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Fitness landscapes S. Wright, Proc. 6th Int. Congress of Genetics (1932)

“The two dimensions of figure 2 are a very inadequate representation of such a field.”



Ruggedness and accessibility

S. Wright

In a rugged field of this character, selection will easily carry the species to the

nearest peak, but there will be innumerable other peaks that will be higher but

which are separated by “valleys”. The problem of evolution as I see it is that

of a mechanism by which the species may continually find its way from lower

to higher peaks in such a field.



Ronald A. Fisher

In one dimension, a curve gives a series of alternate maxima and minima,

but in two dimensions two inequalities must be satisfied for a true maximum,

and I suppose that only about one fourth of the stationary points will satisfy

both. Roughly I would guess that with n factors only 2
−n of the stationary

points would be stable for all types of displacement, and any new mutation will

have a half chance of destroying the stability. This suggests that true stability

in the case of many interacting genes may be of rare occurrence, though its

consequence when it does occur is especially interesting and important

Fisher to Wright, 31.5.1931



Empirical fitness landscapes



The Aspergillus niger fitness landscape

J.A.G.M. de Visser, S.C. Park, JK, American Naturalist 174, S15 (2009)

• All combinations of 5 mutations residing on different chromosomes

• Fitness graph representation, 3 peaks marked in color



The Aspergillus niger fitness landscape
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• All combinations of 8 mutations residing on different chromosomes

• Peaks marked in red; 86 out of 256 combinations are lethal



Affinity landscape of the SARS-CoV2 spike protein
Moulana et al., Nat. Comm. 2022

• All 2
15 = 32768 combinations of L = 15 mutations separating the ancestral

Wuhan strain from Omicron BA.1



“A rugged yet easily navigable fitness landscape”
Papkou. . .Wagner, Science 2023

• 4
9 = 262,144 combinations of nucleotides at 9 positions of the fol A gene

in E. coli coding for dihydrofolate reductase (DHFR)

• Fitness measurements in trimethoprime yield 18,018 functional sequences

• 514 fitness peaks, 73 have high fitness



Accessibility of HoC landscapes



“Darwinian evolution can follow only very few mutational paths
to fitter proteins” D.M. Weinreich et al., Science 312, 111 (2006)

• 5 mutations in an enzyme increase antibiotic resistance by ∼ 4.5×10
4



“Darwinian evolution can follow only very few mutational paths
to fitter proteins” D.M. Weinreich et al., Science 312, 111 (2006)

• 18 out of 5! = 120 direct mutational pathways are accessible...



Including indirect paths De Pristo et al. 2007

• ...and 27 out of 18651552840 indirect pathways



Accessibility percolation S. Nowak, JK, EPL 2013

• Take fitness values to be i.i.d. U [0,1] random variables

• A path of length ℓ between genotypes α ,ω with g(ω)−g(α) = β ∈ [0,1]
is accessible if all ℓ−1 intermediate fitness values are in (g(α),g(ω)) and

increasingly ordered, which occurs with probability

Pβ ,ℓ =
β ℓ−1

(ℓ−1)!

• The number of accessible paths is a non-negative integer-valued random

variable Xα,ω

• Is there a sharp accessibility threshold βc in P[Xα,ω ≥ 1] when L → ∞ and

δ ≡ lim
L→∞

d(α ,ω)

L
> 0 ?



Direct paths on the binary hypercube

P. Hegarty, A. Martinsson, Ann. Appl. Probab. 2014

• The total number of direct paths of length ℓ is ℓ!, thus the expected number

of accessible paths is

E(Xα,ω) = ℓ!Pβ ,ℓ = ℓβ ℓ−1

which vanishes asymptotically for large ℓ when β < 1

• By Markov’s inequality

P[Xα,ω ≥ 1] =
∞

∑
k=1

P[Xα,ω = k]≤
∞

∑
k=1

kP[Xα,ω = k] = E[Xα,ω]

it then follows that limℓ→∞P[Xα,ω ≥ 1] = 0

• Analysis of the second moment E(X2

α,ω) shows that, conversely,

limℓ→∞P[Xα,ω ≥ 1] = 1 for β = βℓ with 1−βℓ <
lnℓ
ℓ



Indirect paths on the binary hypercube

Berestycki et al. 2014; Martinsson 2015; Li 2018

• Paths on the 3-cube with p backsteps and length ℓ= 3+2p

p = 0, ℓ= 3 p = 2, ℓ= 5 p = 4, ℓ= 7

• The accessibility threshold βc(δ )< 1 is the solution of

lim
L→∞

[E(Xα,ω)]
1/L = sinh(β )δ

cosh(β )1−δ = 1

• The expectation E(Xα,ω) “tells the truth”



HoC model with a > 2 B. Schmiegelt, JK, J. Math. Biol. 2023

• Generalize the binary hypercube to Hamming graphs H
L
a with a > 2

• Biologically relevant cases are a = 4 (DNA, RNA) and a = 20 (proteins)

• Allowed mutational transitions between alleles are encoded by the a×a

adjacency matrix A of the mutation graph

• Consider a sequence of initial and endpoints α (L),ω(L) such that the

fraction of sites at which α
(L)
i = k and ω

(L)
i = l is given by pkl for L → ∞

• Theorem: The accessibility threshold βc is given by the solution β ∗ of

lim
L→∞

[E(Xα,ω)]
1/L =

a−1

∏
k,l=0

[(eβ A)kl]
pkl = 1

for most (but not all) mutation graphs. In general, β ∗ is a lower bound on

βc, and there are no accessible paths if β ∗ > 1



Examples of mutation graphs
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The amino acid mutation graph (a = 21)
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Accessibility threshold for the complete graph
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• Accessibility threshold at full distance (δ = 1) is

βc(a) =
ln(a)

a
+

1+ ln(a)
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)

for large a

and the path length ℓc at the threshold is ℓc

L
≈ lna+ 1+lna

a



Structured fitness landscapes



Models of structured fitness landscapes

• Kauffman’s NK model Kauffman & Weinberger 1989; Hwang et al. 2018

g(σ) = ∑
i

gi(σbi,1
,σbi,2

, ....,σbi,k
) with {bi,1, ...,bi,k} ⊆ {1,2, ...,L},1 ≤ k ≤ L

gi: HoC fitness landscape on the k-dimensional hypercube

• Rough Mt. Fuji model Aita et al. 2000; Neidhart et al. 2014

g(σ) =−cd(σ ,σ ∗)+ξσ

with c > 0, i.i.d. RV’s ξσ and a reference genotype σ ∗

• Landscapes with an intermediate phenotype Fisher 1930; Hwang et al. 2017

g(σ) = Φ

(

L

∑
i=1

aiσi

)

with random coefficients ai and a nonlinear phenotype-fitness map Φ



Genotype-phenotype-fitness maps

Courtesy Amitabh Joshi, JNCASR
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Main messages of this part

• There is a large class of fitness landscapes that combine high ruggedness

with high accessibility

S.G. Das, S. Direito, B. Waclaw, R. Allen, JK, eLife 9:e55155 (2020)

• Such landscapes display universal negative epistasis (UNE), a property of

set functions known in discrete mathematics as submodularity

• UNE and high accessibility arise naturally when a nonlinear phenotype-

fitness map acts on one or several linear phenotypes



Epistasis: Historical definition

• William Bateson (1909): Epistasis implies that one mutation masks

(“stands above”) the phenotypic effect of another

Credit: Wikipedia/Thomas Shafee



Genotypes as sets Das et al, eLife 2020

• The hypercube {0,1}L is isomorphic to the power set P({1, . . . ,L}):

σ = (σ1,σ2, . . . ,σL) ∈ {0,1}L → {i : σi = 1} ∈ P({1, . . . ,L})

credit: D. Oros

• In the following L = {1, . . . ,L} denotes the locus set



Universal epistasis K. Crona, JK, M. Srivastava, J. Math. Biol. 2023

• A fitness landscape displays universal negative epistasis, if for any two

genotypes σ ,σ ′ with σ ′ ⊂ σ ⊂ L , and any subset τ ⊆ L \σ

g(σ ∪ τ)−g(σ)≤ g(σ ′∪ τ)−g(σ ′) (UNE)

i.e. the fitness effect of adding the mutations in τ is smaller in the

background σ than in the background σ ′, if σ ′ is a subset of σ

• Defining σ = A and σ ′∪ τ = B, it follows that

σ ∪ τ = A∪B, σ ′ = A∩B

and the condition can be rewritten as

g(A∪B)+g(A∩B)≤ g(A)+g(B) ∀A,B ∈ P(L )

which is known as submodularity for set functions Edmonds 1970

• Universal positive epistasis/supermodularity are defined in the same way



Constructing submodular landscapes
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Constructing submodular landscapes
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• phenotype: z(σ) = a1σ1+a2σ2+a3σ3 • fitness Φ(z) =−(z− z0)
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Constructing submodular landscapes
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• genotype-phenotype-fitness map: g(σ) = Φ[z(σ)]



Constructing submodular landscapes
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• phenotype: z(σ) = a1σ1+a2σ2+a3σ3 • fitness Φ(z) =−(z− z0)
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• genotype-phenotype-fitness map: g(σ) = Φ[z(σ)]



Constructing submodular landscapes

• Fisher’s geometric model (FGM) generates rugged fitness landscapes by

composing a linear genotype-phenotype map with a non-monotonic, single-

peaked phenotype-fitness map Φ:

σ → z(σ) =
L

∑
i=1

aiσi → g(σ) = Φ

(

L

∑
i=1

aiσi

)

• FGM satisfies (UNE) if Φ is concave and the ai are positive:

g(σ ∪ τ)−g(σ) = Φ[z(σ)+ z(τ)]−Φ[z(σ)]<

< Φ[z(σ ′)+ z(τ)]−Φ[z(σ ′)] = g(σ ′∪ τ)−g(σ ′)

because

z(σ ′) = ∑
i∈σ ′

ai < ∑
i∈σ

ai = z(σ) if σ ′ ⊂ σ

• The positivity condition on the ai can be relaxed



Mapping to a Hopfield model Park et al., J. Phys. A 2020

• The fitness function Φ(z) =−z2 corresponds to a Hamiltonian

H =−Φ =

(

L

∑
i=1

aiσi

)2

= ∑
i, j

aia jσiσ j

• Transforming to spin variable ηi = 1−2σi ∈ {−1,1} gives

H = ∑
i j

Ji jηiηJ +∑
i

hiηi

with

Ji j =
1

4
aia j, hi =−1

2

(

∑
j

a j

)

ai

• This is an antiferromagnetic Hopfield model with a real-valued pattern

Nokura 1998



The accessibility property



The accessibility property

• Recall that a genotype σ is accessible from genotype τ if there is a fitness-

increasing (accessible) direct or indirect path τ → σ

• Definition: A fitness landscape has the subset-superset accessibility

property (AP) if any peak is accessible from all its sub- and supersets along

all direct paths Das et al., eLife 2020

• In particular, all peaks are always accessible from the 0-string σ = /0 and

the 1-string σ = L

• The accessibility property implies a lower bound

Sσ ≥ 2
|σ |+2

L−|σ |−1

on the size Sσ of the basin of attraction of a peak genotype σ

• The AP depends only on the rank ordering of fitness values and is therefore

invariant under arbitrary monotonic transformations of fitness



Illustration of the accessibility property for L = 4

 

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 01111011

1111

0000

red: sub/supersets of 1001 blue: sub/supersets of 0111



Submodular fitness landscapes are highly accessible

Cherenin 1962; Goldengorin 2009; Krug & Oros 2024

• For any peak genotype σ

g(σ ∪{i})−g(σ)< 0 and g(σ)−g(σ \{ j})> 0

for all j ∈ σ , i ∈ L \σ

• Consider a subset genotype σ ′ ⊂ σ and a mutation k ∈ σ \σ ′ ⊂ σ

• Then by (UNE)

g(σ ′∪{k})−g(σ ′)≥ g(σ)−g(σ \{k})> 0

which implies that the mutation k is beneficial on the background σ ′, and

hence the corresponding step is accessible

• Accessibility from superset genotypes is proved in the same way



Summary

• Progress in the experimental exploration of biological fitness landscapes

motivates the study of random landscape models

• The goal is the characterization of landscape topography through

quantitative measures such as complexity, accessibility and epistasis

• The field offers opportunities for statistical physics approaches, and

connects to glass physics and combinatorial optimization
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