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The importance of the Gaussian distribution as a quantitative model of stochastic
phenomena is familiar to physicists. Brownian motion is presumably the paradigmatic
example; in this case, it is well known that the sum of a very large number of small
displacements is Gaussian distributed with a variance that grows with time. From the
mathematical point of view, this result is made precise by the central limit theorem, and
is essentially valid provided that the elementary displacements are sufficiently decorrelated
one from another. This explains, incidentally, why one usually cites the drunkard’s walk
as an example of Brownian motion: it is a walk for which decorrelation is provided by the
wine!

The Gaussian is not the only limit distribution for sums of random variables.
Numerous examples of non-Gaussian distributions have been reported in the context of
what are nowadays loosely called ‘complex systems’, and which include disordered systems,
systems undergoing phase transitions, turbulent fluids, astrophysical systems, finance time
series, social networks, etc. In these systems, sums of random variables can be defined, but
the correlations between the variables are then so strong that they cannot be omitted, with
the end result that the distribution of the sum is not, in general, Gaussian distributed in
the limit of infinite number of events. Many different approaches for predicting what the
limiting distribution is have been proposed in complicated problems involving long-range
interactions, memory effects, etc.

In this context, it has been suggested that the so-called q-Gaussian distribution,
defined by

Gq(x) = A(1 − (1 − q)βx2)1/(1−q), (1)
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could be the basis for a generalized central limit theorem. In this expression, A is a
normalization constant and β controls the width of the distribution. The basis for this
suggestion [1] is that the distribution (1) maximizes

Sq =

1 −
∫

p(x)q dx

q − 1
, (2)

which would reduce to the usual Shannon entropy −
∫

p(x) ln p(x) dx when the so-called
entropic index tends to 1. Expression (2) would thus be a generalization of statistical
mechanics, often called non-extensive statistical mechanics. It is important to emphasize
that the parameter q allows for an interpolation between the ‘window’ function which is
constant over a finite support (obtained for q → −∞), the ordinary Gaussian distribution
(q = 1), and distributions having power-law tails (1 < q < 3). The function Gq(x) has
therefore quite a large fitting spectrum and might be applied for the study of strongly
correlated systems.

Independently of their applicability to statistical mechanics, q-Gaussians have
impressive mathematical properties and became rapidly popular. They have been
proposed for describing numerous experimental or numerical results: velocity distributions
of classical rotators or galaxy clusters, turbulent flows, cellular aggregates or the
temperature fluctuations in the cosmic microwave background, . . .. Unfortunately, in
the absence of firm grounds, physicists have distributed themselves between enthusiasts
and skeptics. At this point in time, it is therefore important to distinguish whether the
formalism suggested by (1) and (2) can be the basis for developing a real predictive theory
or if it is ‘just’ a nice idea and a powerful fitting function. Two important questions are
particularly pressing here: (i) does the q-Gaussian law describe the details of some physical
problems and, more importantly, (ii) is anyone able to provide analytical predictions of
the value of the q-index in terms of the microscopic parameters of the physical system?

A particularly interesting paper in this respect is the one by Henk Hilhorst and
Gregory Schehr [2]. It is an important step for statistical physics since the authors are
able to show by explicit calculations that, in two examples of random variables, previously
put forward as candidates for being q-Gaussian distributed, the probability distributions
of the sums turn out to be analytically different, although they closely resemble each other
numerically.

The first example is presumably the simplest imaginable instance of a strongly
correlated system [3], namely the scaled sum

∑
j uj/N , where the N variables uj are

identically distributed on a finite domain, but with strong mean-field correlations. For
this example, Thistleton et al conjectured from numerical fits that the distribution of the
sums is q-Gaussian. Hilhorst and Schehr, however, show analytically [2] that it is not.

The second model [4] consists of N Boolean random variables, correlated in an
implicit way. For this model q-Gaussians were also observed numerically, but Hilhorst
and Schehr [2] show again that the true distribution underlying the model is not a q-
Gaussian. Yet, as is nicely stated in the Hilhorst and Schehr paper, ‘things conspire again
such that it becomes extremely difficult to distinguish the true curve from its q-Gaussian
approximant’. In the end, although the definition of the model was clearly motivated by
the formalism of q-Gaussians, Hilhorst and Schehr show that q-Gaussians do not pass a
careful inspection.
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These considerations are rather reminiscent of recent works on experimental
Lagrangian turbulence. After a preliminary and promising study [5], which showed that
the distribution of accelerations in turbulent fluids could be fitted by q-Gaussians, an
improved set of experimental data [6] later showed that they were, after all, neither well
described nor well fitted by q-Gaussians.

In summary, notwithstanding the interesting properties exhibited by q-Gaussians, the
two examples studied in [2] do not lend support to the idea that these functions play any
special role as limit distributions of correlated sums. Clearly, more work is called for, for
establishing a more comprehensive picture and to satisfactorily assess the role (if any)
of q-Gaussians in statistical mechanics. The future is open, but if there is one lesson
that has to be learned here, it is that one should be extremely careful when interpreting
non-Gaussian data in terms of q-Gaussians.
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