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Part A. OFM for jump processes
 Part B. OFM for (non-Markov) Gaussian processes 



Part A: OFM for jump processes

Example: Extinction of established populations

A1. Extinction of a single well-mixed  population due to “demographic noise”

A2. Extinction in two-population systems

                                       

M. Assaf and BM, J. Phys. A: Math. Theor. 50, 263001 (2017)

Part 2A is mostly based on the topical review paper



Extinction of an isolated population after maintaining a thriving long-lived 
state is a dramatic phenomenon. It ultimately occurs, even in the absence of 

detrimental environmental variations,  because of a large fluctuation: an 
unusual chain of random events when population losses dominate over gains

Dodo.   Extinct since the 17th century Passenger pigeon. Extinct since the beginning of 
the 20th century

Tasmanian wolf. Extinct since the 
20th century



                                          

Consider a simple model of population extinction 
due to intrinsic (demographic) noise:

                                          

A single population of n(t) individuals who multiply and die, as 
described by a Markov jump process

                                          



Single population

nnnKnn 00 )(),()( µµll =-=

Continuum deterministic rate equation

Example: SIS model (first appeared as a simple model of epidemic)
Nasell 1996,1999; Andersson and Djechiche 1998, Ovaskainen 2001, …

   Birth and death rates
(or infection and recovery rates)
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Population ultimately goes extinct: 
     A sudden large fluctuation  brings 

it into absorbing state n=0
     

Interesting to predict:

- Mean time to extinction (MTE) 
- Extinction time statistics
- Quasi-stationary probability distribution of population sizes 

Discreteness of individuals and stochastic character of birth-death 
processes make a big difference!

a Monte Carlo simulation of the SIS model



Pn(t) : probability of observing n individuals at time t
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P0(t) : probability of population extinction at time t

birth

Master equation for the Markov jump process

Previously available analytical methods for the MTE:
• single-step processes: exact solution, then asymptotics. Inapplicable to non-
single-step processes
• Fokker-Planck approximation (aka “diffusion approximation”) to the master 
equation: leads to exponentially large errors in the MTE



At t>>tr extinction of established population proceeds as 
exponential decay of a long-lived quasi-stationary distribution (QSD): 

the first excited eigenstate of the master equation
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pn and    are the lowest non-trivial eigenstate and inverse eigenvalue 
of linear eigenvalue problem

: MTE, very large at K>>1

t

pn: QSD
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pn can be found in the WKB approximation: one of the names of the OFM

Kubo, Dykman et al, Elgart and Kamenev, Assaf and M, Kessler and Shnerb,…
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where, for n>>1, we treat S(q) as a smooth function
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The WKB ansatz
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In the leading order in 1/K we obtain a time-independent
Hamilton-Jacobi equation

with the Hamiltonian



Relaxation trajectory: p=0, deterministic rate equation

The optimal path to extinction is a zero-energy trajectory 
of effective mechanical system

The optimal path to extinction – activation trajectory – is a heteroclinic 
trajectory connecting fixed points (q=q1, p=0) and (q=0, p=-ln R0) 

It does not coincide with the time-reversed relaxation trajectory!
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extinction rate function
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Mean time to extinction is, up to a pre-factor, 

Pre-exponential factor can be also calculated, by matching the subleading-order WKB 
solution with a recursive solution of the master equation for small n

 M. Assaf and BM 2007,2010, Kessler and Shnerb 2007 

exponentially long in K

Close to the transcritical bifurcation, d=R0-1<<1, the result is 
universal for a whole class of models:
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overdamped “particle motion in a potential”

SIS model: no Allee effect Allee effect
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Now let’s go back to the deterministic rate equation and rewrite it as

bistability: q=0 and q=q2monostability: q=q1

Warder C. Allee (1885-1955)



Using WKB approximation

Mean time to extinction 
is, up to pre-exponent, 

)exp(~ SKDtSD
Elgart and Kamenev 2006

Prefactor has been also determined 
BM and P.V. Sasorov 2009, C. Escudero and A. Kamenev 2009, M. Assaf and BM 2010

A different heteroclinic 
trajectory in q,p plane

Mean time to extinction with account of Allee effect

Close to the saddle-node bifurcation, d<<1, the result is 
universal for a whole class of models with strong Allee effect:

( ) 1),1(,exp~ 33 >>= dadat KOK



Captures essence of most common childhood diseases that confer 
long-lasting immunity: measles, mumps and rubella 

Two-population systems: extinction of epidemics

Example: SI (Susceptible-Infected) model with population turnover 
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β < Γ: only infection-free steady state: attracting fixed point S=N, I=0

β > Γ: point S=N, I=0 is repelling. Now attracting endemic  point appears:
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2)/)((4 bbµ GG-< Endemic fixed point is a stable focus

epidemic dynamics is oscillatory: multiple outbreaks of disease

2)/)((4 bbµ GG-> Endemic fixed point is a stable node
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A. Kamenev and BM Phys. Rev. E 77, 061107(2008)

OFM: The most likely disease extinction trajectory is a heteroclinic  orbit 
in a 4-dimensional phase space: it exits from fixed point A and reaches the 

extinction hyperplane x=0 at fixed point B: 

deterministic trajectory
optimal path to disease 
extinction, found numerically

Stochastic dynamics: Pnm(t) is “leaking” into disease-free state.

x=S/N
y=I/N



                                         

Related problems

• Extinction in two-population systems occupying a fixed point: 
other epidemic models (M. Dykman et al. 2008, …), switching between 
active and dormant phenotypes (I. Lohmar and BM 2011), minimizing 
extinction risk by migration between sites (M. Khasin et al. 2012), 
competition between two species (A. Gabel et al. 2013),…

• Optimization of selective vaccination protocols 
M. Khasin et al. 2010, …



Extinction of oscillating populations, 
or extinction from a limit cycle

Example: predator-prey model with prey competition
and predator satiation (Rosenzweig and MacArthur 1963)



Limit cycle

x=R/N 
y=F/N



Stochastic version of the Rosenzweig and MacArthur model

N.R. Smith and BM, Phys. Rev. E 93, 032109 (2016)



Master equation for the stochastic RMA model



OFM Hamiltonian

optimal paths to extinction
§ extinction rates/times
§ relative probabilities of two extinction routes
§ change of these at the Hopf bifurcation of the birth of the limit cycle



Results of part A

• OFM provides a systematic method of evaluating the mean time to extinction 
of long-lived populations.

• More generally, OFM provides a valuable insight into large deviations of 
Markov jump processes. 



Part B: OFM for non-Markov Gaussian processes

Example: Thermally activated particle motion in disordered 
Gaussian potentials

BM, Phys. Rev. E 105, 034106 (2022); 107, 039902 (2023);
A.Valov, N. Levi and BM, arXiv:2405.09850.

Part 2B is based on papers



Simple transport model: overdamped particle in a short-correlated 
quenched disorder potential V (x) in presence of thermal noise

!"
!# =	-

!$(")
!" 	+ 2𝐷	ξ(𝑡)

V(x): disorder potential
𝐷: the particle diffusion coefficient in the absence of disorder
ξ(𝑡):	delta-correlated Gaussian noise with zero mean and	 < ξ(𝑡) ξ 𝑡! >	=	δ	(t-t’)	

At low temperature, 𝐷 → 0, the particle rapidly settles down in a local potential 
minimum, but ultimately escapes by overcoming a potential barrier ∆V=Vmax-Vmin

The mean escape time over one such potential barrier is 𝑇~exp ∆V/𝐷  (Kramers 1940). 
Here the averaging is performed over the thermal noise. 



Our main goal: evaluate the mean escape time <T>, where the additional 
averaging is performed over realizations of the disorder potential

P. G. De Gennes, J. Stat. Phys. 12, 463 (1975)
H. Bässler, Phys. Rev. Lett. 58, 767 (1987)
R. Zwanzig, Proc. Natl. Acad. Sci. USA 85, 2029 (1988)
A. V. Lopatin and V. M. Vinokur, Phys. Rev. Lett. 86, 1817 (2001)
I. Goychuk, V.O. Kharchenko, and R. Metzler, Phys. Rev E 96, 052134 (2017)
M. Wilkinson, M. Pradas, and G. Kling, J. Stat. Phys. 182, 54 (2021)

Activated escape of particles in quenched disorder potentials is an important paradigm in 
many applications:

• diffusive transport of electrons, holes, and excitons in disordered metals or 
semiconductors

• viscous flow of supercooled liquids and glassy matrices

• DNA macromolecules in living systems

• Colloidal systems in quenched random potentials, created by laser light, have recently 
become experimentally available



Let P(∆V) be the distribution of the potential barriers 

Key observation: at D→ 0, <T> is dominated by the ∆V →∞ tail of P(∆V).
This tail is expected to behave as P(∆𝑉 →∞) ∼ exp [−s(∆𝑉)] 

with some a priori unknown s(∆𝑉)

<T>~∫ 𝑑∆V exp
∆V
𝐷

−s(∆𝑉) 	

D→0:  the integral can be evaluated by the Laplace’s method:

<T>~exp
∆Vs

𝐷
−s(∆𝑉s) 	

The saddle point ∆𝑉s	is determined from the equation 𝐷
𝑑𝑠(∆𝑉𝑠)
𝑑∆𝑉𝑠

= 1
We need to determine s(∆𝑉)



V (x)V (x’ )  = κ(x-x’), where 

The inverse kernel K(x-x’) is defined by

3
)*

*
𝑑𝑥"	𝐾(𝑥 − 𝑥")κ 𝑥+ − 𝑥" = δ(𝑥 − 𝑥′)

κ −𝑧 = κ 𝑧

Suppose that the potential 𝑉(𝑥)	is statistically homogeneous and normally 
distributed with zero mean (no systematic bias) and autocovariance



The knowledge of K(z) enables us to write down the statistical weight of 
a given realization of a normally distributed random field V (x). 

Up to normalization, the statistical weight is 
 ~ exp(-S[V(x]), with nonlocal action functional

𝑆[𝑉(𝑥)] =
1
2
3
)*

*
𝑑𝑥	3

)*

*
𝑑𝑥+𝐾 𝑥 − 𝑥+ 𝑉 𝑥 𝑉(𝑥+)

Key observation: The distribution tail P(∆𝑉 →∞), which corresponds to 
atypically large ∆𝑉, is dominated by the optimal (that is, most likely) 

configuration of the potential V (x) conditioned on this ∆𝑉	 .

Recipe: minimize the nonlocal action functional 𝑆[𝑉(𝑥)]  over realizations of V(x) 
subject to constraint on ∆𝑉. The latter can be accounted for via a Lagrange 

multiplier λ.



We can place the adjacent minimum and maximum of V(x) at x=-L and x=L

𝑑𝑉
𝑑𝑥

𝑥 = −𝐿 = 0,
𝑑𝑉
𝑑𝑥

𝑥 = 𝐿 = 0,

If necessary, minimize the action S over all possible values of L 

𝑉 𝑥 = 𝐿 − 𝑉 𝑥 = −𝐿 = ∆𝑉 > 0,   

𝑑2𝑉
𝑑𝑥2

𝑥 = −𝐿 > 0,
𝑑2𝑉
𝑑𝑥2

𝑥 = −𝐿 < 0,

𝑑𝑉
𝑑𝑥

|𝑥| < 𝐿 > 0 differential inequality



Introducing a Lagrange multiplier λ, we can minimize the functional

The linear variation must vanish, leading to the linear integral equation

𝑆λ[𝑉(𝑥)] =
1
2
3
)*

*
𝑑𝑥	{3

)*

*
𝑑𝑥+𝐾 𝑥 − 𝑥+ 𝑉 𝑥 𝑉(𝑥+)

}−λ	𝑉 𝑥 [δ(𝑥 − 𝐿) − δ 𝑥 + 𝐿 ]	 .   

3
)*

*
𝑑𝑥′	𝐾 𝑥 − 𝑥+ 𝑉 𝑥+ =

λ
2
[δ(𝑥 − 𝐿) − δ 𝑥 + 𝐿 ] .

Comparing it with the definition of the inverse kernel 𝐾 𝑧 ,

3
)*

*
𝑑𝑥"	𝐾(𝑥 − 𝑥")κ 𝑥+ − 𝑥" = δ(𝑥 − 𝑥′)

we can easily guess the solution:

𝑉 𝑥 =
λ
2
[κ(𝑥 − 𝐿) − κ 𝑥 + 𝐿 ].



Now we demand that 𝑥 = 𝐿 be a maximum:
 

For smooth κ(𝑥) the first term vanishes. Now everything depends on 
whether κ(𝑥) is monotone decreasing or not. 

𝑉 𝑥 =
λ
2
[κ(𝑥 − 𝐿) − κ 𝑥 + 𝐿 ].

𝑑κ(𝑥)
𝑑𝑥

𝑥 = 0 −
𝑑𝜅 𝑥
𝑑𝑥

𝑥 = 2𝐿 = 0.

1. κ(𝑥) is monotone decreasing
To satisfy Eq. (1) we must choose 𝐿 = ∞:	

the optimal configuration of V(x) consists of 
two independent “pulses” of the potential.

The pulse shape coincides with that of 𝜅 𝑥

Solution for given distance L
between max and min:

(1)



=
∆𝑉2

4	𝜅(0)
	

< 𝑇 > ~exp
κ(0)
𝐷2

	 , 𝐷→0

The action 

𝑆[𝑉(𝑥)] =
1
2
3
)*

*
𝑑𝑥	3

)*

*
𝑑𝑥+𝐾 𝑥 − 𝑥+ 𝑉 𝑥 𝑉 𝑥+

who predicted a giant suppression of activated diffusion by disorder 

Agrees with De Gennes 1975, Zwanzig 1988, … 

This Gaussian tail depends only on the disorder variance; independent of κ 𝑥 . 



𝑉 𝑥 =
λ
2
[κ(𝑥 − 𝐿) − κ 𝑥 + 𝐿 ].

𝑑κ(𝑥)
𝑑𝑥

𝑥 = 0 −
𝑑𝜅 𝑥
𝑑𝑥

𝑥 = 2𝐿 = 0.

2. κ 𝑥 	is non-monotonic

Let  𝑥 = 𝑙 > 0	be the first minimum point of 𝜅 𝑥 . 
As a result,  L= !

"

The optimal configuration: 𝑉 𝑥 =
∆𝑉
2
κ 𝑥 − 𝑙

2 − κ 𝑥 + 𝑙
2

κ(0) − κ 𝑙

𝑠 ∆𝑉 =
∆𝑉2

4	[𝜅 0 − 𝜅 𝑙 ] ,	

A more interesting result: it depends on the autocovariance!

< 𝑇 > ~exp
𝜅 0 − 𝜅(𝑙)

𝐷2
	



Two subcases of non-monotonic correlations

A. Negative correlations are present: κ 𝑙 < 0

< 𝑇 > ~exp
𝜅 0 − 𝜅(𝑙)

𝐷2
	

B. Correlations are everywhere positive: κ 𝑙 > 0

𝜿 𝒍 < 𝟎	: Activated escape is 
exponentially suppressed

𝑠 ∆𝑉 =
∆𝑉2

4	[𝜅 0 − 𝜅 𝑙 ]
,	

𝜿 𝒍 > 𝟎	: Activated escape is 
exponentially enhanced



Large-deviation Monte-Carlo simulations 

Measured action S(DV) = - ln P(DV)

Lines: theory

We used correlated random discretized potential sampling based on the Wang–
Landau algorithm, the circulant embedding method and discrete Fourier 

transform, please ask Alexander Valov for details. This allowed us to measure 
probability densities smaller than 10-1200

A.Valov, N. Levi and BM, 
arXiv:2405.09850.



Large-deviation Monte-Carlo simulations 
Optimal realizations of the potential V(x)

Lines: theory, symbols: simulations

monotone

negativ
e

positiv
e

fitted L

no fitting 
parameters



Results of part B

• Non-monotonic correlations of disorder in 1d strongly (exponentially) affect 
the mean time to activated escape of overdamped particles. 

• Quantitative modeling of particle transport in disordered media at low 
temperatures may require a more detailed knowledge of the autocorrelation 
properties of the disorder than it was believed previously.

• Optimal fluctuation method provides a valuable insight into large deviations of 
non-Markovian Gaussian processes. 

• Bias of potential: V(x) = Vrandom(x) + Fx 
      Done.
 A.Valov, N. Levi and BM, arXiv:2405.09850

• Extend to higher dimensions?  Activated escape over a saddle, 
 rather than over a maximum. Not done yet.

Extensions

Line: theory 
symbols: simulations



Additional applications of OFM: a partial and subjective list

Markov processes:
1.   Brownian acceleration: BM, Geometrical optics of first-passage functionals of random 
acceleration,  Phys. Rev. E 107,   064122 (2023). 

2.   Non-Markov Gaussian processes: 
a. Anomalous scaling of dynamical large deviations of stationary Gaussian processes. BM, 
Phys. Rev. E 100, 042135 (2019).
b.  Geometrical optics of large deviations of fractional Brownian motion, BM and G. Oshanin, Phys. 
Rev. E 105, 064137 (2022).
c. First-passage area distribution and optimal fluctuations of fractional Brownian motion. 
A. K. Hartmann and B. Meerson, Phys. Rev. E 109, 014146 (2024).
d. Fractional Brownian motion in confining potentials: non-equilibrium distribution tails

 and optimal fluctuations. BM and P. Sasorov, arXiv:2407.0861.

Time-dependent random fields:

3. Large deviations in turbulence and turbulent transport (the Burgers equation, the passive scalar 
equation): since late 90-ies.

4. MFT of lattice gases: almost a hundred papers by now. Stationary and nonstationary settings, 
exact integrability of selected models by the Inverse Scattering Method (ISM), extensions to long-
range interactions, active fluids,,…

5. Extinction of spatially distributed populations.

6. Large deviations of one-point interface height in the KPZ equation and other surface growth 
models, exact integrability by the ISM.


