

Ultrafast study of Dirac fermions in out of equilibrium Topological Insulators

Marino Marsi

Laboratoire de Physique des Solides CNRS – Univ. Paris-Sud - Université Paris-Saclay

IMPACT, Cargèse, August 26th, 2016

Topological Insulators

- Novel state of quantum matter
- Insulating bulk, but gapless edge or surface states
- Combined action of spin-orbit coupling and time reversal symmetry (QSH effect)
- Unique transport properties: topologically protected states, immune to defects, perturbation
- Spin locking: the spin of the surface state lies in the surface plane and is always perpendicular to the momentum

Hasan and Kane, RMP 2010 Qi and Zhang, RMP 2011 Bansil et al., RMP 2016

3D Topological Insulators: Bi₂Te₃

Bi_{1-x}Sb_x, Bi₂Te₃, Bi₂Se₃, Sb₂Te₃

Non trivial topology ⇔ band inversion driven by strong S-O coupling

→ Single Dirac cone on surface

Zhang et al., Nat. Phys. 2009

3D Topological Insulators: Bi₂Te₃

Bi₂Te₃ : Dirac cone presents hexagonal warping

3D Topological Insulators \Leftrightarrow ARPES

(Hsieh et al., Nature 2008; Chen et al., Science 2009; ...)

Dirac cone studied by ARPES : Spin in surface plane, perpendicular to k

Out of equilibrium TI's \Leftrightarrow ultrafast studies

J. Sobota et al., PRL 108, 117403 (2012)

- ➔ out of equilibrium TI's, following first studies in 2012 (Stanford, MIT, Trieste,)
- ➔ Time Resolved ARPES
- Info on empty electronic states, interband scattering rates, hot fermion properties?

- ➔ Playground for a 2 dimensional Dirac system (2DDS) in interaction with bulk electronic states
- Thermalization of an out of equilibrium conducting system

Transient phase \Leftrightarrow e-phonon coupling

ARPES and pump-probe ARPES

E(**k**)

• ARPES (Angle Resolved PhotoElectron Spectroscopy)

ARPES and pump-probe ARPES

- ARPES (Angle Resolved PhotoElectron Spectroscopy)
- pump-probe ARPES ⇔ excited states

Bi₂**Te**₃ ⇔ **low energy ARPES**

Bi₂**Te**₃ ⇔ pump-probe ARPES

Time resolved ARPES on n-Bi₂Te₃

Time resolved ARPES on n-Bi₂Te₃

Transient band populations in n-Bi₂Te₃

- \rightarrow Excitation VB to B₁*
- \rightarrow scattering $B_1^* \rightarrow S^*$ and B_2^*
- → Relaxation of S* slow ⇔ weak e-phonon coupling

Hajlaoui et al., Nano Lett. 12, 3532 (2012)

Transient band populations

$$\begin{aligned} \frac{dB_1^*}{dt} &= G_1(t) - \frac{B_1^*(t)}{\tau_1} \\ \frac{dB_2^*}{dt} &= G_2(t) + \alpha \frac{B_1^*(t)}{\tau_1} - \frac{B_2^*(t)}{\tau_2} \\ \frac{dS^*}{dt} &= G_{S^*}(t) + \beta \frac{B_1^*(t)}{\tau_1} - \frac{S^*(t)}{\tau_{D1}} \\ \frac{dS}{dt} &= -G_S(t) - \frac{B_{tot} - B(t)}{\tau_h} + \frac{S_{tot} - S(t)}{\tau_{D2}} \end{aligned}$$

- \rightarrow Excitation VB to B₁*
- \rightarrow scattering $B_1^* \rightarrow S^*$ and B_2^*
- → Relaxation of S* slow ⇔ weak e-phonon coupling

Hajlaoui et al., Nano Lett. 12, 3532 (2012)

EDC's from transient Dirac cone states

- → Energy Distribution Curves of hot electrons in the Dirac cone
- → electron thermalization: ps scale ⇔ influenced by interband scattering

Hajlaoui et al., Nano Lett. 12, 3532 (2012)

Dirac cone relaxation in p-Bi₂Te₃

Intrinsic Dirac cone relaxation much slower than bulk recombination

In Bi₂Se₃, exceptionally weak e-ph coupling (see for instance *Z.-H. Pan et al., PRL 2012 Sobota et al. PRL 2012 Wang et al., PRL 2012*)

Hajlaoui et al., Nature Comm. 5, 3003 (2014)

TR-ARPES on p-Bi₂Te₃ n-Bi₂Te₂Se

p-Bi₂Te₃

n-Bi₂Te₂Se

TR-ARPES on p-Bi₂Te₃ n-Bi₂Te₂Se

Hajlaoui et al., Nature Commun. 5, 3003 (2014)

Transient e-h asymmetry in Dirac cone

Non equilibrium p-Bi₂Te₃

Pre-existing surface band bending helps create a strong e-h transient asymmetry in Dirac cone

Non-equilibrium metallic layer: p-Bi₂Te₃

→ Fermi Dirac distribution with $\mu^* > \mu$

Transient temperature, chemical potential in Bi₂Te₃

After 4 ps, real Fermi-Dirac distribution

« Hot » Dirac fermions : T* and μ^*

« Transient Topological Insulator »

For $\Delta t > 10 \text{ ps}$ photoexcited ptype looks like an n-type with no electrons in bulk conduction band

→ « real TI* », Insulating bulk vs conducting surface in photoexcited state

Transient tuning of a nm-scale Schottky barrier

Conclusion and perspectives

- ➔ Dirac cone dynamics in Bi₂Te₃ : direct observation of inter- and intraband scattering, electron-phonon coupling, hot electron relaxation
- → Long time for Dirac cone relaxation, weak electron-phonon coupling
- → Possibilty of creating a strong e-h asymmetry in Dirac cone
- Strongly out of equilibrium ($\mu^*=0.1 \text{ eV}$), long lived (50 ps) excited conducting system, impossible to obtain in a conventional metal
- ➔ Photoinduced tuning of a nanoscale Schottky barrier
- → SEE POSTER Lama Khalil (Monday afternoon): continuing these studies on materials with reduced bulk conductivity

Thanks to:

M. Hajlaoui G. Lantz J. Mauchain N. Moisan E. Papalazarou

L. Perfetti

M. Konczykowski

A. Taleb-Ibrahimi

J. Faure D. Boschetto

R.J. Cava

