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We study the probability distribution of a current flowing through a diffusive system connected to a
pair of reservoirs at its two ends. Sufficient conditions for the occurrence of a host of possible phase
transitions both in and out of equilibrium are derived. These transitions manifest themselves as
singularities in the large deviation function, resulting in enhanced current fluctuations. Microscopic
models which implement each of the scenarios are presented, with possible experimental realizations.
Depending on the model, the singularity is associated either with a particle-hole symmetry breaking,
which leads to a continuous transition, or in the absence of the symmetry with a first-order phase
transition. An exact Landau theory which captures the different singular behaviors is derived.

In recent years there has been much activity focused on
understanding probability distributions in systems which
are far from thermal equilibrium. In particular, the
probability of observing a current flowing between two
reservoirs, through an interacting channel, was studied
in many works for both quantum [1-5] (in the context
of ‘full counting statistics’) and classical systems [6-35].
The properties of the distribution encode much informa-
tion about the interactions in the channel.

One of the most dramatic consequences of such inter-
actions is the occurrence of dynamical phase transitions
(DPT) [10, 11, 13, 35-41], which are the focus of this
Letter [42]. They imply an enhanced probability of ob-
serving certain current fluctuations. Beyond certain cur-
rent thresholds, the mode of transport through the chan-
nel changes abruptly. These DPTs manifest themselves
as singularities in a large deviation function (LDF) that
characterizes the probability distribution of the time-
averaged current J in the limit of a large observation
time. The function plays, for time-integrated observ-
ables, like J, the same role as the equilibrium free energy
for static observables [43]. For classical interacting parti-
cles systems, it can be computed using exact microscopic
solutions [6-8, 14, 17, 21, 22, 24, 26, 32] or macroscopic
approaches (see [44] for a review).

So far, for current large deviations in driven diffu-
sive systems, only one class of DPTs with concrete mi-
croscopic models has been observed; these occur solely
for periodic systems which are not connected to reser-
voirs [10, 11, 13, 15, 41]. There one finds that, for cur-
rents close to the mean value, the fluctuation manifests it-
self through a time-independent density profile. The DPT
occurs at a critical value of the current beyond which the
fluctuation is realized through a time-dependent density
profile. Such transitions are referred to as resulting from
a failure of the ‘additivity principle’ [9]. Another sce-
nario which involves a ‘first-order’ transition between two
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distinct time-independent density profiles was suggested
in [12]. However, lacking any concrete microscopic model,
the scenario remains speculative.

In this Letter we study current large deviations in one-
dimensional diffusive systems coupled to two reservoirs.
Based on an exact Landau theory for the DPTs derived
using the Macroscopic Fluctuation Theory (MFT) [44,
45], we obtain the following new results: first, we iden-
tify DPTs that are not associated with a breaking of the
additivity principle, along with sufficient conditions for
their existence in terms of transport coefficients; second,
we describe a new type of ‘second-order’ DPT's associated
with a symmetry breaking in the density profiles which
realize the current fluctuations; third, we show that well-
studied microscopic models, namely the Katz—Lebowitz—
Spohn (KLS) [46] model and the weakly asymmetric sim-
ple exclusion process (WASEP) [47, 48], implement both
the first- and the second-order DPTs described above;
finally, possible experimental realizations are discussed.

Settings — We consider a one-dimensional driven
diffusive system connecting two particle reservoirs us-
ing the standard approach of fluctuating hydrodynam-
ics [4, 44, 49, 50]. The particle density profile p(z,t)
evolves according to a continuity equation

8tp(‘r7t> + (9z_](1',t) =0, (1)

where the spatial coordinate x is rescaled by the system
size L so that x € [0, 1], t denotes time measured in units
of L?, and j(z,t) is the fluctuating current given by

J(@,t) = =D(p)0zp + o(p)E+ o(p)n(z,t).  (2)

The current consists of contributions from Fick’s law,
the response to a bulk field F, and a noise term. The
diffusivity D(p) and the mobility o(p) are in general
density-dependent and connected by the Einstein rela-
tion, 2D(p)/o(p) = 92f(p), with f(p) the free energy
density of the system at equilibrium. The noise 7(z,t)
satisfies (n(z,t)) = 0 and

(@ ', 1)) = L7'6(x — ")t = 1), (3)
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where (-) denotes an average over all realizations of the
noise. The spatial boundary conditions are fixed as
p(0,t) = p, and p(1,t) = pp, where p, and p; are time-
independent densities imposed by the reservoirs. We are
interested in phase transitions [10, 11, 13] associated with
the time-averaged current

E;/OTdt/Oldxj(x,t), )

whose statistics obey a large deviation principle [44]
P(J) ~ exp [-TL®(J) (5)

for T' > 1. A singularity in the LDF ®(J) marks a DPT.
It proves to be convenient to change ensembles and work
with the scaled cumulant generating function (CGF)

— 1 TLAJ
T(\) = Th—>H;o TT In (e ). (6)
Standard saddle-point arguments [43] show that the
scaled CGF is related to the LDF by a Legendre trans-
form U(\) = sup; [AJ — ®(J)]. To calculate ¥(N), we
rewrite Eq. (6) in a path integral form using the Martin—
Siggia—Rose formalism [51], which gives

L i A —L [T dt [} da [pd:p—H(p,p)]
\P(A)*TIROTLIH/DPDPQ S ’
(7)

with the Hamiltonian density H(p, p) defined as

H(p, 3) = —D(p)(9ap)(0:5) + “L(9up) 2E + 0,). (8)

The ‘momentum’ variable p satisfies the boundary con-
ditions (see Appendix A) p(0) = 0 and p(1) = A.
The scaled CGF W(A) can then be obtained using a
saddle-point method. For our cases of interest, we ar-
gue that the saddle-point solutions are time-independent,
so that the additivity principle is satisfied. The cal-
culations are detailed in Appendices B and C, and
yield profiles p*(x) and p*(x) which minimize the action
fOT dt fol dz [pOp — H(p, p)]. These profiles, which are
called the optimal profiles, represent the dominant real-
izations of current fluctuations at a given value of \. As
we will see, phase transitions are associated with abrupt
changes in the shape of the optimal profile as ) is varied.

Results — In what follows, we first consider systems
with equal boundary densities p, = pp, = p with p very
close to an extremum of o(p). Already in this case, de-
pending on D(p) and o(p), all singular behaviors de-
scribed above are observed. Interestingly, this includes
systems which are in equilibrium. Then, for more general
boundary conditions given by p, = p—dp and p, = p+3dp,
we argue perturbatively to the leading order in dp that
the behaviors are unchanged up to a shift of the transi-
tion point.

As shown in Appendix B, the problem of minimizing
over profiles can be reexpressed as

TU(A) = - A(A+2E) —inf L(m), (9)

m

nNo| Ql

where the Landau-like function £(m) of the parameter
m € R, which captures the singular behaviors of W(\),
can be written in a truncated form

(A + E)3"
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(10)

Here A is equal to one of the two values [52]
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and we use the shorthand notations g = ¢(p), § = ¢'(p),
7" = ¢"(p), and g™ = g™ (p) for derivatives of any
function g(p) evaluated at p = p. The optimal value of
the order parameter m in Eq. (14), which we denote by
m™*, measures the deviation of the optimal profile from
the flat reference profile of density p (similar to the zero

magnetization in the Landau theory for the Ising model):

p*(z) = p+ m*sin(rz) + O [(m*)*] . (12)

The scaled CGF ¥()) has a singularity when m* changes
in a singular manner as A is varied [53].

Clearly, £(m) can be truncated as in Eq. (10) only
if the coefficient of m* is positive. For the microscopic
models we study below, this is always the case. While
there could be other models for which higher-order terms
in m need to be considered, these are beyond the scope
of this Letter. Moreover, for a transition to occur as A
is varied, we need @’ = 0, and A defined in Eq. (11) has
to be real-valued. This is the case if o(p) has a local
minimum at p = p, so that ¢’ > 0; otherwise, if 6’ < 0,
the bulk field has to be sufficiently strong so that

272 D2

//| .

E? > (13)

olo

We observe different transition behaviors depending on
the sign of 3", each of which we discuss in the following.
Case 1a: " > 0, symmetry breaking — Consider a
particle—hole symmetric system, whose Hamiltonian den-
sity shown in Eq. (8) is invariant under the transforma-
tion defined by © — 1 — z, p(x,t) — 2p — p(1 — z,t),
and p(z,t) = A — p(1 — x,t). Assuming that D(p) and
o(p) are analytic, their odd-order derivatives vanish at
p=p,ie. DD = 5Cn+h) — 0 for n =0, 1, ... Then
only the m? and m?* terms survive in Eq. (10), turning
L(m) into the form of a Landau free energy of Ising-
like systems. For A\J < A < Af, £(m) is minimized
at m* = 0, and ¥()\) has a quadratic form correspond-
ing to Gaussian fluctuations. For A > AT or A < A\_,
we have m* ~ 4|\ — A\¢|'/2, corresponding to a pair of
symmetry-breaking profiles given by Eq. (12) which are



mutually related by a particle-hole transformation de-
fined above. This implies that for each instance of a
current fluctuation J in this regime, there is a symme-
try breaking so that one of the two optimal profiles is
observed with equal probability (see Fig. 1). Near the
transition points, the scaled CGF ¥(\) has singularities
which behave as hm)\i)\c \I/(>\) — hm)\TAc \I/()\) ~ |>\ — /\C|2,
implying second-order transitions. Clearly, the same crit-
ical scaling behavior is observed if D®), () or higher-
order derivatives are nonzero, although in such cases only
one of the two density profiles is optimal.

Case 1b: " > 0, first-order transition — Now con-
sider the case when D’ and () have nonzero values. For
a consistent Landau theory, we assume that D’ and )
scale as m*. Then the m? term induces a weak first-order
singularity of the scaled CGF [54]. On general grounds,
similar results will be obtained even if D’ and ) are
larger. The transition shows up as jumps of m* at tran-
sition points )\(jf which are slightly shifted from AT, re-
spectively (see Appendix B3). In a manner similar to
Case 1la, the fluctuations are Gaussian for \j < A < /\:f
and non-Gaussian otherwise (see Fig. 1). This behavior
corresponds to a scenario discussed in [12]: when a cur—
rent ﬂuctuatlon J occurs within the 1ntervals [JE, T
defined by Ji© = hmM)\i U'(\) and J5 = hm/\w\i v’ (/\)

we observe J and J3 with probability p1 and 1 — pf,
respectively, such that J = pjE JjE + (1 —p] )Ji This is
a direct analog of phase coexistence in equilibrium first-
order transitions.

Case 2: " < 0 — For Case 1, the bulk field E is not
essential for the existence of a DPT: it only shifts the
location of the transition point according to Eq. (11). In
contrast, for Case 2 phase transitions occur only when the
bulk field E is strong enough to satisfy Eq. (13). Since
the form of £(m) remains the same, the system again
exhibits symmetry breaking transitions for fully particle—
hole symmetric systems, and first-order transitions in the
absence of symmetry due to nonzero D’ and 7). Note
that while the regions of non-Gaussian fluctuations were
unbounded in Case 1, here they are bounded. This is
because for "’ < 0 both transition points A¥ have the
same sign, as implied by Eq. (11) (see Fig. 1)

Generalization to p, # pp — We now turn to the case
of unequal boundary densities given by p, = p — dp and
oy = p+ 0p. Treating dp as a perturbation, we find to
linear order in dp that (see Appendix C)

U(A) =

AA+2E)—286pD )\ — 1nf£(m), (14)
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with only the quadratic term in £(m) modified as

2D
— (A - )‘C — _6p) m2, (15)
g

which implies that the transition point is shifted but the
other properties of phase transitions are unchanged. If
Pa— P # P— Db, we can use (p, + pp)/2 as the new value
of p. Provided that the odd-order derivatives of D(p)

(A = Ae)m?

and o(p) evaluated at the new p remain small, all results
presented above are still valid.

Microscopic models — We now present two lattice gas
models, each of which exhibits one of the two cases of
phase transitions described above.

Case 1: 6" > 0 — We consider a KLS [46] model
with zero bulk bias, which features on-site exclusion and
nearest-neighbor interactions. It is defined on a one-
dimensional lattice, each site of which can be either oc-
cupied (“17) or empty (“0”). The model is characterized
by two parameters § and e, which govern the hopping
dynamics according to the following transition rates (in
arbitrary units):

0100 2 0010, 1101 =% 1011,

1100 =5 1010, 1010 172 0110.

Spatially inverted versions of these transitions occur with
identical rates. Using the methods of [50, 55, 56], D(p)
and o(p) of the model can be derived exactly as functions
of p € [0,1] (see Appendix D for their explicit forms). If
6 = 0, the model possesses a particle-hole symmetry,
so that all odd-order derivatives of D(p) and o(p) with
respect to p vanish at p = 1/2. More interestingly, for
€ > 4/5, one finds that 0(1/2) becomes a local minimum.
Thus, all results of Case 1a can be applied to this model
by setting p = 1/2. On the other hand, if § # 0, the
system does not have a particle-hole symmetry. Then,
for e greater than some d-dependent threshold, o(p) has
a local minimum at some J-dependent p. All results of
Case 1b are then applicable to this system.

Case 2: " < 0 — Consider a WASEP on a one-

dimensional lattice of L sites, whose hopping rates (in

arbitrary units) are given by 10 1+, 01, 01 175 10.

If 6 = E/L, it is well known [47, 48] that the system
is characterized by D(p) = 1 and o(p) = 2p(1 — p), so
that o”(p) < 0 for any p € [0, 1] with the maximum of
o(p) located at p = 1/2. Applying the results of Case 2,
Eq. (13) implies that the system exhibits singularities of
LDFs when |E| > 7.

Mechanism for symmetry breaking — To gain more in-
tuition into the origin of the DPT, it is helpful to examine
the Lagrangian formulation of the LDF [44]

cp(J):i%f/O dz [JJFD(p)iI(”p)_ cWEL

Close to the transition point, ®(.J) is minimized by an
optimal profile of the form p(z) = p+msin(7rz). Keeping
the leading-order corrections in m, we obtain

§.J2
D(J) ~ 55 (17)
D "B 8%\ y
+1nf[<2 T >m +O(m )},

where 6J = J — dE. The occurrence of symmetry break-
ing is controlled by the sign of the coefficient in front
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FIG. 1. Schematic illustrations of the singularities and the optimal profiles for different types of phase transitions. The dashed
(blue) lines represent behaviors of the functions if the Gaussian fluctuations persist for any A and J. Case 1: (a) The scaled
CGF showing second-order singularities and (b) the corresponding LDF; (c) the shapes of optimal profiles as J is varied; (d)
The scaled CGF showing first-order singularities and (e) the corresponding LDF; (f) the optimal profiles as J is varied. Case 2:
(g) The scaled CGF showing second-order singularities, (h) the corresponding LDF, and (i) the optimal profiles as J is varied.

of m?, whose three terms represent contributions from
diffusion, bulk field FE, and noise amplitude. The first
two originate from the numerator of Eq. (16) and the
last one comes from the denominator. The competition
between these factors dictate whether it is beneficial to
break the symmetry by density modulations. Depending
on the sign of ", there are two possible scenarios.

If 3" > 0, the coefficient of m? is positive for 6.J close
to zero and becomes negative for sufficiently large 0.J,
signaling the symmetry breaking transition — for large
enough dJ, the gain in action from the denominator over-
whelms the cost of density modulations in the numerator.

On the other hand, if ” < 0, both the diffusion and
the noise lead to a positive cost for density modulations.
Negative contributions arise only from the field term. A
large enough F can make density modulations favorable
for an intermediate range of §.J, inducing a transition.

The origins of DPTs in these two cases are different.
For ¢” > 0 the transitions are due to the competition
between the diffusion, which favors a flat profile, and the
noise, which favors modulations. In contrast, for ¢’ < 0
the transitions are ruled by the contribution of the bulk
field, which favors modulations, competing against the
diffusion and the noise, both of which favor a flat profile.
Similar arguments also apply to first-order transitions.

Comparisons with previous studies are in order. A
recent study [33] proposed a criterion which forbids
DPTs of Case 2; but our results explicitly show that the
WASEP is a counterexample to this criterion [57]. We
also note that the asymmetric simple exclusion process
(ASEP), which is non-diffusive, also exhibits DPTs in
current fluctuations [26, 32, 58, 59]. While these DPTs
are remnants of the well-known boundary-induced tran-
sitions in mean behaviors, the DPTs of diffusive systems
discussed above are very different.

There remains the question of how the DPTs discussed

so far can be experimentally observed. Recently, the LDF
for heat current in an RC circuit was empirically mea-
sured in [60], where the fast electronic dynamics allows
the current LDF to be measured over a wide range [61].
To observe the DPTs discussed here in a similar exper-
iment, one has to look at diffusive electronic transport
with an extremum in o(p). These are common, result-
ing from non-monotonic changes in the electronic den-
sity of states. For example, minima of o(p) were ob-
served in graphene transport [62] and maxima in fullerene
peapods [63]. Using these systems, both cases of DPTs
discussed above can in principle be observed.

In summary, we have studied a general one-
dimensional diffusive transport through a channel con-
necting two reservoirs. Using a perturbative approach for
general D(p) and o(p), we find a large class of new DPTs
which are not associated with the breaking of the addi-
tivity principle in the sense that the optimal profiles re-
main time-independent. For some of these DPTs we can
explicitly prove the validity of the additivity principle,
which we expect to hold for all cases (see Appendix B4).
It would be interesting to check whether other kinds of
DPTs occur at larger values of J or dp, and how the
results can be generalized to higher dimensions.
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Appendix A: Derivation of the saddle-point equations

For completeness we outline the derivation of the saddle-point equations which are used to obtain the scaled
cumulant generating function (CGF) for the time-averaged current. Similar derivations can also be found elsewhere
in the literature (see, for example, [16]).

From Egs. (4) and (6) of the main text, the scaled CGF is given by

_ 7 i AL [T dt [} dxj(z,t)
U(A) = lim TL In <e o “Jo > , (A1)

T—o0

where (-) denotes an average over the noise realizations. Using the Langevin equation

Op(x,t) + 02j(x,t) =0, j(x,t) = =D(p)0ap + o(p)E+ Vo(p)n(x,t) (A2)

with the spatial boundary conditions

p(0) =pa, p(1)=ps, (A3)
the average on the r.h.s. of Eq. (A1) can be written as
(LI A JodaT) < / DpDj I 3926 (5495 8 [ + D(p)Vp = 0(p)E — /o o] > L (a9

The two delta functionals in the path integral make sure that the integration is carried out only over the paths
governed by Eq. (A2). The functional ¢ [p + V] can be rewritten in terms of its Fourier representation

5[5+ Vil = / DpetIs at o de o va), (A5)

which introduces an auxiliary field p(z,¢). Then Eq. (A4) can be integrated over the current j(x,t) and the noise
n(z,t) to yield
T 1
(X0 Jyans) /’DpDﬁexp {L/ at / dz {—ﬁp — D) (Vo)A + Vi) + #(A VA + Vi + 2E)} } .
0 0 xe)
Here the auxiliary field variable p(x,t) satisfies the boundary conditions
50,6 =0, p(1,t) =0, (A7)
which accounts for the absence of fluctuations at the boundaries [64]. It is useful to introduce a change of variables
plx,t) = pa(z,t) — Az, (A8)

which gives

<e>\L Srae [} drj> - /Dp'Dﬁ)\ exp {—L /OT dt /01 dz [[))\p + D(p)(Vp)(Vpr) — @(Vﬁ)\)(v;@\ + QE)] } . (A9)

Here a temporal boundary term L fol dz {Az[p(x,T) — p(x,0)]} in the exponent is neglected as it becomes negligible
for T > 1.
Since we are interested in the large L limit, the scaled CGF can be evaluated using a saddle point so that

TU(\) =— lim — mf/ dt/ dz [pap — H(p, pr)] (A10)

T—oo T' p, pa

with the Hamiltonian density H defined as

H(p. ) = ~D()(T0)(Tn) + T (Vj2) (Vs + 2B). (A11)



Here p and p, can be interpreted as position and momentum variables, respectively. Thus, the saddle-point solutions
are obtained by solving the equations

5=V D)V~ o(p)(Vir+ BN, px=~D(p)V%s — 50" ()(Vir) (Vs + 2E) (A12)

with the spatial boundary conditions
p(0,t) = pa, p(L,t)=pp, pr(0,1) =0, pa(l,1)=A. (A13)

These are consistent with Eqs. (A3), (A7), and (A8). With the understanding that these boundary conditions are
always assumed, for brevity in what follows we drop the subscript A\ from py.

Appendix B: Equal boundary densities

In what follows, we first consider the case when the two particle reservoirs have equal densities p, = pp = p. The case
E = 0 then corresponds to an equilibrium system, while when E # 0 the system is out of equilibrium. We identify the
symmetry-breaking transition point A. discussed in the main text, and then construct from first principles a Landau
theory for the transition. Finally, we prove that in this case the additivity principle (assumed to hold throughout the
derivation) is valid.

1. Symmetry breaking in particle-hole symmetric systems

We start by analyzing systems which are particle-hole symmetric about p = p, so that all odd-order derivatives of
the transport coefficients at p = p vanish:

DY = pRril 5y =0, @D =55 =0 forn=0,1,2,... (B1)

Assuming that the additivity principle holds, the saddle-point equations (A12) reduce to their time-independent forms

VD(0)Vp ~ o(p)(Vp+ )| =0, D(p)V*+ 5o’ ()(Vp)(V +2E) = 0. (B2)

As discussed in the main text, such system may exhibit a dynamical phase transition at A = A.. For A < A; the
density and momentum profiles

P z)=p, pP(x) =Mz, (B3)
which are symmetric in the sense that they are invariant under

ple) =2 —p(l—a), pla)—A—p(l—a), (B4)

are the only solution to the saddle-point equation. In contrast, for A > A; two additional symmetry-breaking solutions
appear and become more dominant than the symmetric profile. In what follows we prove the existence of this transition.

Note that near a transition point A = A, the symmetry of the optimal profile is weakly broken by small deviations
from Eq. (B3). In other words,

px) = p™(z) +¢(z), plz) = p¥™"(x) + o(x) (B5)
with small but nonzero ¢ and ¢ satisfying the boundary conditions
©(0) = (1) = 4(0) = ¢(1) =0 (B6)

will be another solution of Eq. (B2). Linearizing Eq. (B2) with respect to ¢ and ¢, we obtain a system of linear
differential equations

=/

DV2p — V23 =0, DV%p+ %)\(/\ L 2E)p =0. (B7)



Using the Fourier transforms

o0

Z Y, sin(nmzx), @ Z sin(nmx) (B8)
n=1 n=1
we can rewrite Eq. (B7) as
—//
D, — 5, =0, n’x2Di), — —/\(A + 2E)4, = 0. (B9)

These linear equations have nonzero solutions for 1,, and 1/3n if and only if

2n?m2 D?

6.6.//

on2n2 D2
M= —E+ By LT (B11)
’ oo

From Eq. (B9) it is clear that if t, and v, are solutions, so are —ib, and —¢),,. This implies that Eq. (B2) allows
a symmetry breaking at critical values Agfn. The symmetry breaking transition will clearly occur for the n with a
minimal [AE,[. For the case 6” > 0, we always have A, < 0 < Af,,
sides of A =0. It is clear then that [AZ, | is minimized for n=1.

For the case "’ < 0, we assume that |E| is large enough to keep )\C » real-valued, as discussed in the main text. If
E >0 (F <0), we have A\ )\+ <0 (0 < Az, < Af,), which means that the symmetry breaking occurs as A is
decreased from zero to Y, (mcreased from zero to Ao ) Again, AT, | (]AZ,]) is minimized at n = 1.

Hence, regardless of the sign of ", only a deviation of the form () ~ sm(mc) is relevant to the symmetry-breaking
transition. Moreover, due to the Gallavottif(]ohen symmetry [65]

A+ 2E) = : (B10)

i.e. when X is equal to

so that the symmetry breaking occurs on both

T(N) = U(—2F — \), (B12)

if a dynamical phase transition occurs at A = /\C 1, the same kind of transition occurs at A = A_;, and vice versa.

Thus the transition points are always at

212 D2
MNE=AE =B B2 (B13)
’ [oxea

In the following, for simplicity we will use A\. when we are referring to one of the two transition points.
While we have shown that another solution appears at A. we have not shown that it dominates to CGF thus leading
to a transition. This is done next by deriving a Landau theory for the transition from first principles.

c,1»

2. Landau theory for symmetry-breaking transitions

Here we give a detailed derivation of the Landau theory describing the symmetry-breaking transitions. For this
purpose, the system is again assumed to be particle-hole symmetric, so that Egs. (B1) and (B3) of Sec. B 1 are still
valid.

Under the assumption of the additivity principle, the scaled CGF can be obtained from a time-independent version
of Eq. (A10):

—bup/ dz H(p, p (B14)

To construct a Landau theory of the transition, for A close to A, we can use an expansion

p(x) = m”sin(rz) + (m*)?pa(2) + (m*)’p3(2) + O [(m*)]

o) = m*g sin(rx) + (m*)2pa(x) + (m*)3@s(z) + O [(m*)ﬂ , (B15)



where m* measures the contribution of sin(rz) to the symmetry breaking. The functions s, @3, ... and @9, @3,
. are zero at the boundaries (z = 0 and z = 1) and orthogonal to sin(wz); they are to be determined by solving
Eq. (B2) perturbatively (see below). Then, if we define

" (x) = msjn(ﬁz) +m2py(x) + m3ps(x) + O(m4) ,
oM™ (x) = mg sin(mx) +m2pa(x) + mP@3(z) + O(m?), (B16)

a Landau function can be written as
m) = [ [ O ), (B17)
and the minimization problem associated with the scaled CGF can be cast as
1
U\ = / dz H(p>™, p¥™) — inf L(m) . (B18)
0 m

Thus here a minimization over profiles in Eq. (B14) is simplified to that over a single parameter m.

To calculate @2, @3, ... and @2, @3, ..., we substitute p = p™ + ¢ and p = p™ + ¢ into Eq. (B2) and expand
the equations with respect to m*. This allows us to solve the differential equations order by order. The perturbation
analysis can be carried out in a well-defined way if the distance from the symmetry-breaking transition point A = A—A.
satisfies a scaling relation with m*. Inspired by an Ising Landau theory, we use the scaling ansatz

O >~ AN (m*)?, (B19)

where the value of the coefficient ¢’* is determined below. Carrying out this procedure to order (m*)?, we obtain

D "\ + F
V2g02 = —7T2<p2, V2¢2 = gv2902 — %;) sin(27x). (B20)

Keeping in mind that @5 must be orthogonal to sin(nzx) gives

5"(\ + E)

e sin(27x). (B21)

302(1') == Oa @2(z)

To order (m*)3, we obtain

47T2D” 5’”2E2 7T25'(4) ()\C 4 E)UU”C‘S)‘ )
V3 = —mp3 + [8 ( ) + Bz o ) - 2 sin(mz)
1 (1222D"  35"?E%? 726W\ |
Y ( ) + B o ) sin(3mx) (B22)
and
D 2 D—// _ —D//
V23 = —V?p3 + | 08‘2 ob") [sin(7z) — 3sin(3nz)] . (B23)
G a
The differential equation (B22) has terms of the form
V2f(z) = —n*f(z) + asin(rz). (B24)

This equation has a solution with f(0) = f(1) = 0 if and only if @ = 0. This condition fixes the coefficient

N2 21 =112 172 2=(4)
SA D _ 47T_D +0_E _7rf7 7 (B25)
8(Ac + E)55'"? D D? a"
with which we obtain the solutions
1 1272D"  35"E? w250\ |
p3(z) = 9272 ( 5 + e ) sin(3mx) (B26)



and

D—// _ D//—
P3(z) = 272 sin(wzx) + {

192725 D D2 o 2452

D 1272D"  35"E?  r25M4) D&" — D"5
852 ( T T )

] sin(3wz).  (B27)

Using ¢™ and ¢™ to order m?, we finally obtain

(A + E)3"
4

72D (AD"5" — Do)  5"2E?

SAm?
met 6465" * 615

L(m) = — m* +0(m®), (B28)

which indeed has the form of a Landau function describing a symmetry-breaking transition at A = 0. We note that
Egs. (B19) and (B25) guarantee £'(m*) = 0, which is indeed a condition required for the optimal value of the order
parameter m.

3. Systems without particle-hole symmetry

The derivation of the Landau theory described above can be generalized to systems with a weak particle-hole
asymmetry. To construct a consistent perturbative Landau function, we have to take the odd-order derivatives D’,
', and ) (which contribute to the asymmetry) to scale with m* (as was done for A in the previous discussion).
More specifically, we now assume

SA = PMm*?2, 7 =™ (m*)?, D ~cP'm*, 73~ mr. (B29)
Then we can again put p = p™ + ¢ and p = p¥™ + & into Eq. (B2), expand the equations, and solve them with the
boundary conditions order by order. The equations can be solved only if

Sa 47TD2 LD, B 306’ + 06(3) N DZ 471.2[)// N a.IIQEZ B 7725'(4)
- (A+E)ge” \ D 35" 8(Ae + E)55""2 D D2 o)

(B30)

This relation does not mean that only three parameters among é\, D', ¢, and ®) are mutually independent. The
degree of freedom which is actually lost is m*, whose value is obtained by combining Egs. (B19) and (B30).
Finally, using the solutions for ™ and ¢™ up to the order of m3, we can combine Eqs. (B17) and (B16) to obtain

2rD? _ (A + E)5"” , 2nD(D&® —3D'")
L(m) =— 557 "m — Cf oAm* — 955" m
7T2D (4D//5_// _ D5(4)) 5’”2E2 4 5
B31
l 6450" S | oMY, (B31)

which is the expression for the Landau function presented in Eq. (14) of the main text. If &’ = 0, Da(®) # 3D’5",
and the coefficient of m?* is positive, this Landau function implies discontinuous transitions at

1280\ + E) (3D'¢" — D&(3))?

A =AE - ___* _
d ¢ 270" w2D(4D"5" — D@4 + "3 E2 "

(B32)

If D7) = 3D’5”, the Landau function becomes identical to Eq. (B28) up to order m*. This means that the system
exhibits continuous transitions at A = A, which are no longer symmetry-breaking transitions because the particle-hole
symmetry is already broken by higher-order terms. Finally, we note that Egs. (B19) and (B30) guarantee £ (m*) = 0,
which is indeed a condition required for m*.

4. Validity of the additivity principle

So far we assumed that the additivity principle holds. One might be worried about possible time-dependent saddle-
point solutions with a lower action. Here we prove that this is not the case for systems with equal boundary densities
and a particle-hole symmetry. This is done by studying time-dependent perturbations of the symmetric profile given
by

pla,t) = p" (x) +p(x,t),  pz,t) = P (2) + ¢(x, 1), (B33)
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with the boundary conditions

0(0,) = ¢(1,1) = §(0,1) = ¢(1,£) = 0. (B34)

As the first step, we linearize the time-dependent saddle-point equations (A12) with respect to these perturbations,
which gives

1
¢ =DV2%p—5V2p, ¢=-DV2p— %A()\ +2E)p. (B35)

Using the Fourier transforms

o(z,t) = 2 /Z %: Yo (w) e sin(nmz), H(x,t) = ,i /00 d:: U (w) € sin(nmz) (B36)

we can rewrite Eq. (B35) as
iwihn (W) = —n272 Dy, (w) + 027251, (W), iwthy (w) = n272 Dy (w) — %)\()\ + 2E) ¢, (w). (B37)

These linear equations have nonzero solutions for 1,, and 1/A)n if and only if

2 (n47T4D2 + wz)

)‘(/\ + 2E) = n2m25a" (B38)
This implies that Eq. (A12) allows a symmetry breaking by ¢(z,t) ~ e“!sin(nrz) if A is equal to
2 (n*rtD? + w?)
+ —
)‘c,n(w) =-FE+ \/E2 + n2n250" ’ (ng)

with depends on both n and w.

The rest of the proof is a repetition of the argument by which we identified the symmetry-breaking transition point
in Sec. B1. The transition occurs for the values of n and w which minimize \)\fn (w)|. Since increasing |w| has the
same effect on |/\Cin (w)] as increasing n does, both parameters have the smallest possible value at the transition point,
so that n = 1 and w = 0. This implies that the symmetry-breaking profile has the longest possible wavelength (n = 1)
and zero frequency (w = 0). The result is consistent with the value of A. obtained in Eq. (B13). This shows that the
additivity principle is valid at the transition point.

Appendix C: Unequal boundary densities

We now discuss the case when the two particle reservoirs have unequal densities p, = p — dp and pp, = p + dp, so
that the system has a boundary driving in addition to the possible bulk driving. Assuming the boundary driving to
be small (6p < 1), we perturbatively obtain the linear corrections to the results obtained in Sec. B.

1. Symmetry-breaking transition point and the additivity principle

We first discuss how the transition point A, and the validity of the additivity principle are affected by the boundary
driving ép. If dp # 0, the symmetric density and momentum profiles p*™(z) and p™(x) given by Egs. (B15)
and (B16) are no longer valid saddle-point solutions, because they are inconsistent with the boundary conditions for
po and pp. Thus there must be corrections which alter the symmetric profiles as

PY(x) = p+dppr(x) + Op),  pYM(x) = Az +dppi(a) + O(6p%). (C1)

Solving the saddle-point equations (B2) perturbatively, the linear corrections are obtained as

p1(z) = cse @sm [a()\) (ac _ ;)} () = ?pl(x) _ ? (a: _ ;) , (C2)



11

D(p)
o(p)
D(p)

o(p)

P P

FIG. 2. Density dependence of transport coefficients of the KL.S model. The mobility coefficient o(p) is shown in solid lines,
and the diffusion coefficient D(p) in dashed lines for (a) particle-hole symmetric and (b) asymmetric systems.

with a(A) denoting

A+ 2E)55"

a(N) = 52

(C3)
It is easy to verify that the profiles given by Egs. (C1) and (C2) are indeed symmetric under Eq. (B4).
Based on the modified symmetric profiles obtained above, we identify the critical A at which symmetry-breaking

saddle-point solutions are allowed. This can be done by repeating the procedure described in Sec. B4 while keeping
track of the linear corrections in dp. After some algebra, we find that Eq. (B39) is modified to

2 (n*m*D?+w?) 2D
(miD ) | 2D, (C4)
g

Aop(w) ~—E + \/E2 +

n2n2a5o"

which shows that up to order dp the threshold is shifted by the same amount for each value of n and w. As already
discussed, the actual symmetry-breaking transition occurs for the values of n and w which minimize |AE,, (w)|. Thus
the transition occurs at the critical point given by the longest wavelength time-independent deviation (n = 1 and
w = 0), as in the case of dp = 0. Thus the additivity principle remains valid up to order dp, and the transition point
is shifted by

2D

2. Derivation of the Landau theory

The Landau theory for dp # 0 can be derived through a procedure which is almost the same as the one for §p =0
described in Sec. B2 and B 3, except that we need to keep track of the linear corrections in dp. These corrections
appear in the symmetric profiles p™ and p*™ as obtained in Eq. (C2), the deviations of the optimal profiles ¢ and

SX D

¢ introduced in Eq. (B15), and the amplitudes ¢°*, @, P and ™ introduced in Eq. (B29). After calculating ©™

and @™ up to order m3, the Landau function is again obtained in the form of Eq. (B31), with the only change being
that ) is modified to

2D
ag

for A\ given by the unshifted form Eq. (B13).
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Appendix D: Transport coefficients of the Katz—Lebowitz—Spohn model

In the following we present explicit formulas for the transport coefficients of the Katz—Lebowitz—Spohn (KLS)
model, which can be obtained by the methods of [55, 56, 66]. The diffusion coefficient is given by

() = L&) (d1)

x(p)’

where J(p) is the average current of the totally asymmetric version of the model satisfying

T(p) = v[146(1 —2p)] — ey/4p(1 — p) (D2)

v3 ’

and x(p) is the compressibility given by

x(p) = p(1 = P/ (2 — 1)2 + dp(1 — p)e—8, (D3)
with
y= V@ - 1P H4p0—p)e® - 45 _Llte (D4)
4p(1 - p) 1—e
Then the mobility coefficient o(p) is obtained from the Einstein relation
a(p) =2D(p) x(p) - (D5)

Behaviors of the transport coefficients obtained from the above results are illustrated in Fig. 2. When the system
has a full particle-hole symmetry (§ = 0), o(p) has a local extremum at p = 1/2, which becomes a local minimum
for sufficiently strong repulsion (e > 4/5), as shown in Fig. 2(a). In the absence of the symmetry (§ # 0), o(p) has a
local extremum at a different value of p, which again becomes a local minimum for sufficiently large € (see Fig. 2(b)).

Appendix E: Saddle point stability in the presence of bulk field

An argument proposed by [33] states that a time-independent saddle-point solution pg(z) satisfying

D'(po(x))o’ (po(x)) = D(po(x))o” (po(x)) (E1)

across the system (0 < x < 1) is stable regardless of the bulk field E. If true, the argument forbids symmetry-breaking
transitions in bulk-driven systems with a local maximum of o(p) (e.g. in the WASEP), which are predicted by our
study. In the following we address this apparent contradiction.

As stated in Eq. (A10), the scaled CGF is obtained from minimization of the action

T 1
s= [ at [ a1 (E2)

Suppose that a time-independent saddle-point solution is given by p(z,t) = po(x) and p(x,t) = po(z). For this
solution to be unstable, in the vicinity there must be another saddle-point solution p(z,t) = po(z) + ¢(z,t) and
plx,t) = po(xz) + ¢(x,t) whose value of S is smaller. In [33] it was shown that the change of action due to ¢(z,t) and
Pz, t) is given by

T D (po)a’ (po) = D(po)a" (o) s\ s s o(po) .
AS—/O dt/o dx[ - ZD(pO) ° 2 (Vo) (Vo + 2E) 9* + 20 (Vp)? (E3)

up to the leading-order contributions. In the absence of the bulk field (E = 0), it is clear that Eq. (E1) implies
AS > 0, implying the stability of po(z) and po(z). If E # 0, the sign of (Vjg) (Vpo + 2F) determines whether
Eq. (E1) remains the sufficient condition for stability.

Defining v = Vo + E, from the second equation of Eq. (B2) one finds [33]:

Vu _ d'(po)
u?—E*  2D(po)’

(E4)
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The Lh.s. of this equation can be written as

—_— = E5
u? — E? —+Varccoth%  if |u| > |E|. (E5)

Vu {—]{JVarctanh}é if |u| < |E,
In [33], only the latter case is considered, so that one can write u = E coth(Eh) where h satisfies Vh = ¢/(p)/ [2D(p)].
Then we obtain

E2

Vo) (Voo +2E)=w?>—F>= ——
(Vo) (Vo ) =u sinhQ(Eh)

>0, (E6)

which ensures that Eq. (E1) is still a sufficient condition for the stability of po(x) and po(z).

However, close to the symmetry-breaking transition points of the WASEP, one can show that |u| < |E| is satisfied
across the system. In this case, the first case of Eq. (E5) should be used. This implies u = E tanh(Eh), from which
we obtain

2 2 E?
Vo) (Vpo+2E)=u”—FE* = ——5—— <0. E7
(Vo) (Vo ) coshQ(Eh) (E7)

Since the sign of (Vo) (Vo + 2F) is inverted, Eq. (E1) is no longer a sufficient condition for the stability of po(z)
and po(z). Thus, while Eq. (E1) gives the correct sufficient condition for stability in the absence of the bulk field F,
it does not apply to the case when ” < 0 and E # 0.
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