
Handout for tHe lectures on 
 

“large deviations in random 
matrix tHeory and coulomb gas 

systems” 
 

by P. vivo 
 
 
 
 
 
 
 

a collection of rePrinted 
PaPers/frontPages i will refer 

to during my lectures. 



ar
X

iv
:m

at
h-

ph
/0

50
10

68
v1

  2
7 

Ja
n 

20
05

Numerical Methods for Eigenvalue Distributions of

Random Matrices

Alan Edelman and Per-Olof Persson

September 7, 2018

Abstract

We present efficient numerical techniques for calculation of eigen-
value distributions of random matrices in the beta-ensembles. We
compute histograms using direct simulations on very large matrices,
by using tridiagonal matrices with appropriate simplifications. The
distributions are also obtained by numerical solution of the Painlevé
II and V equations with high accuracy. For the spacings we show a
technique based on the Prolate matrix and Richardson extrapolation,
and we compare the distributions with the zeros of the Riemann zeta
function.

1 Largest Eigenvalue Distributions

In this section, the distributions of the largest eigenvalue of matrices in the
β-ensembles are studied. Histograms are created first by simulation, then
by solving the Painlevé II nonlinear differential equation.

1.1 Simulation

The Gaussian Unitary Ensemble (GUE) is defined as the Hermitian n ×
n matrices A, where the diagonal elements xjj and the upper triangular
elements xjk = ujk + ivjk are independent Gaussians with zero-mean, and

{

Var(xjj) = 1, 1 ≤ j ≤ n,

Var(ujk) = Var(vjk) =
1
2 , 1 ≤ j < k ≤ n.

(1)

Since a sum of Gaussians is a new Gaussian, an instance of these matrices
can be created conveniently in MATLAB:
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A=randn(n)+i*randn(n);

A=(A+A’)/2;

The largest eigenvalue of this matrix is about 2
√
n. To get a distribution

that converges as n → ∞, the shifted and scaled largest eigenvalue λ′
max is

calculated as

λ′
max = n

1

6

(

λmax − 2
√
n
)

. (2)

It is now straight-forward to compute the distribution for λ′
max by simula-

tion:

for ii=1:trials

A=randn(n)+i*randn(n);

A=(A+A’)/2;

lmax=max(eig(A));

lmaxscaled=n^(1/6)*(lmax-2*sqrt(n));

% Store lmax

end

% Create and plot histogram

The problem with this technique is that the computational requirements
and the memory requirements grow fast with n, which should be as large
as possible in order to be a good approximation of infinity. Just storing
the matrix A requires n2 double-precision numbers, so on most computers
today n has to be less than 104. Furthermore, computing all the eigenvalues
of a full Hermitian matrix requires a computing time proportional to n3.
This means that it will take many days to create a smooth histogram by
simulation, even for relatively small values of n.

To improve upon this situation, another matrix can be studied that has
the same eigenvalue distribution as A above. In [2], it was shown that this
is true for the following symmetric matrix when β = 2:

Hβ ∼ 1√
2















N(0, 2) χ(n−1)β

χ(n−1)β N(0, 2) χ(n−2)β

. . .
. . .

. . .

χ2β N(0, 2) χβ

χβ N(0, 2)















. (3)

Here, N(0, 2) is a zero-mean Gaussian with variance 2, and χd is the square-
root of a χ2 distributed number with d degrees of freedom. Note that the
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matrix is symmetric, so the subdiagonal and the superdiagonal are always
equal.

This matrix has a tridiagonal sparsity structure, and only 2n double-
precision numbers are required to store an instance of it. The time for
computing the largest eigenvalue is proportional to n, either using Krylov
subspace based methods or the method of bisection [7].

In MATLAB, the built-in function eigs can be used, although that re-
quires dealing with the sparse matrix structure. There is also a large amount
of overhead in this function, which results in a relatively poor performance.
Instead, the function maxeig is used below to compute the eigenvalues.
This is not a built-in function in MATLAB, but it can be downloaded from
http://www-math.mit.edu/∼persson/mltrid. It is based on the method of
bisection, and requires just two ordinary MATLAB vectors as input, corre-
sponding to the diagonal and the subdiagonal.

It also turns out that only the first 10n
1

3 components of the eigenvector
corresponding to the largest eigenvalue are significantly greater than zero.
Therefore, the upper-left ncutoff by ncutoff submatrix has the same largest
eigenvalue (or at least very close), where

ncutoff ≈ 10n
1

3 . (4)

Matrices of size n = 1012 can then easily be used since the computations can
be done on a matrix of size only 10n

1

3 = 105. Also, for these large values of
n the approximation χ2

n ≈ n is accurate.
A histogram of the distribution for n = 109 can now be created using

the code below.

n=1e9;

nrep=1e4;

beta=2;

cutoff=round(10*n^(1/3));

d1=sqrt(n-1:-1:n+1-cutoff)’/2/sqrt(n);

ls=zeros(1,nrep);

for ii=1:nrep

d0=randn(cutoff,1)/sqrt(n*beta);

ls(ii)=maxeig(d0,d1);

end

ls=(ls-1)*n^(2/3)*2;

histdistr(ls,-7:0.2:3)
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Figure 1: Probability distribution of scaled largest eigenvalue (105 repeti-
tions, n = 109)

where the function histdistr below is used to histogram the data. It
assumes that the histogram boxes are equidistant.

function [xmid,H]=histdistr(ls,x)

dx=x(2)-x(1);

H=histc(ls,x);

H=H(1:end-1);

H=H/sum(H)/dx;

xmid=(x(1:end-1)+x(2:end))/2;

bar(xmid,H)

grid on

The resulting distribution is shown in Figure 1, together with distribu-
tions for β = 1 and β = 4. The plots also contain solid curves representing
the “true solutions” (see next section).

1.2 Painlevé II

Instead of using simulation to plot the distributions of the largest eigen-
values, it can be computed from the solution of the Painlevé II nonlinear
differential equation [6]:

q′′ = sq + 2q3 (5)
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with the boundary condition

q(s) ∼ Ai(s), as s → ∞. (6)

The probability distribution f2(s), corresponding to β = 2, is then given by

f2(s) =
d

ds
F2(s), (7)

where

F2(s) = exp

(

−
∫ ∞

s

(x− s)q(x)2 dx

)

. (8)

The distributions for β = 1 and β = 4 are the derivatives of

F1(s)
2 = F2(s)e

−
∫

∞

s
q(x) dx (9)

and

F4

(

s

2
2

3

)2

= F2(s)

(

e
1

2

∫

∞

s
q(x) dx + e−

1

2

∫

∞

s
q(x) dx

2

)2

. (10)

To solve this numerically using MATLAB, first rewrite (5) as a first-order
system:

d

ds

(

q
q′

)

=

(

q′

sq + 2q3

)

. (11)

This can be solved as an initial-value problem starting at s = s0 = suf-
ficiently large positive number, and integrating along the negative s-axis.
The boundary condition (6) then becomes the initial values

{

q(s0) = Ai(s0)
q′(s0) = Ai′(s0).

(12)

Although the distributions can be computed from q(s) as a post-processing
step, it is most convenient to add a few variables and equations to the ODE
system. When computing F2(s), the quantity I(s) =

∫∞

s
(x − s)q(x)2 dx is

required. Differentiate this twice to get

I ′(s) = −
∫ ∞

s

q(x)2 dx (13)
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and

I ′′(s) = q(s)2. (14)

Add these equations and the variables I(s), I ′(s) to the ODE system, and
the solver will do the integration. This is not only easier and gives less code,
it will also give a much more accurate solution since the same tolerance
requirements are imposed on I(s) as on the solution q(s).

In a similar way, the quantity J(s) =
∫∞

s
q(x) dx is needed when com-

puting F1(s) and F4(s). This is handled by adding the variable J(s) and
the equation J ′(s) = −q(s).

The final system now has the form

d

ds













q
q′

I
I ′

J













=













q′

sq + 2q3

I ′

q2

−q













(15)

with the initial condition













q(s0)
q′(s0)
I(s0)
I ′(s0)
J(s0)













=













Ai(s0)
Ai′(s0)

∫∞

s0
(x− s0)Ai(x)

2 dx

Ai(s0)
2

∫∞

s0
Ai(x) dx













. (16)

This problem can be solved in just a few lines of MATLAB code using the
built-in Runge-Kutta based ODE solver ode45. First define the system of
equations as an inline function

deq=inline(’[y(2); s*y(1)+2*y(1)^3; y(4); y(1)^2; -y(1)]’,’s’,’y’);

Next specify the integration interval and the desired output times.

s0=5;

sn=-8;

sspan=linspace(s0,sn,1000);

The initial values can be computed as

y0=[airy(s0); airy(1,s0); ...

quadl(inline(’(x-s0).*airy(x).^2’,’x’,’s0’),s0,20,1e-25,0,s0); ...

airy(s0)^2; quadl(inline(’airy(x)’),s0,20,1e-18)];
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where the quadl function is used to numerically approximate the integrals
in (16). Now, the integration tolerances can be set and the system inte-
grated:

opts=odeset(’reltol’,1e-13,’abstol’,1e-15);

[s,y]=ode45(deq,sspan,y0,opts);

The five dependent variables are now in the columns of the MATLAB vari-
able y. Using these, F2(s), F1(s), and F4(s) become

F2=exp(-y(:,3));

F1=sqrt(F2.*exp(-y(:,5)));

F4=sqrt(F2).*(exp(y(:,5)/2)+exp(-y(:,5)/2))/2;

s4=s/2^(2/3);

The probability distributions f2(s), f1(s), and f4(s) could be computed by
numerical differentiation:

f2=gradient(F2,s);

f1=gradient(F1,s);

f4=gradient(F4,s4);

but it is more accurate to first do the differentiation symbolically:

f2(s) = −I ′(s)F2(s) (17)

f1(s) =
1

2F1(s)
(f2(s) + q(s)F2(s)) e

−J(s) (18)

f4(s) =
1

2
1

3 4F4(s)

(

f2(s)
(

2 + eJ(s) + e−J(s)
)

+ F2(s)q(s)
(

e−J(s) − eJ(s)
))

(19)

and evaluate these expressions:

f2=-y(:,4).*F2;

f1=1/2./F1.*(f2+y(:,1).*F2).*exp(-y(:,5));

f4=1/2^(1/3)/4./F4.*(f2.*(2+exp(y(:,5))+exp(-y(:,5)))+ ...

F2.*y(:,1).*(exp(-y(:,5))-exp(y(:,5))));

Finally, plot the curves:

plot(s,f1,s,f2,s4,f4)

legend(’\beta=1’,’\beta=2’,’\beta=4’)

xlabel(’s’)

ylabel(’f_\beta(s)’,’rotation’,0)

grid on

The result can be seen in Figure 2.
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Figure 2: The probability distributions f1(s), f2(s), and f4(s), computed
using the Painlevé II solution.
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2 Eigenvalue Spacings Distributions

Another quantity with an interesting probability distribution is the spacings
of the eigenvalues of random matrices. It turns out that the eigenvalues are
almost uniformly distributed, which means that every random matrix gives a
large number of spacings. The distributions can then be efficiently computed
by simulation.

Two other methods are used to compute the spacings distribution – the
solution of the Painlevé V nonlinear differential equation and the eigenvalues
of the Prolate matrix. Finally, the results are compared with the spacings
of the zeros along the critical line of the Riemann zeta function.

2.1 Simulation

As before, the simulations are made with matrices from the Gaussian Uni-
tary Ensemble. The normalized spacings of the eigenvalues λ1 ≤ λ2 ≤ . . . ≤
λN are computed according to

δ′k =
λk+1 − λk

πβ

√

2βn− λ2
k, k ≈ n/2, (20)

where β = 2 for the GUE. The distribution of the eigenvalues is almost
uniform, with a slight deviation at the two ends of the spectrum. Therefore,
only half of the eigenvalues are used, and one quarter of the eigenvalues at
each end is discarded.

Again, to allow for a more efficient simulation, the tridiagonal matrix (3)
is used instead of the full Hermitian matrix. In this case, all the eigenvalues
are computed, which can be done in a time proportional to n2. While this
could in principle be done using the MATLAB sparse matrix structure and
the eigs function, the more efficient trideig function is used below to
compute all the eigenvalues of a symmetric tridiagonal matrix. It can be
downloaded from http://www-math.mit.edu/∼persson/mltrid.

The histogram can now be computed by simulation with the following
lines of code. Note that the function chi2rnd from the Statistics Toolbox
is required.

n=1000;

nrep=1000;

beta=2;

ds=zeros(1,nrep*n/2);

for ii=1:nrep

l=trideig(randn(n,1),sqrt(chi2rnd((n-1:-1:1)’*beta)/2));

9
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Figure 3: Probability distribution of consecutive spacings of random matrix
eigenvalues (1000 repetitions, n = 1000)

d=diff(l(n/4:3*n/4))/beta/pi.*sqrt(2*beta*n-l(n/4:3*n/4-1).^2);

ds((ii-1)*n/2+1:ii*n/2)=d;

end

histdistr(ds,0:0.05:5);

The resulting histogram can be found in Figure 3. The figure also shows the
expected curve as a solid line.

2.2 Painlevé V

The probability distribution p(s) for the eigenvalue spacings when β = 2
can be computed with the solution to the Painlevé V nonlinear differential
equation (see [5] for details):

(tσ′′)2 + 4(tσ′ − σ)
(

tσ′ − σ + (σ′)2
)

= 0 (21)
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with the boundary condition

σ(t) ≈ − t

π
−
(

t

π

)2

, as t → 0+. (22)

Then p(s) is given by

p(s) =
d2

ds2
E(s) (23)

where

E(s) = exp

(
∫ πs

0

σ(t)

t
dt

)

. (24)

Explicit differentiation gives

p(s) =
1

s2
(

πsσ′(πs)− σ(πs) + σ(πs)2
)

E(s). (25)

The second-order differential equation (21) can be written as a first-order
system of differential equations:

d

dt

(

σ
σ′

)

=

(

σ′

−2
t

√

(σ − tσ′) (tσ′ − σ + (σ′)2)

)

. (26)

This is solved as an initial-value problem starting at t = t0 =very small
positive number. The value t = 0 has to be avoided because of the division
by t in the system of equations. This is not a problem, since the boundary
condition (22) provides an accurate value for σ(t0) (as well as E(t0/π)). The
boundary conditions for the system (26) then become

{

σ(t0) = − t0
π
−
(

t0
π

)2

σ′(t0) = − 1
π
− 2t0

π
.

(27)

To be able to compute E(s) using (24), the variable

I(t) =

∫ t

0

σ(t′)

t′
dt′ (28)

is added to the system, as well as the equation d
dt
I = σ

t
. The corresponding

initial value is

I(t0) ≈
∫ t0

0

(

− 1

π
− t

π2

)

dt = − t0
π

− t20
2π2

. (29)
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Putting it all together, the final system is

d

dt





σ
σ′

I



 =





σ′

−2
t

√

(σ − tσ′) (tσ′ − σ + (σ′)2)
σ
t



 (30)

with boundary condition





σ(t0)
σ′(t0)
I(t0)



 =







− t0
π
−
(

t0
π

)2

− 1
π
− 2t0

π

− t0
π
− t2

0

2π2






. (31)

This system is defined as an inline function in MATLAB:

desig=inline([’[y(2); -2/t*sqrt((y(1)-t*y(2))*’ ...

’(t*y(2)-y(1)+y(2)^2)); y(1)/t]’],’t’,’y’);

Specify the integration interval and the desired output times:

t0=1e-12;

tn=16;

tspan=linspace(t0,tn,1000);

Set the initial condition:

y0=[-t0/pi-(t0/pi)^2; -1/pi-2*t0/pi; -t0/pi-t0^2/2/pi^2];

Finally, set the integration tolerances and call the solver:

opts=odeset(’reltol’,1e-13,’abstol’,1e-14);

[t,y]=ode45(desig,tspan,y0,opts);

The solution components are now in the columns of y. Use these to evaluate
E(s) and p(s):

s=t/pi;

E=exp(y(:,3));

p=1./s.^2.*E.*(t.*y(:,2)-y(:,1)+y(:,1).^2);

p(1)=2*s(1); % Fix due to cancellation

A plot of p(s) can be made with the command

plot(s,p)

grid on

and it can be seen in Figure 4. Plots are also shown of E(s) and σ(t).

12



0 5 10 15 20
−70

−60

−50

−40

−30

−20

−10

0

t

σ(
t)

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

s

E
(s

),
 p

(s
)

Figure 4: Painlevé V (left), E(s) and p(s) (right).

2.3 The Prolate Matrix

Another method to calculate the distribution of the eigenvalue spacings is
to compute the eigenvalues λi of the operator

f(y) →
∫ 1

−1
Q(x, y)f(y) dy, Q(x, y) =

sin ((x− y)πt)

(x− y)π
. (32)

Then E(2t) =
∏

i(1− λi), and p(s) can be computed as before. To do this,
first define the infinite symmetric Prolate matrix:

A∞ =







a0 a1 . . .
a1 a0 . . .
...

...
. . .






(33)

with a0 = 2w, ak = (sin 2πwk)/πk for k = 1, 2, . . ., and 0 < w < 1
2 . A

discretization of Q(x, y) is achieved by setting w = t/n and extracting the
upper-left n× n submatrix An of A∞.

Below, the full matrix An is used, and all the eigenvalues are computed
in n3 time using the eig function. However, An commutes with the following
symmetric tridiagonal matrix [4], and therefore has the same eigenvectors:

Tn =















α1 β1
β1 α2 β2

. . .
. . .

. . .

βn−2 αn−1 βn−1

βn−1 αn















(34)
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where
{

αk =
(

n+1
2 − k

)2
cos 2πw

βk = 1
2k(n − k).

(35)

It is then in principle possible to use the new techniques described in [1] to
compute all the eigenvalues and eigenvectors of Tn in n2 time, and then get
the eigenvalues of An by dot products. This is not done in this example.

The code for computing E(s) is shown below. This time, p(s) is evaluated
by numerical differentiation since no information about the derivative of
E(s) is available.

s=0:0.01:5;

n=100;

E0=zeros(size(s));

for ii=1:length(s)

Q=gallery(’prolate’,n,s(ii)/2/n);

E0(ii)=prod(1-eig(Q));

end

p0=gradient(gradient(E0,s),s);

To improve the accuracy in E(s), Richardson extrapolation can be used.
This is done as follows, where the values are assumed to converge as 1/n2:

% ... Compute s and E using Painleve V in previous section

Es=zeros(length(t),0);

E1=zeros(size(s));

for n=20*2.^(0:3)

for ii=1:length(s)

Q=gallery(’prolate’,n,s(ii)/2/n);

E1(ii)=prod(1-eig(Q));

end

Es=[Es,E1];

end

for ii=1:3

max(abs(Es-E(:,ones(1,size(Es,2)))))

Es=Es(:,2:end)+diff(Es,1,2)/(2^(ii+1)-1);

end

max(abs(Es-E))

The errors max0≤s≤5 |E1(s)− E(s)| are shown in Table 1, for n = 20, 40, 80,
and 160. The error after all extrapolations is of the same order as the “exact
solution” using Painlevé V.
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N Error 0 Error 1 Error 2 Error 3

20 0.2244
40 0.0561 0.7701
80 0.0140 0.0483 0.5486

160 0.0035 0.0032 0.0323 2.2673

·10−3 ·10−7 ·10−8 ·10−11

Table 1: Difference between Prolate solution E1(s) and Painlevé V solution
E(s) after 0, 1, 2, and 3 Richardson extrapolations.

2.4 Riemann Zeta Zeros

It has been observed that the zeros of the Riemann zeta function along the
critical line Re(z) = 1

2 behave similar to the eigenvalues of random matrices
in the GUE. Here, the distribution of the scaled spacings of the zeros is
compared to the corresponding distribution for eigenvalues computed using
the Painlevé V equation from the previous chapters.

Define the nth zero γn = nth as

ζ

(

1

2
+ iγn

)

= 0, 0 < γ1 < γ2 < . . . (36)

Compute a normalized spacing:

γ̃n =
γn

av spacing near γn
= γn ·

[

log γn/2π

2π

]

. (37)

Zeros of the Riemann zeta function can be downloaded from [3]. Assum-
ing that the MATLAB variable gamma contains the zeros, and the variable
offset the offset, these two lines compute the consecutive spacings γ̃n+1−γ̃n
and plot the histogram:

delta=diff(gamma)/2/pi.*log((gamma(1:end-1)+offset)/2/pi);

histdistr(delta,0:0.05:5.0);

The result can be found in Figure 5, along with the Painlevé V distribution.
The curves are indeed in good agreement, although the number of samples
here is a little to low to get a perfect match.
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Figure 5: Probability distribution of consecutive spacings of Riemann zeta
zeros (30, 000 zeros, n ≈ 1012, 1021, 1022)
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ON THE DISTRIBUTION O F  ROOTS O F  CERTAIN 
DETERMINANTAL EQUATIONS 

BY P. L. HSU 

T H E  extension (Fisher, 1938) of Fisher’s discriminant analysis to more than two multivariate 
samples has directed attention to the problem of the exact distribution of fhe roots of a 
certain type of determinantal equation, which are required for various significance tests. 
While Fisher was solving this problem he submitted it to me for its interest in relation to 
matrix algebra. The purpose of the present paper is to give a complete demonstration of the 
analytic solution, including the case in which the number of variates, p ,  exceeds one of the 
sample numbers n,. 

Consider a set of p(n ,  + n,) random variables 

y ir ,x i t  ( i = 1 , 2  )..., p ; v = 1 , 2  )..., 7 b 1 ; t = 1 , 2  )...) n,), 
following the distribution law 

where 

, . . . . .( 1) 

We shall assume that n, > p ,  so that the matrix 1 1  bij 1 1  is almost always positively definite. 
Thus the determinantal equation 

I ~i j -€ ’ (a i j+  bij) I = 0 . . . . . . (2 )  

is known to possess exactly p or n, (whichever is smaller) real, not identically vanishing, 
roots, each lying between 0 and 1. Denoting them by O,, 0,, . . ., in the order of descending 
magnitude, we shall now establish the simultaneous distribution of these 8’s. 

THEOREM 1 .  The simultaneous distribution of the roots of ( 2 )  is given b y  

where 

and 
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Theorem 2. If the Qp(p + 1 )  variables sij(i <j = 1,2, . . . ,p) have such a domain of existence 
' that the symmetric matrix 1 1  sij 1 1  is always non-singular, and if they are so distributed that their 

joint probability density function depends only on the latent roots, say A,, A,, . . . , A,, arranged 
in the order of descending magnitude, of IIsij 11, i.e. if 

df = g(h,, A,, * .  * 7  A,) n ds,, 
then the joint distribution law of the hi is the following: 

FQ(p - i + 1))-,( fi fi (hi - 4)) g(h,, . . ., A,) n dh .  . . . . . . (24) 
i= 1 i = l j = i + l  

Proof. It is a familiar argument that the general formula (24) will follow if we can find 
a particular example for g for which (24) holds true. This is because the multiplier of g in (24) 
is entirely independent of the function g itself. The required example is found in the proof 
of Theorem 1. 

Let us take the case n,>p in the distribution law (18) .  We have seen that the roots of 
(17) follow the distribution (3). Writing 

we get, as a consequence of Wishart's formula, the following distribution for the stj: 

c, I Sij It(n1-P-l) I Jij - sij I J(n2-2J-1) n ds, . . . . . . (25) 

where Jii = 1 and aij = 0 for i+j ,  and 

Now the probability density function appearing in (25) depends on the latent roots of 
1 1  sij I [  only. It is in fact equal to 

. . . . . . (26) 

On the other hand, the hi follow the distribution (3), with the replacement of 0 by A. I n  
other words, the probability density function of the hi is (26) multiplied by the expression 
which coincides with the multiplier of g in (24). Thus Theorem 2 is proved. 

As an application of Theorem 2 let us take the following example. Suppose that the p n  
random variables yir (i = 1 ,2 ,  .. . , p ;  r = 1,2,  .. ., n) follow the distribution 

P 

i , j = l  

P 

r= 1 

const. exp [ - + c atjsij] n dy, 

S i j  = C YirYj t .  where 
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We present a Coulomb gas method to calculate analytically the probability of rare events where the

maximum eigenvalue of a random matrix is much larger than its typical value. The large deviation

function that characterizes this probability is computed explicitly for Wishart and Gaussian ensembles.

The method is general and applies to other related problems, e.g., the joint large deviation function for

large fluctuations of top eigenvalues. Our results are relevant to widely employed data compression

techniques, namely, the principal components analysis. Analytical predictions are verified by extensive

numerical simulations.

DOI: 10.1103/PhysRevLett.102.060601 PACS numbers: 05.40.�a, 02.10.Yn, 02.50.Sk, 24.60.�k

Rare events where one of the eigenvalues of a random
matrix is much larger than the others play an important role
in data compression techniques such as the ‘‘Principal
Components Analysis’’ (PCA). PCA is helpful to detect
hidden patterns or correlations in complex, high-
dimensional datasets. A nonexhaustive list of applications
includes image processing [1,2], biological microarrays
[3,4], population genetics [5–7], finance [8,9], meteorol-
ogy, and oceanography [10]. The main idea behind PCA is
very simple. Consider a rectangular (M� N) matrix X
whose entries represent some data. For instance, Xij might

represent examination marks of the i-th student (1 � i �
M) in the j-th subject (physics, etc., with 1 � j � N). The
product symmetric matrixW ¼ XyX represents the covari-
ance matrix of the data, and it contains information about
correlations. In PCA, one first identifies eigenvalues and
eigenvectors of W. The data are maximally scattered and
correlated along the eigenvector (‘‘principal component’’)
associated with the largest eigenvalue �max. The scatter
progressively reduces as lower and lower eigenvalues are
considered. The subsequent step is the reduction of data
dimensionality, achieved by setting to zero those compo-
nents corresponding to low eigenvalues. The rationale is
that retaining the largest components will preserve the
major patterns in the data and only minor variations are
filtered out.

The above description of PCA makes clear that its
efficiency depends upon the gap between the top eigenval-
ues and the ‘‘sea’’ of smaller eigenvalues. In particular, the
further is the maximum eigenvalue �max spaced from all
the others, the more effective the projection and the com-
pression procedure will be. A question naturally arises:
how good is PCA for random data? This issue has a
twofold interest. First, the data often are high-dimensional
and have random components. Second, random ensembles
provide null models needed to gauge the statistical signifi-
cance of results obtained for nonrandom datasets. To ad-
dress the question just formulated, one needs to compute

the probability of rare events where the largest eigenvalue
�max has atypically large fluctuations. The purpose of this
Letter is to provide a simple physical method, based on the
Coloumb gas method in statistical physics, that allows us to
compute analytically the probability of these rare events
for a general class of random matrices.
Let us start by considering Wishart matrices [11], which

are directly related to PCA and multivariate statistics [12].
Wishart matrices are defined via the product W ¼ XyX of
a (M� N) random matrix X having its elements drawn

independently from a Gaussian distribution, P½X� /
exp½� �

2 TrðXyXÞ�. The Dyson indices � ¼ 1, 2 corre-

spond, respectively, to real and complex X [13]. Without
any loss of generality, we will assume hereafter that M �
N. In addition to the aforementioned PCA applications,
Wishart matrices appear in antenna selection in communi-
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FIG. 1 (color online). The dashed line shows schematically the
Marcenko-Pastur average density of states for Wishart matrices
with the aspect-ratio parameter c � N=M ¼ 1; the full line is the
distribution of the maximum eigenvalue �max. The PDF is
centered around the mean h�maxi ¼ 4N and typically fluctuates
over a scale of width N1=3. The probability of fluctuations on this
scale is described by the known Tracy-Widom distribution. The
line on the right (left) describes the right (left) large deviation tail
of the PDF, which is the object of interest in this Letter.

PRL 102, 060601 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

13 FEBRUARY 2009

0031-9007=09=102(6)=060601(4) 060601-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.102.060601


cation technology [14], nuclear physics [15], quantum
chromodynamics [16], of directed polymers in random
media [17], and nonintersecting Brownian motions [18].

The spectral properties of W ¼ XyX are well known: N
eigenvalues f�ig’s of W are nonnegative random variables
with a joint probability density function (PDF) [19]

P½f�ig� / e�ð�=2ÞPN
i¼1

�i
YN

i¼1

���=2
i

Y

j<k

j�j � �kj�; (1)

where � ¼ ð1þM� NÞ � 2=�. This can be written as
P½f�ig� / exp½��Eðf�igÞ=2�, with the energy

E½f�ig� ¼
XN

i¼1

ð�i � � log�iÞ �
X

j�k

lnj�j � �kj; (2)

coinciding with that of a 2-d Coulomb gas of charges with
coordinates f�ig. Charges are confined to the positive half
line in the presence of an external linearþ logarithmic
potential. The external potential tends to push the charges
towards the origin, while the Coulomb repulsion tends to
spread them apart. A glance at (2) indicates that these
two competing mechanisms balance for values of � scal-
ing as �N. Indeed, from the joint PDF (1), one can
calculate the average density of eigenvalues, �Nð�Þ ¼ 1

N �
P

N
i¼1h�ð�� �iÞi � 1

N fMPð�NÞ, with the Marcenko-Pastur

(MP) [20] scaling function,

fMPðxÞ ¼ 1

2�x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� xÞðx� aÞ

p
: (3)

Here, c ¼ N=M (with c � 1) and the upper and lower

edges are b ¼ ðc�1=2 þ 1Þ2 and a ¼ ðc�1=2 � 1Þ2. For all
c < 1, the average density vanishes at both edges of theMP
sea. For the special case c ¼ 1, we have a ¼ 0, b ¼ 4 and

the average density fMPðxÞ ¼ 1
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4� xÞ=xp
for 0 � x �

4, diverges as x�1=2 at the lower edge (see Fig. 1).
The MP expression shows that the maximum eigenvalue

�max has the average value h�maxi � bN for large N.

Typical fluctuations of �max are known to be of OðN1=3Þ
[12,17]. More specifically, �max ¼ bN þ c1=6b2=3N1=3�,
where � has an N-independent limiting PDF, g�ð�Þ, the
well-known Tracy-Widom (TW) density [21]. The TW
distribution for � ¼ 1, 2 has asymmetric tails [21]

g�ð�Þ � exp

�

� �

24
j�j3

�

as � ! �1; (4)

� exp

�

� 2�

3
�3=2

�

as � ! 1: (5)

In contrast, atypically large, e.g., �OðNÞ, fluctuations of
�max from its mean bN are not described by the TW
distribution. Note that these fluctuations are precisely those
that are relevant here for the PCA to work accurately.

What does the PDF Pð�max; NÞ look like for j�max �
bNj 	 OðN1=3Þ where the TW form is no longer valid?
Using general large deviation principles, Johansson [17]
proved that for large fluctuations �OðNÞ from its mean,
the PDF Pð�max ¼ t; NÞ has the form (for large N)

Pðt; NÞ � exp

�

��N2��
�
bN � t

N

��

t 
 bN;

� exp

�

��N�þ
�
t� bN

N

��

t 	 bN; (6)

where��ðxÞ are the right (left) rate functions for the large
positive (negative) fluctuations of �max. The challenge is to
explicitly compute their functional forms. The approach
developed for Gaussian matrices [22] allows us to compute
the left function ��ðxÞ [23] but it does not apply to the
right tail. The problem of computing the right function
�þðxÞ is solved hereafter, followed by the application to
Gaussian matrices and further generalizations.
The starting point of our method to compute �þðxÞ is

the energy expression (2). The MP distribution is obtained
by the saddle-point method and holds even if all eigenval-
ues are constrained to be smaller than a threshold, provided
the latter is larger than the upper edge b of the MP sea (see,
e.g., [23]). This result and the Coulomb gas physics sug-
gest that when the rightmost charge is moved to the right,
�max � bN �OðNÞ, the MP sea should a priori not be
dragged and macroscopically rearranged. Following this
physical picture, the right rate function is determined by
the energy cost in pulling the rightmost charge in the
external potential of the Coulomb gas and its interaction
with the unperturbedMP sea. This energy cost for �max ¼
t 	 bN can be estimated using Eq. (2)

�EðtÞ ¼ t� � lnðtÞ � 2N
Z

lnjt� �j�Nð�Þd�; (7)

where �Nð�Þ is the MP average density of charges and the
integral describes the Coulomb interaction of the rightmost
charge with the MP sea. This energy expression is valid up
to an additive constant, chosen such that �Eðt ¼ bNÞ ¼ 0
since our reference configuration is the one where �max ¼
bN. For large N, we scale t ¼ zN, use the MP expression
(3) and the energy cost finally takes the form

�EðzÞ
N

¼ z�1�c

c
lnðzÞ�2

Z b

a
lnðz�z0ÞfMPðz0Þdz0; (8)

valid for z � b and up to an additive constant. The
probability of such a configuration is Pðz; NÞ /
exp½���EðzÞ=2�. Making a shift of variable z ¼ bþ x,
it follows that Pðt; NÞ for large N and for t� bN �OðNÞ
agrees with the large deviation behavior in Eq. (6).
Progress is that we also have derived the explicit expres-
sion of the right rate function �þðxÞ

�þðxÞ ¼ x

2
� 1� c

2c
ln

�
xþ b

b

�

�
Z b

a
ln

�
xþ b� x0

b� x0

�

fMPðx0Þdx0; (9)

where x > 0 and the additive constant was chosen to have
�þð0Þ ¼ 0. The integral can be computed exactly as a
hypergeometric function. For c ¼ 1 (a ¼ 0 and b ¼ 4),
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�þðxÞ ¼ xþ 2

2
� lnðxþ 4Þ þ 1

xþ 4
G

�
4

4þ x

�

; (10)

whereGðzÞ ¼ 3F2½f1; 1; 3=2g; f2; 3g; z� is a hypergeometric

function (with a lengthy but explicit expression in terms of
elementary functions). For the sake of comparison, we also
report the simpler expression of the left rate function [23]:

��ðxÞ ¼ lnð2= ffiffiffiffiffiffiffiffiffiffiffiffi
4� x

p Þ � x=8� x2=64 for x � 0.
The asymptotics of �þðxÞ can be easily worked out

from Eq. (9). For large x,�þðxÞ�x=2 independently of c,
while the function has a nonanalytic behavior for small x:

�þðxÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b� a

p
3b

x3=2 as x ! 0: (11)

This shows that, as �max � bN 
 OðNÞ from the right
side, the PDF of �max ¼ t in Eq. (6) behaves as

exp½��Nð ffiffiffiffiffiffiffiffiffiffiffiffiffi
b� a

p
=3bÞðt=N � bÞ3=2�. Expressing the ex-

ponent in terms of the TW variable � ¼
c�1=6b�2=3N�1=3ðt� bNÞ, we recover exactly the right
tail behavior of the TW density in Eq. (5). Thus, the large
deviation function �þðxÞ matches, for small arguments x,
the behavior of the TW density at large arguments. This is
quite consistent with the fact that the scales of the fluctua-

tions for TW and �þðxÞ are OðN1=3Þ and OðNÞ, respec-
tively. In fact, our method provides, as a bonus, a physical
derivation of the right tail behavior of the TW density [21].

We confirmed theoretical predictions by extensive nu-
merical simulations. About 1011 realizations of real (� ¼
1) Wishart matrices of sizes N ¼ 10, 26, 50, 100, and with
different values of c � 1 were efficiently generated using
the tridiagonal results in [24]. We find very good agree-
ment with our analytical predictions for the right large
deviations. For example, in Fig. 2, we present the results
for c ¼ 1 and N ¼ 10. Monte Carlo numerical results are
compared to the TW density (obtained by numerically
integrating the Painlevé equation satisfied by the TW dis-
tribution [21]) and�þðxÞ in Eq. (10), multiplied by N. For
comparison, we also show the corresponding left rate
function ��ð�xÞ [23] multiplied by N2. It is clear that,
while the numerical data are well described by the TW
density near the peak of the distribution, they deviate
considerably from TW as one moves into the tails, where
our large deviation predictions work perfectly.

Our Coulomb gas method is quite general, and it can be
applied to other related problems. For example, we can
compute the right large deviation function of �max for
Gaussian random matrices. For the latter, the eigenvalues
can be positive or negative with joint PDF [25],

P½f�ig� / e�ð�=2ÞPN
i¼1

�2
i

Y

j<k

j�j � �kj�; (12)

where the Dyson indices � ¼ 1, 2, and 4 correspond to the
orthogonal, unitary, and symplectic ensembles. The qua-
dratic nature of the potential in (12), in contrast to the
linear term appearing in (1), makes that the amplitude of a

typical eigenvalue scales as � ffiffiffiffi
N

p
. The average density of

states for large N has the scaling form, �Nð�Þ �

1ffiffiffi
N

p fscð �ffiffiffi
N

p Þ, where the famous Wigner semicircular law

fscðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� x2

p
=� has compact support over [� ffiffiffi

2
p

,ffiffiffi
2

p
]. Thus, h�maxi ¼

ffiffiffiffiffiffiffi
2N

p
and typical fluctuations of

�max around its mean are known [21] to be TW distributed

over a scale of �OðN�1=6Þ. Specifically, �max ¼
ffiffiffiffiffiffiffi
2N

p þ
a�N

�1=6�, with a1;2 ¼ 1=
ffiffiffi
2

p
, a4 ¼ 2�7=6, and � is a

random variable with the TW distribution g�ð�Þ. Again,
the TW form describes the PDF Pð�max ¼ t; NÞ only in the
vicinity of t ¼ ffiffiffiffiffiffiffi

2N
p

over a small scale of �OðN�1=6Þ.
Fluctuations of �max over a scale�Oð ffiffiffiffi

N
p Þ are described

by large deviation functions, analogous to the Wishart case
in Eq. (6) but with a different scaling variable

Pðt; NÞ � exp

�

��N2��
� ffiffiffiffiffiffiffi

2N
p � t

ffiffiffiffi
N

p
��

t 
 ffiffiffiffiffiffiffi
2N

p
;

� exp

�

��N�þ
�
t� ffiffiffiffiffiffiffi

2N
p
ffiffiffiffi
N

p
��

t 	 ffiffiffiffiffiffiffi
2N

p
:

As we mentioned, the left rate function��ðxÞwas recently
computed exactly in Ref. [22], but the right rate function
�þðxÞ was yet unknown. Our Coulomb gas approach
allows us to solve this problem as well and gives for�þðxÞ

�þðxÞ ¼ z2 � 1

2
� lnðz ffiffiffi

2
p Þ þ 1

4z2
G

�
2

z2

�

: (13)

Here, z ¼ �max=
ffiffiffiffi
N

p ¼ xþ ffiffiffi
2

p
, the hypergeometric func-

tion G was defined earlier, and the additive constant was
chosen to have �þð0Þ ¼ 0. The asymptotics of�þðxÞ can
be easily derived: for large x, �þðxÞ � x2=2, while the

nonanalytic behavior �þðxÞ � 27=4x3=2=3 holds for small

x. Using the TW scaling variable � ¼ ð�max �ffiffiffiffiffiffiffi
2N

p ÞN1=6=a�, with a� defined after (12), one recovers
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x=(t−4N)/N
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FIG. 2 (color online). Numerical results (circles) for the maxi-
mum eigenvalue distribution �lnPð�max¼ t;NÞ vs the scaled
variable ðt� 4NÞ=N. Here, N ¼ 10, Wishart matrices are real
(� ¼ 1) and c ¼ 1. The Tracy-Widom distribution fits well the
data for small fluctuations while it strongly deviates in both tails,
where the agreement with large deviation predictions are ex-
cellent.
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the correct TW right tails for all � ¼ 1, 2, and 4. This
provides again a physical derivation of the TW right tail.

We have realized simulations for Gaussian matrices with
sizesN ¼ 10, 25, and 50 and for� ¼ 1 and 2. In Fig. 3, we
present the data for the PDF of �max (with N ¼ 10, � ¼ 1)
and compare with the TW form and the exact left function
�� [22] and right rate function�þðxÞ derived in Eq. (13).
As in the Wishart case, the TW form works well near the

peak t ¼ ffiffiffiffiffiffiffi
2N

p
, but it fails as we move into the tails, where

the large deviation predictions are quite accurate.
Our Coulomb gas method lends to further generaliza-

tions that we only briefly mention here. For instance, we
can compute the joint probability distribution for large
fluctuations of n top eigenvalues in Wishart and Gaussian
random matrices. If n 
 N, the energy will be given by
their mutual charge interactions, the external potentials,
and their interaction with the unperturbed MP sea.
Integrals are the same as those computed previously and
yield the explicit expression for the joint PDF. It is also
possible to use our method to compute the large deviation
function for fluctuations of the smallest eigenvalue �min for
Wishart matrices with c < 1. Note that the MP sea remains
unperturbed (and our method applies) for small fluctua-
tions of �min while the method in [22] applies for large
fluctuations of �min, which compress the MP sea.

In conclusion, we have presented a new Coulomb gas
method to compute large deviation probabilities of top
eigenvalues for a general class of random matrices. The
physical picture that emerges is quite transparent: when the
top eigenvalues are pulled to the right (towards large
values), the Marcenko-Pastur (or Wigner) sea is simply
pinched and the top eigenvalues do not drag all the other
eigenvalues. In other words, no macroscopic rearrange-
ment of the sea occurs and the top eigenvalues move in
the effective potential defined by the external potential of

the Coulomb gas and by the electrostatic potential gener-
ated by the charges in the sea. Our predictions are formally
valid for large N, yet our simulations indicate that they
work for moderate N as well. This further adds to the
relevance of the large deviation rate functions derived
here to data compression methods and their applications.
We are grateful to E. Aurell for the invitations to KTH,

where this work was initiated.
Note added in proof.—While the Letter was at the proof

stage, we became aware that our result in Eq. (13), for the
special case of GOE (� ¼ 1), was derived by a different
method in [26].
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Universal Fluctuations of Growing Interfaces: Evidence in Turbulent Liquid Crystals
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We investigate growing interfaces of topological-defect turbulence in the electroconvection of nematic

liquid crystals. The interfaces exhibit self-affine roughening characterized by both spatial and temporal

scaling laws of the Kardar-Parisi-Zhang theory in 1þ 1 dimensions. Moreover, we reveal that the

distribution and the two-point correlation of the interface fluctuations are universal ones governed by

the largest eigenvalue of random matrices. This provides quantitative experimental evidence of the

universality prescribing detailed information of scale-invariant fluctuations.

DOI: 10.1103/PhysRevLett.104.230601 PACS numbers: 05.40.�a, 47.27.Sd, 64.70.mj, 89.75.Da

Growth phenomena have been a subject of extensive
studies in physics and beyond, because of their ubiquity
in nature and their importance in both engineering and
fundamental science. Over recent decades, physicists
have found that growth phenomena due to local processes
typically lead to the formation of rough self-affine inter-
faces, as exemplified in paper wetting, burning fronts,
bacterial colonies, and material morphology, to name but
a few, and also in various numerical models [1]. Being
obviously irreversible, local growth processes provide a
challenging situation toward understanding the scale in-
variance and the consequent universality out of
equilibrium.

The roughness of interfaces is often quantified by their
width wðl; tÞ defined as the standard deviation of the inter-
face height hðx; tÞ over a length scale l at time t. The self-
affinity of interfaces then implies the following Family-
Vicsek scaling [2]:

wðl; tÞ � t�Fðlt�1=zÞ �
�
l� for l � l�
t� for l � l�;

(1)

with two characteristic exponents � and �, the dynamic

exponent z � �=�, and a crossover length scale l� � t1=z.
The simplest theory to describe such local growth pro-

cesses was proposed by Kardar, Parisi, and Zhang (KPZ)
[3] on the basis of the coarse-grained stochastic equation

@

@t
hðx; tÞ ¼ v0 þ �r2hþ �

2
ðrhÞ2 þ �ðx; tÞ (3)

with h�ðx; tÞi ¼ 0 and h�ðx; tÞ�ðx0; t0Þi ¼ D�ðx� x0Þ�ðt�
t0Þ. For 1þ 1 dimensions, the renormalization group ap-
proach provides exact values of the exponents at �KPZ ¼
1=2 and �KPZ ¼ 1=3 [1,3], which are universal as widely
confirmed in numerical models [1]. Moreover, the (1þ 1)-
dimensional KPZ class attracts growing interest thanks to
rigorous work on the asymptotic form of the fluctuations in
solvable models [4–6]. This opens up a new aspect in the
study of scale-invariant phenomena toward the universality
beyond the scaling laws.

In contrast with such remarkable progress in theory, the
situation in experiments has been quite different. A con-

siderable number of experiments have been performed on
various growth processes [1] and confirmed the ubiquity of
rough interfaces. Concerning the universality, however,
experimentally measured values of the exponents are
widely diverse and mostly far from the KPZ values for
both � and � [1]. To our knowledge, only two experiments
among dozens directly found the KPZ exponents: in colo-
nies of mutant bacteria [7] and in slow combustion of paper
[8]; a few other experiments showed indirect indications
[9,10]. One of the main difficulties shared by most experi-
ments, including the above two, is that one needs to repeat
a large number of experiments in the same controlled
conditions to accumulate sufficient statistics. In this
Letter, studying growing interfaces of turbulent liquid
crystals, we overcome this difficulty and report clear ex-
perimental evidence of not only the universal scaling laws
but also the universal fluctuations of the KPZ class through
critical comparisons with the wealth of theoretical
predictions.
The electroconvection occurs when an external voltage

is applied to a thin layer of nematic liquid crystal, trigger-
ing the Carr-Helfrich instability [11]. We focus on inter-
faces between two topologically different turbulent states
called the dynamic scattering modes 1 and 2 (DSM1 and
DSM2), which are observed with sufficiently large volt-
ages. The essential difference between them lies in the
density of topological defects called the disclinations.
Upon applying a voltage, we first observe the DSM1 state
with practically no defects in the director field, which lasts
until a disclination is finally created owing to the break-
down of surface anchoring [12]. This forms a DSM2
cluster composed of a large quantity of disclinations,
which are constantly elongated, split, and transported by
fluctuating turbulent flow around. While DSM2 may co-
exist with DSM1 in a regime of spatiotemporal intermit-
tency [13], for larger voltages we observe growing DSM2
clusters driven by the above-mentioned stochastic local
contamination processes.
Our experimental setup consists of a quasi-two-

dimensional sample cell, an optical microscope, a thermo-
controller, and an ultraviolet pulse laser (see Ref. [13] for

PRL 104, 230601 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
11 JUNE 2010

0031-9007=10=104(23)=230601(4) 230601-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.104.230601


detailed descriptions). The cell is made of two parallel
glass plates with transparent electrodes, which are
spaced by a polyester film of thickness 12 �m enclosing
a region of 16 mm� 16 mm for the convection. We
chose here the homeotropic alignment of liquid crystals
in order to work with isotropic DSM2 growth, which
is realized by coating N, N-dimethyl-N-octadecyl-3-
aminopropyltrimethoxysilyl chloride uniformly on the
electrodes using a spin coater. The cell is then filled with
N-(4-methoxybenzylidene)-4-butylaniline doped with
0.01 wt.% of tetra-n-butylammonium bromide. The cutoff
frequency of the conductive regime [11] is 850� 50 Hz.
The cell is maintained at a constant temperature 25:0 	C
with typical fluctuations in the order of 10�3 K. The con-
vection is observed through the transmitted light from
light-emitting diodes and recorded by a CCD camera.

For each run we apply a voltage of 26 Vat 250 Hz, which
is sufficiently larger than the DSM1-DSM2 threshold at
20.7 V. After waiting a few seconds, we shoot into the cell
two successive laser pulses of wavelength 355 nm and
energy 6 nJ to trigger a DSM2 nucleus [13]. Figure 1
displays typical growth of a DSM2 cluster. We repeat it
563 times to characterize the growth process precisely.

We define the local radius Rðx; tÞ along the circle which
denotes the statistically averaged shape of the droplets, as
sketched in Fig. 1(b). This measures the interfacial width

wðl; tÞ � h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih½Rðx; tÞ � hRil
2il
p i and the height-difference

correlation function Cðl; tÞ � h½Rðxþ l; tÞ � Rðx; tÞ
2i,
where h� � �il and h� � �i denote the average over a segment
of length l and all over the interface and ensembles,

respectively. Both wðl; tÞ and Cðl; tÞ1=2 are common quan-
tities for characterizing the roughness, for which the
Family-Vicsek scaling [Eq. (1)] is expected.

This is tested in Fig. 2. Raw data of wðl; tÞ and Cðl; tÞ1=2
measured at different times [Figs. 2(a) and 2(b)] grow
algebraically for short length scales l � l� and converge
to constants for l � l� in agreement with Eq. (1). The
power � of the algebraic regime measured in the last frame
t ¼ 28:4 s is found to be � ¼ 0:50ð5Þ. Here, the number in
the parentheses indicates the range of error in the last digit,
which is estimated both from the uncertainty in a single fit
and from the dependence on the fitting range. The found
value of � is in good agreement with the KPZ roughness
exponent �KPZ ¼ 1=2.
The temporal growth of the roughness is measured by

the overall width WðtÞ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih½Rðx; tÞ � hRi
2ip
and the pla-

teau level of the correlation function, CplðtÞ1=2, defined as
the mean value of Cðl; tÞ1=2 in the plateau region of
Fig. 2(b). Both quantities show a very clear power law t�

with � ¼ 0:336ð11Þ [Fig. 2(c)] in remarkable agreement
with the KPZ growth exponent �KPZ ¼ 1=3. Furthermore,
rescaling both axes in Fig. 2(a) with the KPZ exponents,
we confirm that our data of wðl; tÞ collapse reasonably well
onto a single curve [Fig. 2(d)]. A collapse of the same

quality is obtained for Cðl; tÞ1=2. We therefore safely con-
clude that the DSM2 interfacial growth belongs to the
(1þ 1)-dimensional KPZ class. In passing, this rules out
the logarithmic temporal scaling claimed by Escudero for
the droplet geometry [14].
Our statistically clean data motivate us to test further

predictions on the KPZ class beyond those for the scaling.
In this respect one of the most challenging benchmarks
may be the asymptotic distribution of height fluctuations,
calculated exactly for solvable models [5,6]. A general
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expression was proposed by Prähofer and Spohn [6], which
reads hðtÞ ’ v1tþ ðA2�t=2Þ1=3	 with A � D=2�, the
asymptotic growth rate v1, and a random variable 	
obeying the Tracy-Widom (TW) distribution [15], or the
(rescaled) largest eigenvalue distribution of large random
matrices. The random matrices are from the Gaussian
unitary and orthogonal ensemble (GUE and GOE) [16]
for curved and flat interfaces, respectively. This implies
an intriguing relation to the random matrix theory and
requires no fitting parameter provided that the values of
the two KPZ parameters � and A are measured. The
prediction was tested once for flat interfaces in the paper
combustion experiment [17] with an apparent agreement.
However, the authors had to shift and rescale the distribu-
tion function for want of the values of the KPZ parameters,
in which case the difference among the predicted distribu-
tions and the Gaussian one is unpronounced. They also had
to discard data subject to intermittent advance of burning
fronts due to quenched disorder [17]. Therefore, a quanti-
tative test of Prähofer and Spohn’s prediction has not been
carried out so far.

We first measure the value of � experimentally. For the
circular interfaces, � is given as the asymptotic radial
growth rate, which has a leading correction term as � ’
dhRi=dtþ avt

�2=3 for t ! 1 [18]. This relation is indeed
confirmed in Fig. 3(a) and yields a precise estimate at � ¼
35:40ð23Þ �m=s.

The parameter A can be determined, at least for flat
interfaces, from the amplitude of Cðl; tÞ and wðl; tÞ through
C ’ Al and w2 ’ Al=6 in the limit t ! 1 [18]. Figure 3(b)
shows Cðl; tÞ=l against l for different times t. A similar
series of plots is obtained for 6w2=l. The value of A can be
estimated from the plateau level or the local maximum of
these plots, but we find that these estimates increase slowly
with time and do not agree with each other (inset). This
allows us to have only a rough estimate A 
 10 �m for the
range of time we study.

Now we test Prähofer and Spohn’s prediction for the
circular interfaces:

RðtÞ ’ �tþ ðA2�t=2Þ1=3	GUE (4)

with a random variable 	GUE obeying the GUE TW dis-
tribution. We first compute the cumulant hRnic, for which
Eq. (3) implies hRnic ’ ðA2�=2Þn=3h	n

GUEictn=3 for n � 2.
Our data indeed show this power-law behavior in time
[Fig. 4(a)], though higher order cumulants are statistically
more demanding and hence provide less conclusive results.

We then calculate the skewness hR3ic=hR2i3=2c and the
kurtosis hR4ic=hR2i2c, which do not depend on the parame-
ter estimates. The result in Fig. 4(b) shows that both
amplitude ratios asymptotically converge to the values of
the GUE TW distribution, about 0.2241 for the skewness
and 0.09345 for the kurtosis [6], and clearly rules out the
GOE TW and Gaussian distributions. Conversely, if we
admit the GUE TW distribution, the amplitude of hR2ic
offers a precise estimate of A at 9:98ð7Þ �m, which is
consistent with the direct estimate obtained above and
hence used in the following.
Histograms of the local radius Rðx; tÞ are then made and

shown in Fig. 4(c) for two different times as functions of

q � ðR� �tÞ=ðA2�t=2Þ1=3, which corresponds to 	GUE if
Eq. (3) holds. The experimental distributions show remark-
able agreement with the GUE TW one without any fitting,
apart from a slight horizontal translation. Indeed, time
series of the difference between the nth order cumulants
of q and 	GUE [Fig. 4(d)] reveal that the second to fourth
order cumulants of q converge quickly to the GUE TW
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values, while the first order one, i.e., the mean, algebrai-
cally approaches it with a power close to �1=3 (inset).
This is theoretically reasonable behavior which stems from
the existence of an additional constant term in Eq. (3).
Therefore, we conclude that the local radii of the DSM2
nuclei asymptotically obey the GUE TW distribution at
least up to the fourth order cumulants, confirming the
prediction of Prähofer and Spohn.

We also measure the two-point correlation function
C2ðl; tÞ � hRðxþ l; tÞRðx; tÞi � hRi2. Theory predicts that
C2ðl; tÞ is asymptotically described by the Airy2 process
A2ðtÞ or by the dynamics of the largest eigenvalue in
Dyson’s Brownian motion of GUE matrices [16] as

C2ðl; tÞ ’ ðA2�t=2Þ2=3g2ðuÞ with g2ðuÞ � hA2ðuþ
tÞA2ðtÞi and u � ðAl=2ÞðA2�t=2Þ�2=3 [19]. Our experi-
mental data confirm this with an algebraic finite-time
correction consistent with the power �1=3 (Fig. 5).

In comparison with past experimental studies showing
diverse scalings, one may wonder why the liquid crystal
turbulence exhibits such clear KPZ-class behavior. We
consider that the following three factors are essential.
(i) The growth of DSM2 results from strictly local pro-
cesses due to the turbulent flow on the interfaces and not
from inward or outward interactions of the cluster, which
could induce long-range effects and affect the universality.
(ii) The stochasticity of the process stems from intrinsic
turbulent fluctuations overwhelming quenched disorder.
(iii) Good controllability and fast response of the liquid
crystals allowed us to repeat hundreds of experiments in
the same conditions, leading to statistically reliable data.
The reproducibility of the presented results was confirmed
with different voltages and spatial resolutions with the
same quality of data (not shown).

In conclusion, measuring the growth of DSM2 nuclei in
the electroconvection, we have found the circular interface
roughening clearly characterized by the scaling laws of the
KPZ class in 1þ 1 dimensions. Moreover, we have shown
without fitting that the fluctuations of the cluster local
radius asymptotically obey the Tracy-Widom distribution

of the GUE random matrices and revealed the finite-time
effect. Together with the agreement in the two-point cor-
relation, our experimental results quantitatively confirm
the geometry-dependent universality of the (1þ 1)-
dimensional KPZ class prescribing detailed information
of the scale-invariant fluctuations. In this respect, inves-
tigations of flat interfaces in the same system are of out-
standing importance and are in progress.
We acknowledge enlightening discussions with H.

Chaté, M. Prähofer, T. Sasamoto, and H. Spohn. We also
thank M. Prähofer and F. Bornemann for providing us with
numerical values of the TW distributions and the covari-
ance of the Airy2 process. This work is partly supported by
JSPS and by MEXT (No. 18068005).
Note added in proof.—After submission of this Letter,

Sasamoto and Spohn reported an exact solution of the
(1þ 1)-dimensional KPZ equation [20], which offers a
clear theoretical ground of our experimental results.

*kazumasa@daisy.phys.s.u-tokyo.ac.jp
[1] A.-L. Barabási and H. E. Stanley, Fractal Concepts in

Surface Growth (Cambridge University Press,
Cambridge, England, 1995).

[2] F. Family and T. Vicsek, J. Phys. A 18, L75 (1985).
[3] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56,

889 (1986).
[4] H. Spohn, Physica (Amsterdam) 369A, 71 (2006).
[5] K. Johansson, Commun. Math. Phys. 209, 437 (2000).
[6] M. Prähofer and H. Spohn, Physica A (Amsterdam) 279,

342 (2000); Phys. Rev. Lett. 84, 4882 (2000).
[7] J. Wakita et al., J. Phys. Soc. Jpn. 66, 67 (1997).
[8] J. Maunuksela et al., Phys. Rev. Lett. 79, 1515 (1997); M.

Myllys et al., Phys. Rev. E 64, 036101 (2001).
[9] M. Degawa et al., Phys. Rev. Lett. 97, 080601 (2006).
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Measuring maximal eigenvalue distribution of Wishart random matrices with coupled lasers
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We determined the probability distribution of the combined output power from 25 coupled fiber lasers and
show that it agrees well with the Tracy-Widom and Majumdar-Vergassola distributions of the largest eigenvalue
of Wishart random matrices with no fitting parameters. This was achieved with 500 000 measurements of
the combined output power from the fiber lasers, that continuously changes with variations of the fiber lasers
lengths. We show experimentally that for small deviations of the combined output power over its mean value the
Tracy-Widom distribution is correct, while for large deviations the Majumdar-Vergassola distribution is correct.

DOI: 10.1103/PhysRevE.85.020101 PACS number(s): 05.40.−a, 02.10.Yn, 42.55.Wd, 42.60.Da

Random matrix theory has been exploited in numerous
research fields ranging from nuclear spectra to quantum
transport, models of quantum gravity in two dimensions,
mesoscopic nonlinear dynamics, atomic physics, wireless
communications, and multidimensional data analysis [1–5].
Of special interest are the minimal and maximal eigenvalues
of random matrices, that determines for example the conduc-
tance fluctuations in two- and three- dimensional Anderson
insulators [6,7]. An analytical expression describing typical
deviations of the maximal eigenvalue was presented in the
1990s by Tracy and Widom (TW) [8,9] initiating many further
theoretical developments in random matrix theory [10,11].
Recently, Majumdar and Vergassola (MV) calculated the prob-
ability of large deviations of the maximal eigenvalue [12–14]
above the mean and Pierpaolo, Majumdar, and Bohigas (PMB)
calculated below the mean. The MV and the PMB distributions
were numerically confirmed, but so far eluded experimental
demonstration.

In this Rapid Communication, we provide the first exper-
imental observation of the MV and PMB distributions in a
physical system and connect the field of coupled random lasers
to random matrix theory. We report our measured distribution
of the combined output power from an array of 25 coupled
fiber lasers whose cavity lengths randomly fluctuate in time.
We found that the measured distribution of the combined
output power agrees well with the distribution of maximal
eigenvalue of Wishart random matrices as predicted by TW
and MV. For deviations close to the mean value, the measured
distribution is shown to have a universal shape that agrees with
the TW distribution. For large deviations from the mean value
the measured distribution deviates from the TW distribution,
but agrees well with the MV and PMB distributions over more
than five decades with no fitting parameters. To account for
this agreement, we present a heuristic model that illustrates
the relation between the output power distribution from our
array of coupled lasers to the maximal eigenvalue of Wishart
random matrices.

Our experiment consisted of an array of 25 coupled fiber
lasers schematically presented in Fig. 1. Each fiber laser
was comprised of a ytterbium doped double clad fiber with
lengths that varied from 1.3 m to 1.7 m, a high reflecting

*nir.davidson@weizmann.ac.il

fiber Bragg grating (FBG) at the rear end of the fiber,
and a low reflecting FBG at the front of the fiber. Each
fiber lasers was end pumped by a stabilized diode laser of
975 nm wavelength. The length of each fiber laser was about
5 m and the output wavelength was 1070 nm with a band-
width of 10 nm. Accordingly, there were 100 000 available
frequencies (longitudinal modes) for each laser. The light
emerging from all the fiber lasers was collected with a lens
that was focused onto a detector to obtain the combined
output power. The fiber lasers were arranged in 5 × 5 array,
where the coupling between them was achieved by means of
four coupling mirrors. By controlling the orientations of the
coupling mirrors we could realize a variety of connectivities
for the fiber lasers in the array, and in our experiments we
concentrated on the one-dimensional and two-dimensional
connectivities. Details about the experimental configuration,
coupling arrangement, and connectivity manipulations were
presented in previous work [15].

The lasers were operated close to threshold to maximize
mode competition and ensure that lasing will only occur at
the mode where the losses are minimal [16,17]. We measured
the combined output power from the array over a duration of
60 hours. The correlation time of the output power fluctuations
was found to be shorter than 0.5 s; hence we obtained over
500 000 uncorrelated measurements. Representative results
of the combined output power over its mean as a function
of time, with and without coupling between the lasers, are
presented in Fig. 2. These are shown over a relatively short
time duration, but their behavior was similar throughout the
60 hours measurement. As seen, the power fluctuations with
coupling (dashed curve) are much larger than those without
coupling between the lasers (solid curve), indicating that the
fluctuations result from the coupling between the lasers [18].

Next we compared the measured results to the distribution
of the largest eigenvalues of Wishart random matrices. Figure 3
presents the probability distributions of the measured output
power in a one-dimensional connectivity (circles) and in a
two-dimensional connectivity (asterisks) where the position of
the maximum is chosen according to the maximum of the TW
distribution (solid curve) [19]. We present the TW distribution
using the scaled units [12]

x = t − 4N

N
, (1)
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FIG. 1. (Color online) Experimental arrangement for measuring
the combined output power distribution of 25 coupled fiber lasers.
FBG, fiber Bragg gratings that serve as rear mirror (>99% reflectivity)
and front mirrors (∼5% reflectivity); E(i), the complex electric field
in the ith fiber near the rear FBG for each fiber laser; li , the length of
the ith fiber. Mi,j corresponds to the propagation matrix for a single
round trip in the cavity and includes the propagation in each fiber,
the output coupler (∼2% reflectivity), and the coupling between the
different fibers (∼8% coupling). The light emerging from all the fiber
lasers was collected with a lens that was focused onto a detector
to obtain the combined output power. Details about the experimental
configuration, coupling arrangement, and connectivity manipulations
were presented in previous work [15].

where t is the largest eigenvalue and N is the matrix size.
As evident, there is a very good agreement between the
probability distributions of the experimental results and the
TW distribution both for the one-dimensional connectivity and
for the two-dimensional connectivity.

For closer inspection of the tails of the measured distri-
butions, we present in Fig. 4 the probability distributions of
the measured combined output power, for one-dimensional
connectivity [circles, Fig. 4(a)] and two-dimensional connec-
tivity [asterisks, Fig. 4(b)], together with the TW distribution
(solid curves) and MV and PMB distributions (dashed curves)
on a logarithmic scale. The insets illustrate the connectivities
between the 25 fiber lasers [15].
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FIG. 2. (Color online) Representative experimental results of the
combined output power from the 25 fiber lasers as a function of time.
Solid curve (red) - without coupling between the lasers; Dashed curve
(blue) - with coupling between the lasers. These results indicate that
the fluctuations are caused by the coupling between the lasers.
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FIG. 3. (Color online) Probability distribution of the scaled
combined output power. Circles, experimental results in a one-
dimensional connectivity; asterisks, experimental results in a two-
dimensional connectivity; solid curve, Tracy-Widom (TW) distri-
bution. As seen, there is a very good agreement between the
probability distributions of the experimentally measured results and
the TW distribution in linear scale for both connectivities. For closer
inspection of the fit to the tails of the distribution see Fig. 4.

The PMB distribution, plotted with no fitting parameters,
is [14]

P (x) = c1 exp[−N2�−(−x)] (2)

and the MV is [12]

P (x) = c2 exp [−N �+ (x)] , (3)

where c1 = 0.5 and c2 = 0.0063 were found using numerical
simulation in [12], and the functions �+(x) and �−(x) are

�+(x) = x

2
+ 1 − ln(x + 4) + 1

x + 4
G

(
4

4 + x

)
(4)

and

�−(x) = ln

(
2√

4 − x

)
− x

8
− x2

64
, (5)

with G(z) = 3F2[{1,1,3/2},{2,3},z] a hypergeometric func-
tion.

As evident from Fig. 4, there are significant systematic
deviations of the measured distribution from the TW dis-
tribution, both at values which are much larger or much
smaller than the mean value [12–14]. However, there is a
very good agreement between the experimental results and
the MV and the PMB distributions for both connectivities,
without any fitting parameters. The experimental results of the
one-dimensional and the two-dimensional connectivities are
essentially identical indicating the universality of the maximal
eigenvalue distribution.

In order to illustrate the relation between the distribution of
the measured power fluctuations and the maximal eigenvalues
of Wishart random matrices, we developed a simple linear
model. While an array of coupled fiber lasers is essentially a
nonlinear system, many of its properties can be determined by
its linearized round trip propagation matrix [16]. For example,
the eigenvectors of this matrix correspond to the various global
modes of the array while the eigenvalues are λn = 1 − αn,

020101-2
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FIG. 4. (Color online) Probability distribution of the scaled com-
bined output power for (a) one-dimensional connectivity (circles),
and (b) two-dimensional connectivity (asterisks) in logarithmic
scale. Solid curves, Tracy-Widom (TW) distribution; dashed curves,
Majumdar-Vergassola (MV) distribution for eigenvalues much larger
(right green) and Pierpaolo, Majumdar, and Bohigas (PMB) distribu-
tion for eigenvalues much smaller (left blue) than the mean, with no
fitting parameters. As seen, at the tails of the measured distribution
there are significant systematic deviations from the TW distribution.
However, there is a very good agreement for both connectivities,
between the measured results and the MV and PMB distributions at
values which are much larger and much smaller from the mean value,
respectively. Insets illustrate the connectivities between the 25 fiber
lasers in each case [15].

where αn is the loss of mode n [20,21]. The tendency of lasers
to minimize losses will lead the coupled lasers to operate in the
eigenmode corresponding to the largest eigenvalue [17,22].

We start by letting the electric field E(i) near the rear FBG
of each fiber laser be a component of a vector of the total
input field |E0〉 (see Fig. 1). After propagating one round trip,
the field |E1〉 can be described as |E1〉 = M |E0〉, where M
is a 25 × 25 round trip propagation matrix. Details on the
derivation of a round trip propagation matrix are presented
in [21]. Specifically, the elements along the diagonal of M
denote the self-feedback light for each laser, as

Mi,i = (1 − 4κ)e2iki li , (6)

where κ is the coupling strength between two adjacent lasers,
li the length of the ith fiber laser, and ki the wave vector
of the ith laser out of all the 100 000 available frequencies.
The off-diagonal elements of M denote the coupling between
the lasers. For adjacent lasers which are not coupled the
corresponding elements are zero. However, when the adjacent

lasers are coupled the corresponding elements above the
diagonal are

Mi,j = κeiki (li+lj ), (7)

and below the diagonal the elements are

Mi,j = κeikj (li+lj ). (8)

In a resonant cavity at steady state, the vector |E1〉 should
be one of the eigenvectors of M, so |E1〉 = λn |E0〉 where
λn is inversely proportional to the losses in a single round
trip. For many round trips, a complex λn will increase the
losses due to interference. These considerations imply that to
ensure minimal losses in the combined cavity λn should be real
and maximal [16]. Due to the mode competition between the
eigenvectors of M on the nonlinear gain, the coupled lasers
will lase at the mode with the minimal losses [17], which
corresponds to the eigenvector of the round trip propagation
matrix with the maximal real eigenvalue. For high gain lasers
such as fiber lasers, the output power of a mode is proportional
to its eigenvalue [21]. Therefore, the combined output power
of the array provides a direct measure for the value of the
largest eigenvalue of the propagation matrix.

Due to thermal and acoustical fluctuations the length
of each fiber laser changes rapidly such that liki mod
2π is effectively a random phase [18,23]. These random
phases, after each variation in the fiber lengths, result in
a different random round trip propagation matrix. The time
scale of the length fluctuations in our system is much longer
than the relaxation oscillation time of the lasers [16], justifying
the steady state assumption. Accordingly, the distribution of
the combined output power from the array fits the distribution
of the largest eigenvalue of random matrices.

The probability for finding a single common wave vector k

such that all the lasers in the array will have the same phase
and a real valued λn is exponentially small in the number
of lasers and is ∼10−5 for 25 lasers [24,25]. So, when the
length of the fibers is set after each fluctuation, the lasers try
to find the k vector which will satisfy the highest number of
lasers. Therefore, the lasers group in several clusters, each
with its own wave vector [26]. In each cluster the coupling
can be either +κ or −κ . Since the light that is coupled from
one cluster to the other is essentially lost, the structure of the
round trip propagation matrix M is block diagonal, where the
elements along the diagonal are 1 − 4κ and the off-diagonal
elements when there is coupling between two specific lasers
are ±κ . So after each fluctuation we have a different matrix
where the blocks sizes and locations and the signs of the
off-diagonal elements are random. To show that such a
round trip propagation matrix M fall on the Wishart random
matrix universality class, we simulated 104 different random
realizations of our array with small (∼10 μm) fluctuations in
the lengths of each fiber. In each realization we found the
clusters with common wave vector that yield minimal losses
and obtained the corresponding round trip propagation matrix
M [27]. Since M represents the round trip propagation in the
cavity we can define a matrix X which represents a single
pass in the cavity, so, M = XXT . We evaluated the probability
distribution of each element in X and found it to have a
Gaussian shape (data not shown), indicating that the round trip
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propagation matrix M is indeed a Wishart matrix. Therefore,
the distribution of the combined output power from the array
should fit to the TW, MV and PMB distributions.

To conclude, we presented an experimental configuration
of 25 coupled fiber lasers and showed that the probability
distribution of their combined output power agrees well with
the distribution of the largest eigenvalue of Wishart random
matrices, namely the Tracy-Widom, Majumdar-Vergassola
and Pierpaolo-Majumdar-Bohigas distributions. We believe
that such a configuration can be extended to investigate
symplectic and non-Hermitian random matrices with various
connectivities by varying the polarizations and the losses in
the fiber lasers. Moreover, while in this Rapid Communication

we investigated the combined output power from an array of
coupled lasers operating close to threshold, it is possible to
operate the lasers far above their threshold and to investigate
the phase locking across the array [15,27]. Such measurement
of phase locking gives a direct measure for the number of lasers
in each cluster and thereby enables investigation of coupled
ensembles of oscillators where a common frequency for all the
oscillators cannot be found.

This research was supported by the Israeli Ministry of
Science and Technology and by the USA-Israel Binational
Science Foundation. We are grateful to Eugene Kanzieper for
his helpful comments.
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ON THE FINITE HILBERT TRANSFORMATION

y = (1—<*)/(!+<2) we have

203

and consequently also

(13)
Successively we apply the convolution theorem (5) to the pair of
functions ^x)

which is certainly correct because the function (f>i(x), being bounded,
belongs to the class IP' with any large p'. We have thus (almost
everywhere)

But, on the other hand,
* 1

i r v—
y—

Hence

i

- J <t>(y) dy

and we obtain

- j 4>{y) dy,

where, considering (12), the constant
i

= - f
•n J

- 1

(15)

assumes the character of an arbitrary constant.
5. The precise significance of the previous result is naturally the

following: If the given equation has a solution of the class IP (p > 1), then
this solution must necessarily have the form (14).
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ABSTRACT 

We give a simple characterization of the moduli of the eigenvalues of a complex 

Gaussian matrix in terms of x2 distributions. We also show that the spectral radius of a 

k x k complex Gaussian matrix is stochastically smaller than the norm of a k x (k + 1) 

reai Gaussian matrix. 

INTRODUCTION 

Theorem 1.1 below gives a simple characterization of the mod& of the 

eigenvalues of a k x k complex Gaussian matrix in terms of x2 distributions. 
It states that the squared moduli of the eigenvalues behave like independent 
& distributions as i runs from one to k. The argument is similar to that of 
Ginibre [3], but the emphasis there is on the spectral radius. Theorem 2.2 
gives a relationship between the distribution of the spectral radius of a k x k 
complex Gaussian matrix, the norm of a k x (k + 1) real Gaussian matrix, and 
the x& distribution. In particular, we establish a stochastic ordering for these 
three random variables. We begin with basic definitions and notation. 

DEFINITION. A real Gaussian matrix is a matrix whose elements are 
independent standard Gaussian variables. A complex Gaussian matrix is a 
matrix whose real and imaginary parts are independent real Gaussian matrices. 

NOTATION. Ml:!, will denote a k x n real Gaussian matrix. Mff,), will 
denote a k x n complex Gaussian matrix. We will assume that k < n. 
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NOTATION. For any matrix M, 11 M 11 2 will denote the operator norm of M 

with respect to the Euclidean norm. For any square matrix M, u(M) will 
denote the spectral radius of M, and per M will denote the permanent of M. 

NOTATION. { Xi} will denote independent nonnegative random variables 
such that Xi2 has a x’ distribution. 

1. GAUSSIAN MATRICES AND X2 DISTRIBUTIONS 

THEOREM 1.1. The collection of moduli of the eigenvalues of Mf:i has the 

same distribution as the collection of random variables { Xzi}i, 1,..., k. 

Theorem 1.1 will follow immediately from Lemma 1.4 and Lemma 1.5. 

From this theorem we have the immediate 

COROLLARY 1.2. Prob[a( Mffi) > z] = Prob[max { X,i)i=l,k > z]. n 

For a discussion of a( Mill), 

’ 

see Geman [2]. We will also make use of an analog 
of Corollary 1.2: 

THEOREM 1.3. Prob[ II Mi,?II 1 > ~1 2 Probbax{ Xp(n+k-Pi+l)Ii= I;.., k > 
zl. 

Proof. This follow from inspection of the columns of the semidiagonaliza- 
tion of Gaussian matrices discussed in Silverstein [5]. Silverstein only proves 
the real case, but as mentioned by Edelman [l], his argument can be general- 
ized. n 

LEMMA 1.4. Let rl 2 * * * > rk be the moduli of the eigenvalues of M f h 
Then the joint density of ( ri)i= 1, , k is given by 

where 

Proof. Let Ar,* * *, Xk be the eigenvalues of M,$, 1 X, ( > . *. > ) hk 1. 
Then the joint density of (A,),, i,, , k is given by 

l3kl-I (Xi - Xj12eXP 
i<j 

where 
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-see Ginibre [3] for a proof and discussion. The quantity n ( Xi - Aj ( ’ is the 
i<j 

squared modulus of the Vandermonde determinant: 

where Sk denotes the permutation group on k symbols. Write hi = ri8*. If 
a(j) + a’(j) for some j, then 

fi .p(i)- l&o(i)- I)& b r;‘(i)-lei(u’(i)- 1)0, 

i=l i=l 

dej = 0. 

Thus 

= (29r)kper[ry-2]ij=l __, k. , . 1 

Multiplying this by 

establishes the lemma. n 

LEMMA 1.5. Assume we are given an ordered k-tuplet of independent 
random variables ( Ai)i, 1,, , k, with corresponding densities ( pi)i= 1,. , k. De- 
fine a new k-tuplet of random variables, ( Bi)i, 1,, , k, as a random permutation 
of the (A,), each permutation considered equal in probability. Then the joint 
density of the random vector ( Bi)i, 1., k is given by (l/k!) 

Per[pi( Bj)li,j= 1,. , k. n 

2. BARGMANN-MONTGOMERY-VON NEUMANN TYPE ESTIMATES 

LEMMA 2.1. 

Prob[ XB(n+k- 1) > z] G Prob[ llM~~~ll2 > z] 
< I’( /3/2)r( P( n + k - 1)/2) 
. 

r( Bk/2)r( Pn/2) 
Prob[ X&n+k- 1) >z]. 
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Furthermore the tight hand side is asymptotic to equality as .z -+ 00. 

It follows that this bound is optimal among all bounds of the form 

CrProb[Xj>~] <Prob[J(M~~~J),>a] <C,Prob[Xj>~], 

where C,, C,, and j depend on n, k, and /3, but not on z. 

Proof. The left hand inequality follows immediately from theorem 1.3. 
The proof of the right hand inequality can be found in Goldstine and von 

Neumann [4, 11.8.21. Goldstine and von Neumann restrict their attention to 

the real square Gaussian matrices, but the argument can be generalized. See 

Edelman [l] for a discussion. H 

THEOREM 2.2. 

Prob[ X,, > z] < Prob[ o(M&) > z] 

< Prob[ ]]Mbr,)k+i I] a > z] < Zk-’ PrOb[ Xzk > ~1. 

Furthermore the left and tight hand inequalities are asymptotic to equality as 
z -+ 00. 

Proof. The left hand inequality follows from Corollary 1.2. It can be seen 

to by asymptotic by inspection of the density given in Lemma 1.4. The central 

inequality follows from Corollary 1.2 and Theorem 1.3. The right hand 

inequality is a special case of Lemma 2.1. n 
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Abstract Finding the global minimum of a cost function given by the sum of a quadratic
and a linear form in N real variables over (N −1)-dimensional sphere is one of the simplest,
yet paradigmatic problems in Optimization Theory known as the “trust region subproblem”
or “constraint least square problem”. When both terms in the cost function are random this
amounts to studying the ground state energy of the simplest spherical spin glass in a random
magnetic field. We first identify and study two distinct large-N scaling regimes in which
the linear term (magnetic field) leads to a gradual topology trivialization, i.e. reduction in
the total number Ntot of critical (stationary) points in the cost function landscape. In the first
regime Ntot remains of the order N and the cost function (energy) has generically two almost
degenerate minima with the Tracy-Widom (TW) statistics. In the second regime the number
of critical points is of the order of unity with a finite probability for a single minimum. In that
case the mean total number of extrema (minima and maxima) of the cost function is given
by the Laplace transform of the TW density, and the distribution of the global minimum
energy is expected to take a universal scaling form generalizing the TW law. Though the
full form of that distribution is not yet known to us, one of its far tails can be inferred from
the large deviation theory for the global minimum. In the rest of the paper we show how to
use the replica method to obtain the probability density of the minimum energy in the large-
deviation approximation by finding both the rate function and the leading pre-exponential
factor.
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thesis

Equivalence principle
A few weeks ago I was lucky enough to be 
present at a lecture on statistical physics by 
Satya Majumdar, of the CNRS, University 
of Paris-Sud. Contrary to prevailing norms, 
Majumdar didn’t use a laptop, and never 
showed a single PowerPoint slide. He wrote 
out words and equations with chalk on a 
blackboard. I’m not sure I’ve ever learned so 
much in only 30 minutes.

Majumdar started with some history 
about the growth of bacterial colonies. Seed 
a new colony on the surface of a nutrient 
medium, and it will grow into a vaguely 
circular blob, yet with an outer edge that 
is rough and gets rougher with time. Back 
in 1961, Murray Eden tried to explain the 
origin of this roughness, using a simple, 
linear mathematical model for diffusion 
driven by random noise. That model didn’t 
work quantitatively.

Yet Eden helped kick off a study of 
irregular surfaces, growth processes and 
interfaces, which continues today. Surprising 
progress over the past two decades, 
Majumdar suggested, has researchers 
thinking they’re just about to discover 
something truly profound. Unexpected links 
keep turning up between problems with no 
obvious connection.

In 1986, Mehran Kardar, Giorgio Parisi 
and Yi-Cheng Zhang modified Eden’s 
model by including the lowest order 
nonlinear term. This model — known as the 
KPZ equation — does accurately describe 
how the irregular fluctuations grow in both 
space and time. Specifically, it predicts two 
exponents detailing how the mean square 
size of the fluctuations grows with time or 
when considering increasingly larger regions 
along the front.

If KPZ applied only to bacteria, it 
would be of marginal importance. But 
in the 1980s, as Majumdar recounted, in 
experiments and simulations physicists 
discovered that the KPZ exponents also 
fit lots of other irregular growth patterns 
arising in models of solid surface growth 
or in the way polymers orient themselves 
over disordered lattices, as well as in 
interface fluctuations of the bacterial type. 
To a large degree, KPZ seemed to capture 
a universal pattern in the emergence 
of fluctuations and roughness during 
irregular growth.

But how ‘universal’ is universal? As 
Majumdar stressed, this KPZ ‘universality’ 
referred only to the two exponents 
associated with the width (or second 

moment) of the distribution of fluctuations.” 
It was unknown if the universality might 
run deeper — to the entire distribution 
of fluctuations — or might only 
be approximate.

That was the end of the first part of the 
talk. Majumdar then turned to something 
very different: random matrices.

Imagine an N × N matrix with the 
entries being random numbers taken from 
a Gaussian distribution, and ask: what is 
the distribution of the largest eigenvalue 
of such a matrix? Random matrices 
were first introduced into physics by 
Eugene Wigner, and their study has found 
an extremely wide range of applications. 
In 1993, Majumdar noted, Craig Tracy and 
Harold Widom made a major breakthrough 
by calculating exactly the probability 
distribution of the largest eigenvalue in 
the large N limit. This eigenvalue has 
mean value √(2N), and fluctuates over 
a range of width N−1/6; the precise shape 
of the distribution is now called the 
Tracy–Widom distribution.

So what? Well, Majumdar went 
on to another famous mathematical 
problem — the Ulam problem, named after 
mathematician Stanislaw Ulam. Consider 
the N! permutations of the first N integers 
{1, 2, 3, ..., N}. For each permutation, list 
all the possible increasing subsequences 
and then find the longest one. For N = 5, 
for example, the permutation {1, 3, 4, 2, 5} 
has increasing subsequences such as {1, 5}, 
{1, 3, 4} and {1, 3, 4, 5}, with the latter 
being the longest. The Ulam problem is to 
determine, for any N, and assuming that all 
N! permutations are equally probable, the 
distribution of the length lN of the longest 
increasing subsequence.

Ulam himself originally found that the 
average of lN is proportional to √N for large 
N. But lN fluctuates about this mean. In 1999, 
mathematicians Jinho Baik, Percy Deift and 
Kurt Johansson derived the full distribution 
for large N, finding it to be 2√N + N1/6χ, 
with χ being a fixed universal function. The 
surprise — the function turned out, again, to 

be the Tracy–Widom distribution, just as for 
random matrices.

Majumdar now moved to the punchline. 
Starting around the year 2000, several 
physicists and mathematicians discovered 
how to make an exact mapping between 
variants of the Ulam problem and models 
of the KPZ type, showing that these 
problems are entirely equivalent. Hence, 
there turns out to be an unexpected link 
between the Tracy–Widom distribution of 
random matrix theories and the physics 
of irregular growth. It is now known 
that a number of discrete models of the 
KPZ universality class follow the exact 
Tracy–Widom distribution, as does the 
continuous KPZ equation itself.

So, that open question about KPZ 
universality is no longer open — the 
universality it describes for a range of 
irregular growth processes indeed holds 
for the entire probability distribution, not 
only for the second moment. A beautiful 
experiment carried out in 2010 by 
Kazumasa Takeuchi and Masaki Sano made 
a precise measurement of the fluctuations 
during the irregular growth of drops of 
a liquid crystal and found precisely the 
Tracy–Widom distribution.

All of which leads to a satisfying 
theoretical unification — and also a 
puzzle. There does seem to be a deep 
universal connection between many 
different processes of the KPZ type. 
Strangely, it is also shared with many other 
things such as random matrices and the 
distribution of sub-sequences within longer 
sequences. What’s going on? Why does this 
Tracy–Widom distribution pop up in so 
many seemingly unrelated problems?

Majumdar ended his talk here, 
suggesting that something enormously 
tantalizing lies just beyond our current 
view. Several recent studies (that he 
mentioned to me after the talk) have 
found signs of a peculiar ‘third-order’ 
phase transition lurking within all of 
these problems. This in turn appears to 
be closely linked to another generic phase 
transition — the Gross–Witten–Wadia 
transition — known from lattice gauge 
theories of quantum chromodynamics. But 
this is still conjecture.

Surprising and fascinating. I only wish 
the lecture could have lasted another 
few hours. ❐

MARK BUCHANAN

Why does this 
Tracy–Widom 
distribution pop up in 
so many seemingly 
unrelated problems?

© 2014 Macmillan Publishers Limited. All rights reserved© 2014 Macmillan Publishers Limited. All rights reserved


	Largest Eigenvalue Distributions
	Simulation
	Painlevé II

	Eigenvalue Spacings Distributions
	Simulation
	Painlevé V
	The Prolate Matrix
	Riemann Zeta Zeros


