ ¼ xpð�Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1� �Þp

, one expects that, in the

limit p ! 1, ~xpð�Þ ¼ A
ffiffiffiffi
p

p þ p�1=6� where A ¼ 23=2

(excursions) and A ¼ 2 (bridges), where � is the Airy2
process [9,22] of a suitably rescaled time parameter. Thus
in the large p limit, the top curve approaches a limit shape,

xpð�Þ ! A
ffiffiffiffi
p

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1� �Þp

. Since the maximum of the top

curve occurs at the midpoint � ¼ 1=2, one expects that for
p � 1, hHpi � hxpð� ¼ 1

2Þi �
ffiffiffiffiffiffi
2p

p
for excursions and,

similarly, hHpi � ffiffiffiffi
p

p
for bridges. These exact asymptotic

estimates differ considerably from the numerical estimates
of BM suggesting that the latter only describe the pre-
asymptotic behavior of hHpi. However, it calls for an

explanation why this preasymptotic behavior as measured
by BM should be about

ffiffiffiffiffiffiffiffiffiffiffiffi
1:67p

p
and

ffiffiffiffiffiffiffiffiffiffiffiffi
0:82p

p
.

In this Letter, we present a method based on path inte-
grals associated to corresponding free Fermions models to
compute exactly FpðMÞ. Our exact formula is useful for a

number of reasons. It provides the exact asymptotic tails of
the distribution of Hp which were not known before. For

the average height, our formula explains the aforemen-
tioned discrepancy between the estimates of BM and the
exact asymptotic behaviors of hHpi. We show that for

moderate values of p (preasymptotic behavior), one ob-

tains hHpi / �
ffiffiffiffiffiffiffiffiffi
p=6

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:644 93 � � �pp

for excursions

and hHpi / �
ffiffiffiffiffiffiffiffiffiffiffi
p=12

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:822 467 � � �pp

for bridges, in

nice agreement with BM’s estimates. Finally, we show
how our method allows for a physical derivation of the
connection between p-watermelons’ configurations and
RMT.

Method.—To calculate the cumulative distribution
FpðMÞ, we use a path-integral method which needs to be

suitably adapted to this problem. Indeed one notices that
the p-watermelons’ configurations described above [see,
e.g., Figs. 1(a) and 1(b)] are ill defined for systems in
continuous space and time. For such Brownian walks, it
is well known that if two walkers cross each other once,
they will recross each other infinitely many times imme-
diately after the first crossing. Therefore, it is impossible to
enforce the constraint xið0Þ ¼ xiþ1ð0Þ ¼ 0 and simulta-
neously forcing xið�Þ< xiþ1ð�Þ immediately after. The
cleanest way to circumvent this problem is to consider
discrete time random walks moving on a discrete one-
dimensional lattice (so called Dyck path): this is the
method used in Refs. [16,17,19,20]. By taking the diffu-
sion continuum limit, one would then arrive at noninter-
secting Brownian motions [23]. This method is however
mathematically cumbersome. Alternatively, following
Refs. [12,24], we can go around this problem by assuming
that the starting and finishing positions of the pwalkers are
0< �1 < ::: < �p [see Fig. 1(c)]). Only at the end we take

the limit �i ! 0 and show that it is well defined. In addi-
tion, in order to compute FpðMÞ, we put an absorbing hard
wall at M such that

FpðMÞ ¼ lim
�i!0

�
Nð�;MÞ

Nð�;M ! 1Þ
�
; (1)

where � 	 �1; � � � ;�p and Nð�;MÞ is the probability that

the p Brownian paths starting at 0< �1 < ::: < �p at � ¼ 0

come back to the same points at � ¼ 1 without crossing
each other and staying within the interval [�, M], with
� ¼ 0 for excursions and � ! �1 for bridges. This
procedure is depicted in Fig. 1(c).
The probability measure associated to p unconstrained

Brownian paths x1ð�Þ; ::; xpð�Þ over the time interval [0, 1]

is proportional to exp½� 1
2

Pp
i¼1

R
1
0ðdxid�Þ2d��. Here, we have

to incorporate the constraint that they stay in the interval
[�, M]. Therefore one can use path-integral techniques to
write Nð�;MÞ in Eq. (1) as the propagator

Nð�;MÞ ¼ h�je�ĤM j�i; (2)

with ĤM ¼ Pp
i¼1½�1

2
@2

@x2i
þ VðxiÞ�, where VðxÞ is a confin-

ing potential with VðxÞ ¼ 0 if x 2 ½�;M� and VðxÞ ¼ 1
outside this interval. Denoting by E the eigenvalues of ĤM

and jEi the corresponding eigenvectors one has

Nð�;MÞ ¼ X
E

j�Eð�Þj2e�E; (3)

where we introduced the notation hxjEi ¼ �EðxÞ.
Importantly, to take into account the fact that we are
considering here nonintersecting Brownian paths, the
many-body wave function �EðxÞ 	 �Eðx1; ::; xpÞ must

be Fermionic, i.e., it vanishes if any of the two coordinates
are equal. This many-body antisymmetric wave function is

thus constructed from the one-body eigenfunctions of ĤM

by forming the associated Slater determinant.
Watermelons with a wall.—In that case � ¼ 0 and the

one-body eigenfunctions are given by �nðxÞ ¼
ffiffiffiffi
2
M

q
sinn�xM

with discrete eigenvalues n2�2

2M2 , n 2 N
. Therefore one has

�Eð�Þ ¼ 1ffiffiffiffiffi
p!

p det
1�i;j�p

�nið�jÞ; E ¼ �2

2M2
n2; (4)

where we use the notation n2 ¼ Pp
i¼1 n

2
i , ni 2 N
. From

this expression (4), one checks that, in the limit �1 !
0; � � � ; �p ! 0, powers of �i’s cancel between the numera-

tor and the denominator in Eq. (1), yielding

FpðMÞ ¼ Ap

M2p2þp

X
n1;���;np

½�ðnÞ�2e�ð�2=2M2Þn2
;

�ðnÞ ¼ Y
1�j<k�p

ðn2j � n2kÞ
Yp
i¼1

ni;

(5)

where Ap, a constant independent of M, is determined by

requiring that limM!1FðMÞ ¼ 1. It can be evaluated
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using a Selberg’s integral [25] yielding Ap ¼
�2p2þp=½2p2�p=2

Qp�1
j¼0 �ð2þ jÞ�ð32 þ jÞ�. For p ¼ 1, our

expression gives back the well known result for a Brownian
excursion [26]. For p ¼ 2, we have checked, using the
Poisson summation formula that our expressions in Eq. (5)
yield back the result of Ref. [18]. For generic p, the
probability distribution function (PDF) F0

pðMÞ is bell

shaped, exhibiting a single mode. At variance with pre-
vious studies [18,19], our expression (5) is easily amenable
to an asymptotic analysis for small M. Indeed, when M !
0, the leading contribution to the sum in (5) comes from
ni ¼ i and its p! permutations, yielding for M ! 0

FpðMÞ � �p

M2p2þp
e�ð�2=12M2Þpðpþ1Þð2pþ1Þ; (6)

where �p can be explicitly computed, yielding for instance

�2 ¼ 12�9. For large M, one can use the Poisson summa-
tion formula to obtain 1� FpðMÞ / expð�2M2Þ.

From the distribution in Eq. (5), one can compute the
moments of the distribution hHs

pi. For p � 2, one obtains

that hHpi can be expressed in terms of integrals involving

the Jacobi theta function #ðuÞ ¼ P1
n¼�1 e��n2u and its

derivatives, thus recovering, by a simpler physical deriva-
tion, the results of Refs. [17–20]. In particular, one has
hH2i ¼ 1:822 62 . . . [17]. For moderate values of p, one
observes that the main contribution to the average hHpi ¼R1
0 MF0

pðMÞdM comes from relatively small M where

F0
pðMÞ is dominated, as before in Eq. (6), by the terms

where ni ¼ i and its p! permutations. It is easy to see that
the PDF, restricted to this first term (6) exhibits a maximum

for M
 � �
ffiffiffiffiffiffiffiffiffi
p=6

p
. Therefore, one expects that hHpi �

M
 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:644 93 � � �pp

, in good agreement with the esti-
mates of BM [15]. For larger values of p the average hHpi
picks up contributions from larger values of M where
F0
pðMÞ can not be approximated by a single term as in

Eq. (6) and therefore the estimate of BM ceases to be
correct. Instead, one has the exact asymptotic behavior
hHpi �

ffiffiffiffiffiffi
2p

p
for p � 1, which can be obtained directly

from our formula in Eq. (5) [27].
Watermelons without walls.—In the case of Brownian

bridges, one can apply the same formalism as above (1)–

(3) with� ! �1, i.e. ĤM ¼ Pp
i¼1

�1
2

@2

@x2i
. In that case, the

one-body eigenfunctions are given by c kðxÞ ¼ffiffiffi
2
�

q
sin½kðM� xÞ� with a continuous spectrum Ek ¼ k2=2,

k 2 Rþ. Therefore, �Eð�Þ entering the expression of
Nð�;MÞ in Eq. (3) is formally given by Eq. (4) where

�ni is replaced by c ki and E ¼ k2

2 . One obtains

FpðMÞ ¼ Bp

Mp2

Z 1

0
dy1 � � �

Z 1

0
dype

�ðy2=2M2Þ�pðyÞ2;

�pðyÞ ¼ det
1�i;j�p

yj�1
i cos

�
yi þ j

�

2

�
;

(7)

where Bp ¼ 22p=½ð2�Þp=2 Qp
j¼1 �ðjþ 1Þ�. This yields, for

instance, F2ðMÞ ¼ 1� 4M2e�2M2 � e�4M2
. From Eq. (7),

one obtains the asymptotic behavior for M ! 0 as

FpðMÞ / Mp2þp; (8)

whereas for largeM one has 1� FpðMÞ / expð�2M2Þ. As
in the case of watermelons with a wall, the PDF F0

pðMÞ is
also bell shaped with a single mode. Notice, however, that
the presence of the wall has drastic effects on the small M
behavior of FpðMÞ [see Eq. (6) and (8)] whereas, as

expected, it has less influence for large M.
From FpðMÞ in (7), one computes the moments hHs

pi,
yielding hH2i ¼ 1þ ffiffi

2
p
4

ffiffiffiffi
�

p
or hH3i ¼ 45þ36

ffiffi
2

p �8
ffiffi
6

p
96

ffiffiffiffi
�

p
, re-

covering (to leading order) recent results obtained by rather
involved combinatorial techniques [20].
To make contact with BM’s estimates, one first focuses

on p ¼ 2 and notices that �2ðy1; y2Þ in Eq. (7) exhibits
saddles for y1 ¼ ��=2, y2 ¼ �� and for symmetric
points obtained by permutations: this is shown in Fig. 2
(a). In fact this property can be generalized to higher values
of p and one can show that �pðyÞ has saddles which are

located around y1 ¼ ��=2, y2 ¼ ��; � � � ; yp ¼ �p�=2

and the points obtained by permutations. Of course �pðyÞ
develops saddles for higher values of y2 but their weights
are exponentially suppressed in Eq. (7). For moderate
values of p, one expects that hHpi is dominated by these

saddles y1 ¼ ��=2, y2 ¼ ��; � � � ; yp ¼ �p�=2.

Therefore performing a saddle point calculation, one has

FpðMÞ / e�p2�ððM=
ffiffiffi
p

p ÞÞ, with �ðyÞ ¼ logyþ �2=ð24y2Þ,
which has a minimum for y
 ¼ �=

ffiffiffiffiffiffi
12

p
. This yields

hHpi � �
ffiffiffiffiffiffiffiffiffiffiffi
p=12

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:822 467 � � �pp

, in good agreement

with the estimates of BM [15]. For larger values of p one
expects that hHpi picks up contributions from larger values

ofM whereFpðMÞ can not be reduced to these first saddles.
In Fig. 2(b), one shows a comparison between the exact
value of hHpi2 computed from Eq. (7) and the estimate of

BM. This clearly shows that the estimate of BM corre-

0

4

8

 12

 16

 20

0 5  10  15  20  25

〈H
p〉

2

pb)

FIG. 2 (color online). (a) Contour plot of �2ðy1; y2Þ ¼
y2 siny1 cosy2� y1 cosy1 siny2 given in (7). It exhibits saddles
for ðy1; y2Þ ¼ ð��=2;��Þ and symmetric points obtained by
permutations. (b) Plot of hHpi2 as a function of p. The dotted

line is the estimate from BM [15]. The quality of this estimate
for p & 10 has its origin in the saddles of �pðyÞ shown, for p ¼
2, on the left panel. For larger values of p one has instead
hHpi2 / p.
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spond to the preasymptotic behavior. Instead, for large p,
one expects here hHpi / ffiffiffiffi

p
p

.

Extension of the method.—The method presented here
can be used to derive many other results. As an interesting
example, showing explicitly the connection between
watermelons and RMT, we compute the joint probability
distribution Pjointðx1; � � � ; xp; �Þ, first for p bridges.

Following the same steps as above, Eq. (1)–(3), and using
the Markov property of Brownian paths, one has

Pjointðx; �Þ ¼ lim
�i!0

h�je��Ĥ0 jxihxje�ð1��ÞĤ0 j�i
h�je�Ĥ0 j�i (9)

with Ĥ0 ¼
Pp

i¼1
�1
2

@2

@x2i
. One can show that powers of �i’s

cancel between the numerator and the denominator in (9),
yielding Pjointðx; �Þ / Qðx; �ÞQðx; 1� �Þ with

Qðx; �Þ ¼
Z

dk
Y
i<j

ðki � kjÞe�ð�k2=2Þ det
1�m;n�p

eðixmknÞ; (10)

where
R
dk 	 R1

�1 dk1 � � �
R1
�1 dkp. After some algebra

to evaluate the integrals in Eq. (10) one finally obtains, for
p watermelons without wall

Pjointðx; �Þ ¼ Z�1
p 	ð�Þ�p2

Y
i<j

ðxi � xjÞ2e�ðx2=2	2ð�ÞÞ; (11)

with 	ð�Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1� �Þp

and Zp a normalization constant.

This expression in Eq. (11) shows that this joint probability
is exactly the one of the eigenvalues of the Gaussian
unitary ensemble of random matrices (GUE) [7,8,10]. In
particular, for p � 1, defining the rescaled variable 
 ¼ffiffiffi
2

p
p1=6ð xpð�Þffiffi

2
p

	ð�Þ �
ffiffiffiffiffiffi
2p

p Þ, one obtains that the cumulative

distribution of 
 is given by Proba½
 � x� ¼ F 2ðxÞ, the
Tracy-Widom distribution for � ¼ 2 [28].

For excursions, a similar calculation shows that

Pjointðx; �Þ ¼ Z0�1
p 	ð�Þ�pð2pþ1Þ½�ðxÞ�2e�ðx2=2	2ð�ÞÞ; (12)

where �ðxÞ is defined in (5) and Z0
p a normalization

constant. Hence the joint distribution of yi ¼ x2i =2	
2ð�Þ

is formally identical to the distribution of the eigenvalues
of Wishart matrices [25] with M� N ¼ 1

2 , and N ¼ p. In

that case, from the results for the largest eigenvalue of
Wishart matrices we conclude that for p � 1, the cumu-
lative distribution of the rescaled variable � ¼
22=3p1=6ð xpð�Þffiffi

2
p

	ð�Þ � 2
ffiffiffiffi
p

p Þ is again given by F 2ðxÞ [29].
Conclusion.—To conclude, using methods of many-

body physics, where appropriate cutoffs �i’s have been
introduced [see Fig. 1(c)], we have obtained exact results
for the distribution of the maximal height for p water-
melons with a wall (5) and without walls (7), which is
physically relevant to describe the geometrical properties
of dislocations arising in p� 1 commensurate adsorbed
phases close to the C-IC transition. Our expressions ex-

plain the discrepancy between the estimates of BM [15]
and the true asymptotic behaviors for the average hHpi.
Besides, we obtained a quantitative description of the
preasymptotic regime actually measured in the numerical
experiments of BM. We hope that the path-integral method
presented here, which is rather general, and the precise
connection to RMT will allow further future studies.
We thank P. Ferrari for useful discussions.

[1] P. G. de Gennes, J. Chem. Phys. 48, 2257 (1968).
[2] M. E. Fisher, J. Stat. Phys. 34, 667 (1984).
[3] J.W. Essam, A. J. Guttmann, Phys. Rev. E 52, 5849

(1995).
[4] A. J. Bray and K. Winkler, J. Phys. A 37, 5493 (2004).
[5] H. L. Richards and T. L. Einstein, Phys. Rev. E 72, 016124

(2005).
[6] P. Ferrari and M. Praehofer, Markov Processes Relat.

Fields 12, 203 (2006).
[7] K. Johansson, Probab. Theory Relat. Fields 123, 225

(2002).
[8] M. Katori and H. Tanemura, J. Math. Phys. (N.Y.) 45,

3058 (2004).
[9] C. A. Tracy and H. Widom, Ann. Appl. Probab. 17, 953

(2007).
[10] F. J. Dyson, J. Math. Phys. (N.Y.) 3, 1191 (1962); 3, 1199

(1962).
[11] D. A. Huse and M. E. Fisher, Phys. Rev. B 29, 239 (1984).
[12] S. N. Majumdar and A. Comtet, Phys. Rev. Lett. 92,

225501 (2004); J. Stat. Phys. 119, 777 (2005).
[13] G. Schehr and S. N. Majumdar, Phys. Rev. E 73, 056103

(2006); G. Györgyi et al., Phys. Rev. E 75, 021123 (2007);
T.W. Burkhardt et al., Phys. Rev. E 76, 041119 (2007).

[14] A. N. Borodin and P. Salminen, Handbook of Brownian
Motion-Facts and Formulae (Birkhaüser, Basel 2002).
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