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Quenched disordered systems are notoriously difficult to solve precisely, so reliable and
efficient computational methods are critical for testing theoretical ideas. However, in
most cases the computational complexity for finding exact global minima of quenched
systems grows exponentially with increasing sample size. Nevertheless a valuable subset of
quenched disordered systems may be solved using exact polynomial (P) algorithms [1, 2],
including spin glasses in two dimensions [3], the random field Ising model [4], several
rigidity percolation problems [5, 6], some interface [7] and path problems [8] in disordered
media, and the glassy solid-on-solid models studied by Schwarz and co-workers [9]–[11].
In these cases computational studies are no longer haunted by metastability, enabling
a careful analysis of key questions that are otherwise much more difficult to resolve.
Using these methods, Schwarz and co-workers confront several challenging issues in glass
physics, including the relevance of stochastic Loewner evolution (SLE) [12, 13], the scaling
of droplet excitations and the characterization of static chaos.

The model used consists of an SOS model with random offsets, the random substrate
model [10, 11, 14]. At each site of a square lattice there is a height variable hi that consists
of the sum of a quenched random substrate offset diε[0, 1] and a non-negative integer ni,
such that hi = di + ni. The SOS energy is taken to be quadratic in the height differences,∑

〈ij〉(hi − hj)
2. This problem is glassy at low temperatures and is related to several

problems, for example the sine–Gordon (SG) model with random phases. These models
are often called periodic elastic media (PEM) due to the periodic nature of the sinusoidal
function in the SG energy, and the fact that in the SOS model adding an integer to all of the
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heights does not change the energy. At high temperatures the random substrate model
is in the usual SOS rough phase so the roughness w2 ∼ ln L and the pair correlations
grow logarithmically with distance C(r) = 〈h(r)h(0)〉 ∼ ln r. However functional RG
calculations showed that at low temperatures there is a so-called super-rough phase where
w2 ∼ (ln L)2 and C(r) ∼ (ln r)2. The low temperature properties are difficult to simulate
using Monte Carlo methods, even when using advanced sampling algorithms such as
replica exchange methods. The key advance for enabling precise computation of the low
temperature properties of the model is through a mapping to a well-known polynomial
(P) problem in computer science, the minimum cost flow problem [9].

In general, the minimum cost flow problem consists of a graph where each edge has
a cost cij and we impose boundary conditions where a flow is injected at a set of source
sites si and it is taken out at a set of target sites tj [1, 2]. The optimization problem is to
find flow paths to minimize the cost of the flow. Mapping of this problem to the SOS with
random offsets is invoked by simply noting that hj − hi = dij + xij , where xij = nj − ni

and dij = dj −di, and that the variables xij obey Kirchhoff’s current conservation at each
node of the dual lattice. Since the energy is also in terms of height differences it is natural
to consider a new optimization problem

∑
ij(dij + xij)

2, with the constraint of current
conservation at each node of the dual lattice. The optimization is then with respect to
the ‘integer flow variables’ xij on the dual lattice and the problem is of the form of the
well-known minimum cost flow problem. The quadratic function in the energy can be
replaced by any convex function, though in general the minimum cost flow problem with
unbounded constraints is pseudo-polynomial rather than P.

For a given set of offsets, dij = di − dj , the minimum cost flow calculation finds the
set xij that minimizes the cost. It works by starting with a frozen configuration of di

and an initial guess for ni. Two conditions then have to be met: feasibility, which means
that flow conservation is valid; and optimality, which means that the lowest energy flow
has been found. If feasibility is ignored, optimality is easy to achieve, namely for all
−0.5 ≤ dij ≤ 0.5 set xij = 0, while for all dij > 1/2, set xij = −1, and for xij < −1/2, set
xij = 1. It is easy to see that this minimizes the cost function

∑
ij(dij + xij)

2. Starting
from this optimal solution we can then try to impose feasibility. This is achieved by
finding the excess flow at each site in the optimal configuration, that is the degree to
which feasibility is violated. The excess flow is removed by finding augmenting paths
from sites with excess outflow to those with excess inflow, and then removing the flow on
these paths. This leads to an increase of the cost; moreover the augmenting paths can be
chosen to have minimum effect on the cost by using standard shortest path algorithms,
such as Dijkstra’s method that applies to cases where the costs are positive. The really
nice result is that if optimal augmenting paths are added until the flow is feasible, the
final result is the global minimum of the convex flow problem.

Domain walls can be imposed by fixing part of a sample boundary to be at height
n0 and another part to be at n0 + 1, yielding domain walls with fractal dimension
ds = 1.25 ± 0.01. If domain walls in two-dimensional systems are conformally invariant
they are expected to follow stochastic Loewner evolution (SLE) [12] where a parameter κ
characterizes the ‘left-passage’ probability of a path. In that case the relation ds = 1+κ/8
is expected. However, there is no reason to expect quenched disordered systems to be
conformally invariant; nevertheless the authors of a recent calculation of domain walls
in 2D spin glasses [13] suggest that SLE may apply. It is thus very interesting to
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question whether this is a general result or whether the 2D spin glass numerical result
is coincidental. Schwarz and co-workers [11] test this question for the random substrate
SOS model and find that domain walls in this problem have fractal dimension ds = 1.25
while κ is either approximately 4 (periodic boundaries) or 3 (both ends of the domain
wall free), so ds = 1 + κ/8 is violated. They conclude that SLE does not appear to apply
for their system.

An important general scaling relation in all areas of statistical physics is the energy
required to create an excitation at length scale L, ΔE ≈ Lθ, as a positive value of θ
indicates a stable phase while a negative θ indicates low energy long-range excitations
that can be activated even at low temperatures. In the random substrate SOS model,
the calculation of ΔE consists of finding the change in the ground state energy when the
central site is fixed to be nc + 1, where nc is the height of the center site in the ground
state when the boundaries are at height n0. If the droplet, defined by the compact domain
containing the center site and having height equal to nc + 1, lies entirely within a box of
size L around the center, then it is a droplet excitation of size L. It is known that for
this system, θ = 0; however θ = 0 allows for a variety of droplet scalings for L → ∞,
including ΔE ≈ ln L, ΔE ≈ ln ln L, ΔE ≈ const etc. Only the latter is compatible with
the instability of the ground state against thermal fluctuations (i.e. absence of a T = 0
fixed point). The precise calculations of Schwarz et al show that ΔE ≈ const for L → ∞,
so the glass phase is marginally stable, implying that the low temperature phase may have
temperature dependent scaling exponents, as suggested in some theoretical calculations.

Static chaos refers to the sensitivity of some glass phases to small changes in either
the temperature or other parameters in the problem. This is again quite easy to define
in terms of minimum cost flow: a starting configuration of the offsets di is augmented by
a random perturbation δdi. Then it is checked whether the correlation function between
the unperturbed and perturbed state, C12(r), is like that of the unperturbed state. Chaos
occurs when C12(r) changes to a different, less correlated, scaling at long distances. In
spin glasses chaos occurs on length scales L > Lδ, where Lδ = δ−1/αs , with αs = ds/2− θ.
In contrast, in the disordered SOS model α = d/2 − θ, so for θ = 0 it is d/2. FRG
calculations suggest that C12(r) ∼ σ[log(r)]2 [15] for L < Lδ and it is also suggested that
C12 ∼ σ̂ log(r) for L > Lδ. However it is difficult to use FRG calculations to demonstrate
the L > Lδ results or the value of σ̂. The exact computations of Schwarz et al show that
the scaling is indeed logarithmic for large L > Lδ and hence that σ̂ > 0, demonstrating
that static chaos does occur in this model.

The incisive results achieved through use of exact P calculations of the random
substrate SOS model motivate a search for other polynomial quenched random systems
that may shed further light on the glass state. A perhaps surprising aspect is that although
the random substrate SOS model is solvable in polynomial time, this problem, and other
P problems, have many of the hallmarks of the glass state. This raises questions: What
general aspects of glass physics are only contained in hard computational problems, and
what aspects are fully captured by P problems? In particular, do NP-complete problems
have any generic glass features that are not present in P problems?
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