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I. PROLOGUE

I wish to thank the organizers of the Les Houches Summer School on Large deviations and applications for inviting
me, all the participants as well as my fellow lecturers. The material presented here is not new, I freely and liberally
looted from published and unpublished material, of course giving credit to the original authors when needed. I leave
some of the derivations as an exercise, and I strongly recommend that the interested reader attempt all exercises
contained in these short notes.

II. TYPICAL VS. ATYPICAL FLUCTUATIONS: LARGE DEVIATIONS FOR COIN TOSSING

I will provide here a quick crash-course/appetizer on typical vs. atypical fluctuations and large deviations for those
who have not met the concept and ideas before. I strongly recommend the review [1] by Hugo Touchette for a very
thorough and enjoyable introduction to large deviations for physicists.

Consider the following question: what is the probability of getting M Heads out of N (fair) coin tosses? The exact
formula for any M,N is given by the following binomial distribution

P (M,N) =

(
N

M

)
1

2N
, (1)

where the binomial factor counts the number of possible arrangements of the M Heads within the sequence of N
tosses. Clearly, we can now compute the average and variance of the number M of Heads as

µ =

N∑
M=0

M

(
N

M

)
1

2N
=

N

2
, (2)

σ2 =

N∑
M=0

M2

(
N

M

)
1

2N
− µ2 =

N

4
, (3)
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and appealing to Central Limit considerations, we expect that for large N the probability will converge to a Gaussian
centred around µ and with fluctuations given by σ2, i.e.

P (M,N) → 1√
π(N/2)

exp

[
− 2

N

(
M − N

2

)2
]

. (4)

On the other hand, it is easy to compute exactly the probability of an anomalous event characterised by all N tosses
coming up Heads:

P (M = N,N) =
1

2N
= exp(−N log 2) . (5)

Comparing the two results for large N in (5) and (4) clearly shows that the two formulae are inconsistent for M ≃ N .
In other word, the very natural Gaussian fluctuation law in Eq. (4) is only valid for typical fluctuations of the order

of ∼
√
N around the mean, but is inadequate to describe large (anomalous) fluctuations where M deviates from the

average N/2 by an amount of order N .

Reconciling the two results requires introducing the large deviation (or rate) function, which governs the precise
way the probability distribution decays when N is large, both in the vicinity and away from the most likely value.
Take P (M = Nx,N) for 0 ≤ x ≤ 1 and expand the right hand side for large N using Stirling’s formula for the
factorials. Leaving the proof as an exercise, one obtains (neglecting pre-factors)

P (M = Nx,N) ≈ exp (−NI(x)) , (6)

where

I(x) = x log x+ (1− x) log(1− x) + log 2 , (7)

and the symbol ≈ stands for the precise asymptotics

lim
N→∞

−1

N
logP (M = Nx,N) = I(x) . (8)

The rate function I(x) is plotted in Fig. 1.

For x → 0 (or x → 1, symmetrically) the rate function converges to the value log 2, which perfectly reproduces the
exact result in Eq. (5). The rate function has a minimum (a zero) at x = 1/2, the “most likely” value (corresponding
to N/2 Heads in N tosses), and then increases on either side of x = 1/2 leading P (M = Nx,N) to correspondingly
decay exponentially fast away from the most likely occurrence.

Interestingly enough, the rate function also provides important information about the typical fluctuations of the
random variable M (= number of Heads) around its most likely value M = N/2. To see this, we can Taylor-expand
I(x) around x = 1/2 to get

I(x) = 2

(
x− 1

2

)2

+O

((
x− 1

2

)3
)

. (9)

Inserting this quadratic behaviour back into Eq. (6) gives

P (M = Nx,N) ≈ exp

(
−2N

(
M

N
− 1

2

)2
)

= exp

(
− 2

N

(
M − N

2

)2
)

, (10)

which precisely reproduces the Gaussian fluctuations of M around its mean value N/2 in Eq. (4).

The rate function I(x) is therefore arguably a more fundamental and richer object than the Gaussian law (Eq. (4)),
as it includes the latter but provides more accurate information about larger (anomalous) fluctuations much farther
away from the mean value.

In these lectures, I will cover the explicit derivation of rate functions (using both rigorous and heuristic methods)
for a richer class of random variables, which are not statistically independent.
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FIG. 1. Solid blue line: rate function I(x) in Eq. (7). Solid yellow line: quadratic behaviour 2(x− 1/2)2 around the minimum
(see Eq. (9)). This plot – and the visible deviation between the two curves at the edges – clearly shows that the Gaussian
behaviour around the minimum is inadequate to characterise anomalous events characterised by a very large or small number
of Heads in a series of coin tosses.

III. GENERAL INTRODUCTION

In recent years there has been a considerable interest in the study of systems with logarithmic interactions. The
simplest example of models in this class is the two-dimensional one-component plasma (2D-OCP). This system is
also known in literature as ‘jellium’, 2D Dyson’s gas or 2D Coulomb gas [2–9]. The 2D-OCP consists of N identical
classical point-like particles, each carrying a charge q (one species of particle) on a two-dimensional domain. The
Coulomb interaction between any two particles at distance r⃗ from each other is −q2v(r⃗), where v(r⃗) is the fundamental
solution of the Poisson equation

∇2v(r⃗) = δ(r⃗) . (11)

In the planar case v(r⃗) = (1/2π) log(|r⃗|/L), where L is a length scale that fixes the zero of the potential. To ensure
charge neutrality, the particles are embedded in a fixed neutralizing background with opposite charge −qN . The
canonical distribution of the 2D-OCP at inverse temperature β is

Pβ,N (r⃗1, . . . , r⃗N ) =
1

ZN,β
e−βE(r⃗1,...,r⃗N ) , (12)

E (r⃗1, . . . , r⃗N ) = −q2

2

∑
i ̸=j

log

(
|r⃗i − r⃗j |

L

)
+ q2N

∑
k

V

(
r⃗k
L

)
. (13)

In (13), r⃗i = (xi, yi) ∈ R2 denotes the position of the i-th particle of the 2D-OCP (i = 1, . . . , N) and | · | denotes
the Euclidean distance. The first term in E (r⃗1, . . . , r⃗N ) is the particle-particle contribution to the energy, while the
second term is the particle-background contribution (the 2D-OCP experiences the electrostatic potential V generated
by the fixed background). The coupling constant βq2 is often referred to as plasma parameter.
This statistical mechanics fluid model has appeared in several areas of physics and mathematics. Indeed, the

logarithmic repulsion in (13) does occur as interaction between vortices and dislocations in real systems such as
superconductors [10], superfluids, rotating Bose-Einstein condensates [11–13] (we refer to [14] and [15] for detailed
reviews). There is also a well-known analogy between the canonical measure (14) of the 2D-OCP and the Laughlin
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trial wave function [16] (in the symmetric gauge) in the theory of fractional quantum Hall effect [17]. In the large N
limit with fixed potential (without the factor N in front of V (r⃗/L)), the 2D-OCP is equivalent to a class of growth
models known as ‘Laplacian growth’ [9, 18].

In the following q and L will be set to one for simplicity. For notational convenience, we also identify R2 ≃ C and
denote the positions of the particles in the plane by complex numbers z1, . . . , zN . With these conventions, (12)-(13)
read

Pβ,N (z1, . . . , zN ) =
1

ZN,β
e−βE(z1,...,zN ) , (14)

E (z1, . . . , zN ) = −1

2

∑
i ̸=j

log |zi − zj |+N
∑
k

V (zk) . (15)

For β = 2 and 4, Eq. (14) turns out to coincide with the eigenvalues joint distribution for normal complex and
normal self-dual matrix ensembles respectively [19–22].

Take for instance a N × N matrix whose entries are filled with independent (complex) Gaussian variables whose
real and imaginary part have mean zero and variance ∼ 1/N (complex Ginibre ensemble [23]). The joint probability
density that its N complex eigenvalues are found around the positions {z1, . . . , zN} in the complex plane is given by

Pβ=2,N (z1, . . . , zN ) =
1

ZN,β=2
e−N

∑
k |zk|2

∏
j<k

|zj − zk|2 , (16)

which clearly coincides with (14) for β = 2 and V (z) = |z|2/2. Note that – even if the entries are independent random
variables – the eigenvalues are not due to the Vandermonde determinant term

∏
j>k

(zj − zk) = det


1 1 · · · 1
z1 z2 · · · zN
...

...
. . .

...

zN−1
1 zN−1

2 · · · zN−1
N

 , (17)

which couples every particle (eigenvalues) with all the others. This is the price we pay for reducing the “complexity”
of the matrix model from O(N2) degrees of freedom (the entries) to O(N) degrees of freedom (the eigenvalues).
This means that, at inverse temperature β = 2, (14) is a determinantal point process. When the plasma particles

experience a quadratic confinement V (z) = |z|2/2 and for β = 2, the equilibrium density of the gas for large N is
uniform in the unit disk1 D = {|z| ≤ R⋆ = 1} in the complex plane (Girko-Ginibre circular law [19]). The density and
all correlation functions of the particles (eigenvalues) are also known for finite N due to the integrable determinantal
structure of the joint distribution.

The circular law can be tested with the following code (see Fig. 2):

import numpy as np

import matplotlib.pyplot as plt

from scipy.linalg import eig

# Parameters

n = 1000

nsamples = 1

e = []

# Generating eigenvalues

for _ in range(nsamples):

A = np.random.randn(n, n) + 1j * np.random.randn(n, n)

eigenvalues = eig(A, right=False)

e.extend(eigenvalues / np.sqrt(2 * n))

e = np.array(e)

# Plotting eigenvalues

plt.plot(e.real , e.imag , ’or’, label=’Eigenvalues ’)

1 Hereafter, we will denote by R⋆ the “upper edge” of the support of the equilibrium density of particles, i.e. the outer boundary beyond
which particles cannot be found in the large N limit – both for the real and complex case.
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# Plotting the unit circle

theta = np.linspace(0, 2 * np.pi, 1000)

plt.plot(np.cos(theta), np.sin(theta), label=’Unit Circle ’)

plt.xlabel(’Real Part’)

plt.ylabel(’Imaginary Part’)

plt.title(’Eigenvalues of Gaussian Non -Symmetric Matrices ’)

plt.legend ()

plt.grid(True)

plt.axis(’equal’)

plt.show()

FIG. 2. Circular law for eigenvalues of Ginibre matrices.

In a completely analogous way, we can define a system of particles subject to logarithmic repulsion and confinement,
but constrained to live on the real line. Using P instead of P to denote the joint distribution of the particle positions
in this case, we have

Pβ,N (x1, . . . , xN ) =
1

ZN,β
e−βE(x1,...,xN ) , (18)

E (x1, . . . , xN ) = −1

2

∑
i ̸=j

log |xi − xj |+N
∑
k

V (xk) . (19)

For β = 1, 2, 4, Eq. (18) turns out to be the joint probability density of eigenvalues [24–26] of real symmetric,
complex hermitian, and quaternion self-dual random matrices H respectively. Of particular importance are Gaussian
random matrices, for which V (x) = x2/2.
Depending on the physical symmetries, three classes of matrices with Gaussian entries arise: (N×N) real symmetric

(Gaussian Orthogonal Ensemble (GOE)), (N × N) complex Hermitian (Gaussian Unitary Ensemble (GUE)) and
(2N × 2N) self-dual Hermitian matrices (Gaussian Symplectic Ensemble (GSE)). In these models the probability
distribution for the entries of a matrix H in the ensemble is given by

P(H) := P(H11, . . . ,HNN ) ∝ exp

(
−βN

2
(H,H)

)
, (20)

where (H,H) is the inner product on the space of matrices, invariant under orthogonal, unitary and symplectic
transformations respectively and the parameter β is the Dyson index. In these three cases the inner products and the
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Dyson indices are given by

(H,H) = Tr(H2); β = 1 GOE (21)

(H,H) = Tr(H∗H); β = 2 GUE (22)

(H,H) = Tr(H†H); β = 4 GSE (23)

where ·∗ denotes the hermitian conjugate of complex valued matrices and ·† denotes the symplectic conjugate on
quaternion-valued matrices. The above quadratic actions are the simplest forms (corresponding to free fields) of
matrix models, which have been extensively studied in the context of particle physics and field theory.

A central result in the theory of Gaussian random matrices with real eigenvalues is the celebrated Wigner semi-
circle law. It states that for large N and on the average, the N eigenvalues lie within a finite interval

[
−
√
2,
√
2
]
,

often referred to as the Wigner ‘sea’. Within this sea, the average density of states has a semi-elliptical form that
vanishes at the two edges ±R⋆ = ±

√
2

ϱsc(x) =
1

π

(
R2

⋆ − x2
)1/2

. (24)

The semicircle law (see Fig. 3 – analogous to the Girko-Ginibre law but for matrices with real spectrum – can be
tested using the following code:

import numpy as np

import matplotlib.pyplot as plt

from scipy.linalg import eigvalsh

# Parameters

n = 100

nsamples = 1000

e = []

# Generating eigenvalues

for _ in range(nsamples):

A = np.random.randn(n, n) + 1j * np.random.randn(n, n)

A = (A + A.T.conj()) / 2 # Making A Hermitian

eigenvalues = eigvalsh(A)

e.extend(eigenvalues / np.sqrt(2 * n))

e = np.array(e)

# Function to normalize histogram

def normhist(vec , nbins):

h, edges = np.histogram(vec , bins=nbins , density=True)

ics = (edges[:-1] + edges[1:]) / 2

return h, ics

# Plotting normalized histogram

hnorm , ics = normhist(e, 90)

plt.plot(ics , hnorm , ’or’, label=’Eigenvalue Distribution ’)

# Plotting the semicircle law

x = np.linspace(-np.sqrt(2), np.sqrt(2), 500)

y = (1 / np.pi) * np.sqrt(2 - np.round(x**2,4))

plt.plot(x, y, ’-k’, label=’Semicircle Law’)

plt.xlabel(’Eigenvalue ’)

plt.ylabel(’Density ’)

plt.title(’Eigenvalue Distribution of Gaussian symmetric matrices and Semicircle Law’)

plt.legend ()

plt.grid(True)

plt.show()
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FIG. 3. Semicircle law for the average spectral density of eigenvalues in the Gaussian ensemble.

Mathematically, the average density of eigenvalues for finite N

ϱN (x) =
〈 1

N

N∑
i=1

δ(x− xi)
〉

(25)

provides the probability density of finding one eigenvalue around the position x (irrespective of which eigenvalue that
is, and what the other eigenvalues are doing), where the average ⟨·⟩ is taken w.r.t. the joint probability density of
eigenvalues (18). Evaluating the average explicitly [26] yields to

ϱN (x) =

∫
dx2 · · · dxNPβ,N (x, . . . , xN ) , (26)

i.e. the average spectral density is the marginal of the joint density of eigenvalues. The semicircle law (24) is the limit

ϱsc(x) = lim
N→∞

ϱN (x) . (27)

For large N , it is therefore very difficult to find a Gaussian matrix with eigenvalues (suitably rescaled by
√
βN) larger

than
√
2 or smaller than −

√
2. It is therefore natural to expect that the largest eigenvalue (or the rightmost charged

particle) will be typically located around
√
2, with fluctuations that are interesting to characterize.

In these lectures, I will review results obtained for the following random variables

r1 = max
j

xj (largest eigenvalue) (28)

r2 = max
j

|xj | (spectral radius) . (29)

I will summarize both the typical fluctuations, and the large deviation regimes, characterizing probabilities that the
“rightmost”/“outermost” particle is anomalously close to or far away from its typical location.

The plan of these lecture notes is as follows:

• In Lecture 1, I will discuss the special case of Gaussian ensembles and the distribution of the largest eigenval-
ue/rightmost particle of a log-gas in 1d, summarizing the Tracy-Widom law of typical fluctuations as well as the
left and right large deviation functions describing anomalous fluctuations to the left and to the right, respec-
tively, of the typical value. Following the approach by Majumdar and Vergassola [27, 28] (valid for all β > 0 and
based on a physical argument), I will derive in detail the right large deviation function Φ+(w) for V (x) = x2/2,
and will briefly comment on the different regimes for the fluctuations of r2 for Gaussian non-hermitian matrices
(log-gas in 2d).
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• In Lectures 2/3, I will re-derive Φ+(w) for V (x) = x2/2 and β = 1 using a non-standard replica approach
proposed in a more general context by Fyodorov and Le Doussal [29]. In this context, I will discuss an intriguing
puzzle about the fact that only O(N) fluctuations can be recovered with this method (and not O(N2) as well).

• In Lectures 4/5, I will instead focus on the spectral radius r2 lifting the Gaussian assumptions, i.e. working with
a more general confining potential V (x) subject to some assumptions. For a general V (x), Prob(maxj |xj | <
R) ≃ e−N2F (R). Following the paper [30], I will show how to derive a general formula for the rate function
F (R), which can be interpreted as the excess free energy of a log-gas constrained within a box [−R,R]. From
the general formula, I will derive as a general consequence that F (R) displays a third-order phase transition at
the critical value R = R⋆. I will also briefly discuss in class possible avenues for further research.

IV. LECTURE 1 - FLUCTUATIONS OF THE LARGEST EIGENVALUE OF GAUSSIAN ENSEMBLES
AND RIGHT LARGE DEVIATION FUNCTION

In this section, I follow almost verbatim the insightful review [28] and the beautiful paper [31], which contains many
interesting numerical tricks for the evaluation of Extreme Value distributions for random matrices.

Consider the joint probability density of eigenvalues for the Gaussian ensembles (18) with V (x) = x2/2, and let
r1 = maxj xj be the largest eigenvalue/position of the rightmost particle.

It turns out that as N → ∞, defining

r1 =
√
2 +

1√
2
N−2/3 χβ , (30)

the random variable χβ is N -independent, and its Cumulative Distribution Function (CDF), Fβ(x) = Prob[χβ ≤ x],
is known as the β-Tracy-Widom (TW) distribution, known explicitly only for β = 1, 2 and 4. Tracy and Widom
indeed obtained an explicit expression for β = 2 first [32] and subsequently for β = 1 and 4 [33] in terms of the
Hastings-McLeod solution of the Painlevé II equation

q′′(s) = 2q3(s) + sq(s) , q(s) ∼ Ai(s) , s → ∞ , (31)

with Airy function asymptotics as s → ∞.

The CDF Fβ(x) is then given explicitly for β = 1, 2 and 4 by [32, 33]

F1(x) = exp

[
−1

2

∫ ∞

x

[
(s− x)q2(s) + q(s)

]
ds

]
,

F2(x) = exp

[
−
∫ ∞

x

(s− x)q2(s) ds

]
,

F4(2
− 2

3x) = exp

[
−1

2

∫ ∞

x

(s− x)q2(s) ds

]
cosh

[
1

2

∫ ∞

x

q(s) ds

]
. (32)
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FIG. 4. Probability distribution of scaled largest eigenvalue χβ (105 repetitions, N = 109). Solid lines are the Tracy-Widom
probability densities (derivatives of Eqs. (32)). Plots and algorithm for fast evaluation taken from [31] – also reproduced at
the end of this section.

− 2 2 x

ρsc(x)

FIG. 5. Sketch of the different regimes for the fluctuations of the largest eigenvalue r1 of Gaussian ensembles. In Red, the
regime of typical fluctuations on a narrow scale of ∼ O(N−2/3) around its mean ⟨r1⟩ =

√
2. In Blue, the left large deviations.

In Green, the right large deviations.

For other values of β it can be shown that χβ describes the fluctuations of the ground state of the following
one-dimensional Schrödinger operator, called the “stochastic Airy operator” [34, 35]

Hβ = − d2

dx2
+ x+

2√
β
η(x) , (33)

where η(x) is Gaussian white noise, of zero mean and with delta correlations, η(x)η(x′) = δ(x − x′). For arbitrary
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β > 0, the CDF Fβ(x), or equivalently the PDF F ′
β(x) of χβ has rather asymmetric non-Gaussian tails,

F ′
β(x) ≈


exp

[
− β

24
|x|3
]
, x → −∞

exp

[
−2β

3
x3/2

]
, x → +∞ ,

(34)

where ≈ stands for a logarithmic equivalent.
These TW distributions also describe the top eigenvalue statistics of large real [36, 37] and complex [38] Gaussian

covariance matrices. Amazingly, the same TW distributions have emerged in a number of a priori unrelated problems
[39] such as the longest increasing subsequence of random permutations [40], directed polymers [38, 41] and growth
models [42] in the Kardar-Parisi-Zhang (KPZ) universality class in (1 + 1) dimensions as well as for the continuum
(1+1)-dimensional KPZ equation [43–46], sequence alignment problems [47], mesoscopic fluctuations in quantum dots
[48], height fluctuations of non-intersecting Brownian motions over a fixed time interval [49, 50], height fluctuations
of non-intersecting interfaces in presence of a long-range interaction induced by a substrate [51], and also in finance
[52]. Remarkably, the TW distributions have been recently observed in experiments on nematic liquid crystals [53]
(for β = 1, 2) and in experiments involving coupled fiber lasers [54] (for β = 1).

While the TW density describes the probability of typical fluctuations of r1 around its mean ⟨r1⟩ =
√
2 on a small

scale2 of ∼ O(N−2/3), it does not describe atypically large fluctuations, e.g., of order O(1) around its mean (see Fig.
5 for a sketch). The probability of atypically large fluctuations, to leading order for large N , is described by two large
deviations (or rate) functions Φ−(w) (for fluctuations to the left of the mean) and Φ+(w) (for fluctuations to the right
of the mean). More precisely, the behavior of the CDF FN (w) = Prob[r1 ≤ w] of r1 for large but finite N is described
as follows

FN (w) ≈



exp
[
−βN2Φ− (w)

]
, w <

√
2 & |w −

√
2| ∼ O(1)

Fβ

(√
2N

2
3 (w −

√
2)
)

, |w −
√
2| ∼ O(N− 2

3 )

1− exp [−βNΦ+ (w)] , w >
√
2& |w −

√
2| ∼ O(1) .

(37)

Equivalently, the PDF fr1(w) of r1, obtained from the derivative fr1(w) = dFN (w)/dw reads (keeping only leading
order terms for large N)

fr1(w) = P(r1 = w,N) ≈



exp
[
−βN2Φ− (w)

]
, w <

√
2 & |w −

√
2| ∼ O(1)

√
2N

2
3F ′

β

(√
2N

2
3 (w −

√
2)
)

, |w −
√
2| ∼ O(N− 2

3 )

exp [−βNΦ+ (w)] , w >
√
2& |w −

√
2| ∼ O(1) .

(38)

The physical mechanisms responsible for the left and right large deviation tails are very different, which is reflected
in the different speeds of the large deviations, N2 vs. N . Physically, having the rightmost charged particle anomalously
dislodged to the left side requires a global rearrangement of all other mutually repelling charges, which are “squeezed”
into an unnatural and much less comfortable configuration. The all-to-all cooperation among the N charges necessary
to achieve the relocation of r1 is signalled by the ∼ N2 speed of the left rate function. On the contrary, the rightmost
charge can take up an anomalous location to the right of its typical value without significantly disturbing the other
N − 1 charges. The physical intuition here leads to the calculation I present in the next section. It is therefore
comparatively much easier to have r1 much larger than its typical value than having it much smaller than its typical
value. We will refer to the two situations as pushed Coulomb gas or pulled Coulomb gas respectively.

2 The scale N−2/3 of typical fluctuations can be determined by a heuristic scaling argument. To estimate the typical scale δr1 of the
fluctuations of r1, one can apply a standard criterion of Extreme Value Statistics, i.e.∫ √

2

√
2−δr1

ϱsc(x)dx ∼
1

N
, (35)

which simply states that the fraction of eigenvalues to the right of the maximum (including itself) must be typically 1/N . Using the
asymptotic behavior near the upper edge R⋆ =

√
2, ϱsc(x) ∝ (

√
2− x)1/2 as x →

√
2, one obtains (exercise) [55, 56]

δr1 =
√
2− r1 = O(N−2/3) . (36)
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x=N
−1/2

[t−(2N)
1/2

]
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80

−
ln

(P
(t

))

FIG. 6. Numerical results for the maximum eigenvalue distribution (circles) for N = 10 real (β = 1) Gaussian matrices,
compared with the Tracy-Widom result (red line) and the exact right (green line) and left (blue line) large deviation functions.
Figure taken from [27].

Note that while the TW distribution Fβ(x), describing the central part of the probability distribution of r1, depends
explicitly on β [see Eq. (32)], the two leading order rate functions Φ∓(w) are independent of β. Exploiting a simple
physical method based on the Coulomb gas, the left rate function Φ−(z) was first explicitly computed in [57, 58]

Φ−(w) =
1

108

[
36w2 − w4 − (15w + w3)

√
w2 + 6

+ 27
(
log 18− 2 log

(
w +

√
w2 + 6

)) ]
, w <

√
2 . (39)

Note in particular the behavior when w approaches the critical point R⋆ =
√
2 from below3

Φ−(w) ∼
1

6
√
2
(
√
2− w)3 , w →

√
2 . (40)

On the other hand, the right rate function Φ+(w) was computed in [27]. A more complicated, albeit mathematically
rigorous, derivation (but only valid for β = 1) of Φ+(w) in the context of spin glass models can be found in [59].
Incidentally, the right tail of x1 can also be directly related to the finite N behavior of the average density of states
to the right of the Wigner sea [60]. Indeed, for β = 1, this finite N right tail of the density was computed in Ref.
[61], from which one can extract the right rate function Φ+(w). It reads

Φ+(w) =
1

2
w
√
w2 − 2 + log

[
w −

√
w2 − 2√
2

]
, (41)

3 The exponent 3 is the signature of an underlying third-order phase transition in the associated Coulomb gas, see [28] for details. I will
come back to this point when discussing the fluctuations of the spectral radius in Section VI.
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with the asymptotic behavior

Φ+(w) ∼
27/4

3
(w −

√
2)3/2 , w→

√
2 . (42)

Interestingly, one can show that the central (typical) fluctuations, described by the Tracy-Widom law, match smoothly

with the behavior of the rate functions Φ±(x) when x → R⋆ =
√
2, according to the principle The most unlikely of

typical fluctuations should smoothly match the most likely of atypical fluctuations.
To see this, let us first consider the left tail in (38), i .e. when w < R⋆ =

√
2. When w → R⋆ =

√
2 from below we

can substitute the asymptotic behavior of the rate function Φ−(w) from (40) in the first line of (38). This yields for

1 ≪
√
2− w ≪

√
2

fr1(w) = P(r1 = w,N) =
d

dw
FN (w) ≈ exp

(
− β

6
√
2
N2(

√
2− w)3

)
. (43)

On the other hand, consider now the second line of (38) that describes the central typical fluctuations. When the

deviation from the typical value R⋆ =
√
2 is large (

√
2 − w ∼ O(1)) we can substitute in the second line of (38) the

left tail asymptotic behavior of the β-Tracy-Widom distribution (34) giving

fr1(w) = P(r1 = w,N) =
d

dw
FN (w) ≈ exp

[
− β

24

[
21/2N2/3(

√
2− w)

]3]
, (44)

which after a trivial rearrangement, is identical to (43). This shows that the left tail of the central region matches
smoothly with the left large deviation function. Similarly, on the right side, using the behavior of Φ+(x) in (42), one
finds from (38) that

fr1(w) = P(r1 = w,N) =
d

dw
FN (w) ≈ exp

(
−27/4β

3
N(w −

√
2)3/2

)
, (45)

for 1 ≪ w −
√
2 ≪

√
2, which matches with the right tail of the central part described by F ′

β(x) (34). Such a
mechanism of matching between the central part and the large deviation tails of the distribution have been found in
other similar problems [27, 62] (see also Appendix IVC for a counter-example).

I will reproduce in the next subsection the main steps of the derivation of Φ+(w).

A. Derivation of right deviation tail using Coulomb gas method

Following [27], the correct strategy to extract the right large deviation tail turns out to consider directly the
probability density function of r1, rather than its Cumulative Distribution Function FN (w) given by

FN (w) = Prob[r1 ≤ w] = Prob[x1 ≤ w, . . . , xN ≤ w] =

∫ w

−∞ · · ·
∫ w

−∞ dx1 · · · dxN e−βE(x1,...,xN )∫∞
−∞ · · ·

∫∞
−∞ dx1 · · · dxN e−βE(x1,...,xN )

, (46)

with

E(x1, . . . , xN ) =
N

2

N∑
k=1

x2
k − 1

2

∑
i ̸=j

log |xi − xj | . (47)

Taking derivative of (46) with respect to w and using the fact that the integrand is a symmetric function4 in the vari-
ables (x1, . . . , xN ) yields an exact expression (ignoring proportionality constants) for the probability density function
of r1,

fr1(w) = P(r1 = w,N) ∝ e−Nβ w2

2

∫ w

−∞
dx1 · · ·

∫ w

−∞
dxN−1 eβ

∑N−1
j=1 log (|w−xj |)Pβ,N−1(x1, . . . , xN−1) , (48)

4 Take N = 2. The derivative ∂w
∫ w
−∞

∫ w
−∞ f(x1, x2)dx1dx2 =

∫ w
−∞ dx2f(w, x2) +

∫ w
−∞ dx1f(x1, w) = 2

∫ w
−∞ dx1f(x1, w) using

f(x1, x2) = f(x2, x1).
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where Pβ,N−1(x1, · · · , xN−1) is the joint probability density given in (18) for (N − 1) eigenvalues and the energy
function given in (47).

Having a fixed charge located at w−
√
2 ∼ O(1) (i.e. far away to the right of all other charges) should not disturb

(to leading order) the equilibrium configuration of the remaining N − 1 charges. Therefore, we can formally replace

Pβ,N−1(x1, · · · , xN−1) in the integral (48) with
∏N−1

j=1 δ(xj−x⋆
j ), where x

⋆
j are the most probable equilibrium locations

the other charges are pinned to.
This way we obtain

P(r1 = w,N) ∝ e−Nβ w2

2 +β
∑N−1

j=1 log(|w−x⋆
j |) (49)

which can be further approximated by

P(r1 = w,N) ∝ exp

[
−βN

w2

2
+ βN

∫
log |w − x| ϱsc(x) dx

]
. (50)

In (50), we have converted the sum into an integral, and used the fact that the probability density of the equilibrium
locations of a an eigenvalue in the unperturbed Gaussian ensemble is given by the semicircle law (24).

Thus, one gets to leading order for large N [27]

P(r1 = w,N) ∼ exp [−βNΦ+(w)] , (51)

where the right rate function Φ+(w) is given by (restoring an overall normalization constant)

Φ+(w) =
w2

2
−
∫ √

2

−
√
2

log (w − x)ϱsc(x)dx+A , w >
√
2 (52)

where the constant A is fixed such that Φ+(w =
√
2) = 0, since our reference configuration is the one where typically

r1 =
√
2, and ϱsc(x) =

1
π

√
2− x2. Evaluating the integral in (52), one obtains the result for Φ+(w) given in (41), as

I now show.

1. Computing the integral in (52)

Let us consider the integral appearing in (52) for w >
√
2

1

π

∫ +
√
2

−
√
2

dx log (w − x)
√
2− x2 ≡ I(w) . (53)

We may rewrite the log term as follows

log (w − x) = log(w) + log
(
1− x

w

)
= log(w)−

∞∑
n=1

1

n

xn

wn
. (54)

The integral therefore becomes

I(w) =
1

π

[
log(w)

∫ +
√
2

−
√
2

dx
√

2− x2 −
∞∑

n=1

1

n

1

wn
Cn

]
. (55)

with Cn =
∫ +

√
2

−
√
2
dx xn

√
2− x2. Setting x =

√
2t we obtain

Cn =
√
2
√
2(
√
2)n

∫ 1

−1

dt tn
√
1− t2

= (
√
2)n

[1 + (−1)n]
√
π Γ

(
n+1
2

)
2Γ
(
2 + n

2

) . (56)
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From the definition of Cn we note that the integral is correctly non-zero only if n is even. Therefore, we set n = 2k,
thus obtaining

−
∞∑

n=1

1

n

1

wn
Cn = −

√
π

2

∞∑
k=1

Γ
(
k + 1

2

)
Γ (k + 2)

1

k

(
2

w2

)k

= −
√
π

2

2

w2

∞∑
k=0

Γ
(
k + 3

2

)
Γ (k + 3)

1

k + 1

(
2

w2

)k

. (57)

We may now appeal to the definition of the generalized hypergeometric function pFq

pFq({a1, . . . , ap}; {b1, . . . , bq}; z) =
∞∑
k=0

∏p
j=1(aj)k∏q
j=1(bj)k

zk

k!
, (58)

with (γ)k = Γ(γ + k)/Γ(γ) being the Pochhammer symbol, and note the identity

Γ(1+k)
Γ(1)

Γ(1+k)
Γ(1)

Γ(3/2+k)
Γ(3/2)

Γ(2+k)
Γ(2)

Γ(3+k)
Γ(3)

=
4Γ
(
k + 3

2

)
√
π(k + 1)Γ(k + 3)

(59)

to be able to re-cast Eq. (57) as

−
∞∑

n=1

1

n

1

wn
Cn = −

√
π

2

2

w2

√
π

4
3F2

({
1, 1,

3

2

}
; {2, 3}; 2

w2

)
. (60)

For these special values of its parameters, the generalized hypergeometric function 3F2

(
{1, 1, 3

2}; {2, 3}; z
)
has a

representation in terms of elementary functions [63]

3F2

({
1, 1,

3

2

}
; {2, 3}; z

)
=

4

z2

[
−2 log

(
1 +

√
1− z

2

)
z + z + 2

√
1− z − 2

]
. (61)

Combining everything together, we get

I(w) = logw − w2

4

[
− 4

w2
log

(
w +

√
w2 − 2

2w

)
+

2

w2
+

2

w

√
w2 − 2− 2

]
(62)

= logw + log

(
w +

√
w2 − 2

2w

)
− 1

2
− w

2

√
w2 − 2 +

w2

2
. (63)

2. Calculation of the full rate function Φ+(w)

The result obtained for I(w) can be now inserted in Eq. (52). First, we compute the constant A by setting:

Φ+(
√
2) =

(
√
2)2

2
− log

√
2− log

( √
2

2
√
2

)
+

1

2
− (

√
2)2

2
+A = 0 ⇒ A = −1

2
− 1

2
log 2 . (64)

Then, we obtain

Φ+(w) =
w2

2
− logw − log

(
w +

√
w2 − 2

2w

)
+

1

2
+

w

2

√
w2 − 2− w2

2
− 1

2
− 1

2
log 2

=
1

2
w
√
w2 − 2− log

(
w +

√
w2 − 2√
2

)
. (65)

Finally, multiplying and dividing by w −
√
w2 − 2 inside the logarithm gives the expression in Eq. (41)

Φ+(w) =
1

2
w
√
w2 − 2 + log

(
w −

√
w2 − 2√
2

)
. (66)
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To compute the higher order corrections to the right tail one needs more sophisticated techniques. These were
obtained in [64] for β = 2, using a method based on orthogonal polynomials over the unusual interval (−∞, w] and
adapting a technique originally developed in the context of QCD [65]. The right large deviation behavior of r1 has
been computed to all orders in N by a generalized loop equation method by Borot and Nadal [66] (see also Ref. [60]).
Finally, the unusual orthogonal polynomial method developed in Ref. [64] has been extended and generalized to
matrix models with higher order critical points [67, 68].

The topic of large deviations for extreme eigenvalues (and empirical spectral measure more generally) has never
ceased to attract the attention of physicists and mathematicians in the most diverse settings, such as Rademacher
matrices [69], supercritical sparse Wigner matrices [70], spiked Gaussian random matrices [71], sums or products
of invariant random matrices [72], sparse networks with Gaussian weights [73], Wigner matrices without Gaussian
tails [74], rank-one deformation of Gaussian ensembles [75], random deformations of matrices [76], generalized sample
covariance matrices [77] (and references therein), as well as many others.

B. Appendix: Edelman-Persson algorithm for fast histogramming of scaled largest eigenvalue of huge
Gaussian matrices [31]

The Gaussian Unitary Ensemble (GUE) is defined as the set of Hermitian N ×N matrices H, where the diagonal
elements Hjj and the upper triangular elements Hjk = ujk + ivjk are independent Gaussians with zero-mean, and{

Var(Hjj) = 1, 1 ≤ j ≤ N,

Var(ujk) = Var(vjk) =
1
2 , 1 ≤ j < k ≤ N.

(67)

Since a sum of Gaussians is a new Gaussian, an instance of these matrices can be created conveniently in MATLAB5

H = randn(N)+i*randn(N);
H = (H+H')/2;

The largest eigenvalue r̃1 of this matrix is about 2
√
N . To get a distribution that converges as N → ∞, the shifted

and scaled largest eigenvalue χβ=2 is calculated as (see Eq. (30))

χβ=2 = N
1
6

(
r̃1 − 2

√
N
)
. (68)

It is now in principle straightforward to compute the distribution for χβ=2 by simulation

for ii = 1: trials
H = randn(N)+i*randn(N);
H = (H+H')/2;
r1 = max(eig(H));
chibeta = N^(1/6) *(r1 -2* sqrt(N));
% Store chibeta
% Create and plot histogram

end

The problem with this technique is that the computational requirements and the memory requirements grow fast
with N , which should be as large as possible in order to be a good approximation of infinity. Just storing the matrix
H requires N2 double-precision numbers. Furthermore, computing all the eigenvalues of a full Hermitian matrix
requires a computing time proportional to N3. This means that it will take many days to create a smooth histogram
by simulation, even for relatively small values of N .
To improve upon this situation, another matrix can be studied that has the same eigenvalue distribution as H

above. In [78], it was shown that this is true for the following symmetric matrix when β = 2:

Hβ ∼ 1√
2


N (0, 2) χ(n−1)β

χ(n−1)β N (0, 2) χ(n−2)β

. . .
. . .

. . .

χ2β N (0, 2) χβ

χβ N (0, 2)

 . (69)

5 This code generates eigenvalues distributed according to P(x1, . . . , xN ) = exp[−(1/2)
∑

k x2
k −

∑
i ̸=j log |xi − xj |]. In order to match

the joint probability density as given in (18), we need to rescale the eigenvalues by
√
2βN = 2

√
N .
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Here, N (0, 2) is a zero-mean Gaussian with variance 2, and χd is the square-root of a χ2 distributed number with d
degrees of freedom. Note that the matrix is symmetric, so the subdiagonal and the superdiagonal are always equal.

This matrix has a tridiagonal sparsity structure, and only 2N double-precision numbers are required to store an
instance of it. The time for computing the largest eigenvalue is proportional to N , either using Krylov subspace based
methods or the method of bisection [79].

In MATLAB, the built-in function eigs can be used, although that requires dealing with the sparse matrix structure.
There is also a large amount of overhead in this function, which results in a relatively poor performance. It is based
on the method of bisection, and requires just two ordinary MATLAB vectors as input, corresponding to the diagonal
and the subdiagonal.

It also turns out that only the first 10N
1
3 components of the eigenvector corresponding to the largest eigenvalue are

significantly greater than zero. Therefore, the upper-left Ncutoff by Ncutoff submatrix has the same largest eigenvalue
(or at least very close), where

Ncutoff ≈ 10N
1
3 . (70)

Matrices of size N = 1012 can then easily be used since the computations can be done on a matrix of size only
10N

1
3 = 105. Also, for these large values of N the approximation χ2

N ≈ N is accurate.
A histogram of the distribution for N = 109 can now be created using the code below.

N=1e9;
nrep=1e4;
beta =2;

cutoff=round (10*N^(1/3));
d1=sqrt(N-1: -1:N+1-cutoff) '/2/sqrt(N);

ls=zeros(1,nrep);
for ii=1: nrep

d0=randn(cutoff ,1)/sqrt(N*beta);
ls(ii)=maxeig(d0 ,d1);

end

ls=(ls -1)*N^(2/3) *2;

histdistr(ls , -7:0.2:3)

where the function histdistr below is used to histogram the data. It assumes that the histogram boxes are equidis-
tant.

function [xmid ,H]= histdistr(ls,x)

dx=x(2)-x(1);
H=histc(ls,x);
H=H(1:end -1);
H=H/sum(H)/dx;
xmid=(x(1:end -1)+x(2: end))/2;

bar(xmid ,H)
grid on

The resulting distribution is shown in Figure 4, together with distributions for β = 1 and β = 4. The plots
also contain solid curves representing the “true solutions” (see [31] for a Matlab code to produce the theoretical
Tracy-Widom distributions (32) and densities by solving numerically the associated Painlevé equations).

C. Appendix: brief comments on the non-hermitian case (log-case in the plane)

For non-hermitian matrices (e.g. from the complex Ginibre ensemble), the behavior of the eigenvalue with largest
modulus r2 = maxj |zj | is similar to what happens for r1 in the real case, with some important differences. The same
three regimes as in the real case (see Eq. (37)) exist, plus a fourth regime of intermediate fluctuations [80].
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For typical fluctuations of the complex Ginibre ensemble (defined by the joint probability density in Eq. (16)),
Rider [81] has proved the following remarkable limiting result for the typical fluctuations of r2. Let γN = logN −
2 log logN − log 2π, aN =

√
4NγN and bN = 1 +

√
γN/(4N). Then, the rescaled variable aN (r2 − bN ) converges in

distribution as N → ∞ to a standard Gumbel variable, i.e. setting QN (w) = Prob[r2 ≤ w] we have

lim
N→∞

QN

(
bN +

w

aN

)
= G(w) = e−e−w

. (71)

An interesting corollary of the centering constant bN being larger than 1 is that the eigenvalue with largest modulus
tends (with large probability) to lie outside the unit disc as N → ∞. It is interesting to contrast this with the known
cases for real Gaussian spectra: the limit Tracy-Widom distributions (32) of the maximal eigenvalue (after subtracting
off the edge and scaling by an increasing factor) all have negative mean.

A similar result has been recently established [83] for a general class of radially symmetric external potentials
V (z) = V (|z|). In contrast with the Tracy-Widom law governing the typical fluctuations of the similar observable
r1 in the real-spectrum case, the Gumbel law arises naturally in the Extreme Value statistics of independent (and
identically distributed) random variables (see [84] for a pedagogical account). The appearance of a “simple” Gumbel
law in a problem of strongly correlated random variables is superficially quite surprising: however, Kostlan in [85]
had managed to integrate out the angular variables θj of the eigenvalues zj = |zj |eiθj of a complex Ginibre matrix,
and showed that, up to a random reshuffling, the eigenvalues moduli |zi| are indeed distributed as a collection of

independent (although not identically distributed) χ random variables: (|z1|, . . . , |zN |) d
= σ(ξ1/

√
N, . . . , ξN/

√
N)

where ξ1, . . . , ξN are independent positive random variables with density 6

x 7→ 2

Γ(k)
x2k−1e−x2

, k = 1, . . . , N , (72)

and σ is a random permutation uniformly distributed in SN (Reproducing Kostlan’s result is left as an exercise -
happy to provide guidance).

For works on large deviations of the spectral radius (towards the bulk, and outside the bulk), I refer to [80, 82, 86–
89]. Borrowing almost verbatim from [80]: While the Gumbel law describes the probability of typical fluctuations of
r2, its atypically large fluctuations are described by large deviation tails [82], much like the Gaussian case in Eq. (37).
To summarize

QN (w) ∼



e−N2Φ−(w)+o(N2) , for 0 < (1− w) = O(1)

G(aN (w − bN )) , for (w − bN ) = O(a−1
N )

1− e−NΦ+(w)+o(N) , for 0 < (w − bN ) = O(1) ,

(73)

where7 Φ+(w) and Φ−(w) can be explicitly computed [82]

Φ−(w) =
1

4
(4w2 − w4 − 4 lnw − 3) , for 0 < w < 1 , (74)

Φ+(w) = w2 − 2 lnw − 1 , for w > 1 . (75)

It is not hard to check that the right tail of the central scaling function G(aN (w− bN )) for w− bN ≫ 1/aN matches
smoothly with the right large deviation tail (I refer to [80] for details and leave this check as an exercise).

What about the left tail? As in the case of the right tail above, and consistently with what happens in the Gaussian
case as well, one would näıvely expect a similar matching on the left tail also. However, this does not happen [82]!

To see this, consider the left asymptotic tail of the central Gumbel distribution. Using G(z) ∼ e−e−z

as z → −∞,
the PDF Q′

N (w) has a super-exponential tail for large negative argument. In contrast, as w → 1 from the left, using
Φ−(w) ∼ (4/3)(R⋆ − w)3 (with R⋆ = 1 for the complex Ginibre case) one sees from the first line of Eq. (73) that

Q′
N (w) ∼ e−(4/3)N2(R⋆−w)3 . Clearly, this can not match with the super exponential tail of the central Gumbel regime.

This represents a puzzle, since, in most of the known cases, in particular for rotationally invariant matrix models,
there is a smooth matching between the central part and the large deviation tails [28].

6 In other words ξ2k
d
= χ2

2k/2.
7 For simplicity, I keep the same notation Φ±(w) as in the real Gaussian case, even though the form of the functions is clearly different
in the two cases.
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FIG. 7. Comparison between the large deviation functions Φ−(x) (left panel) in (74) and Φ+(x) (right panel) in (75) with an
available finite-N formula (dots) for β = 2 with N = 250. Figure taken from [82].

In fact, this mismatch in the left tail is not only restricted to Ginibre matrices, i.e. for a quadratic potential
V (z) = |z|2/2, but also holds for a much wider class of sufficiently confining (and spherically symmetric) potentials,
e.g. V (z) ∼ |z|p with p > 1. For such spherically symmetric potentials, the Cumulative Distribution Function of r2,
denoted by QN (w), has again a central part described by a Gumbel law [90, 91]. In addition, the left large deviation
Φ−(w) also exhibits a cubic behavior as w → R⋆ from below [92]. Thus the problem of mismatch at the left tail also
exists for generic spherically symmetric potentials.

In the paper [80], the authors solved this interesting puzzle by showing that there exists a novel intermediate

deviation regime for (R⋆ − w) ∼ ∆N = O(1/
√
N), which interpolates smoothly between the left large deviation tails

for 0 < (R⋆−w) = O(1) and the central part, given by the Gumbel law, for (bN −w) = O(1/
√
N lnN) [see Eq. (73)].

In this intermediate regime, the Cumulative Distribution function QN (w) takes the scaling form

QN (w) ∼ exp
[
− R⋆

∆N
ϕI

(
w−R⋆

∆N

)]
, (76)

where R⋆ is again the soft edge of the equilibrium density in the plane, and ∆N ∼ O(1/
√
N) has an explicit expression

in term of N , R⋆ and the equilibrium density in the bulk [80].

The intermediate rate function ϕI(y) is universal, i.e., independent of the details of the confining potential V (z),
and is given by the exact formula

ϕI(y) = −
∫ ∞

0

dv log

(
1

2
erfc(−y − v)

)
, (77)

in terms of the complementary error function. The asymptotic behaviors of this rate function ϕI(y) are

ϕI(y) ∼


|y|3

3
+ |y| ln |y|+O(y) , y → −∞

e−y2

4
√
πy2

, y → +∞ .

(78)

Note that this scaling function ϕI(y) appeared in previous works, in intermediate computations, on Ginibre matri-
ces [20] section 15.5.2 (see also Ref. [91]) but without the interpretation as intermediate deviation function interpolating
between the left large deviations and the typical fluctuations of r2.

To summarize, there are now four regimes for the full Cumulative Distribution Function QN (w) of the complex
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Ginibre ensemble, including the new intermediate deviation regime discovered in [80]

QN (w) ∼



e−N2Φ−(w) , for 0 < (R⋆ − w) = O(1)

e
− R⋆

∆N
ϕI

(
w−R⋆
∆N

)
, for (R⋆ − w) = O(∆N )

G(aN (w − bN )) , for (w − bN ) = O(a−1
N )

1− e−NΦ+(w) , for 0 < (w − bN ) = O(1) .

(79)

The presence of this intermediate new regime now ensures a smooth matching between all four regimes (see again [80]
for details).

V. LECTURE 2/3 - REPLICA DERIVATION OF RIGHT LARGE DEVIATION TAIL FOR THE
GAUSSIAN ORTHOGONAL ENSEMBLE (β = 1)

In this section, I will show how to re-obtain the formula (41) for the right large deviation function using a completely
different method based on the physics of disordered systems. The derivation is valid for the Gaussian Orthogonal
Ensemble β = 1 (although it could be easily extended to β = 2) and is contained as a special case of a more general
theory developed by Fyodorov and Le Doussal [29].

Consider the standard GOE ensemble (Gaussian Orthogonal Ensemble) of real symmetric random matrices, char-
acterized by the joint distribution of matrix entries in the upper triangle

P(H11, . . . ,HNN ) =

N∏
i=1

e−
N
2 H2

ii√
2π(1/N)

∏
i<j

e−NH2
ij√

2π(1/2N)
(80)

and by O(1) real eigenvalues distributed according to

Pβ=1,N (x1, . . . , xN ) =
1

Zβ=1,N
e−βE(x1,...,xN ) , (81)

E (x1, . . . , xN ) = −1

2

∑
i̸=j

log |xi − xj |+N
∑
k

x2
k

2
. (82)

We are again interested in the distribution of the largest eigenvalue

r1 = max
j

xj ≈ O(1) for large N . (83)

Using the Courant-Fisher definition of eigenvector, we may write

r1 = max
v

(v, Hv)

|v|2
, (84)

where (v, Hv) = vTHv is the dot product in the space of N -dimensional real vectors v, which we will further
normalize as |v|2 =

∑
k v

2
k = N .

Given the definition of r1 as the maximum of a quantity, we can set up a statistical mechanics framework to
represent this maximum in a more convenient form. Consider the canonical distribution of N -dimensional real vectors
at inverse temperature β̃

Pβ̃(v) =
1

Z
(H)
N (β̃)

e
β̃
2 (v,Hv)δ(|v|2 −N) , (85)

whose partition function is

Z
(H)
N (β̃) =

∫
dv e

β̃
2 (v,Hv)δ(|v|2 −N) . (86)
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Using the Laplace method to evaluate the integral for large β̃ (see Appendix VA for details), we can write from (84)

Z
(H)
N (β̃) ≈ e

β̃
2

Nr1︷ ︸︸ ︷
max

|v|2=N
(v, Hv)

, (87)

from which it follows that

r1 = lim
β̃→∞

2

β̃N
logZ

(H)
N (β̃) . (88)

Note that r1 is a random variable, which depends on the realization of the “disorder” in the random matrix H.
Suppose we now wanted to compute the average ⟨r1⟩H ∼ O(1) over the ensemble of random matrices H for large N

(which according to our normalization would be equal to
√
2). We would therefore need to compute the following

average of the logarithm of the partition function integral

⟨logZ(H)
N (β̃)⟩H =

∫
dH11 · · · dHNNP(H11, . . . ,HNN ) log

∫
dv e

β̃
2 (v,Hv)δ(|v|2 −N) . (89)

What is the problem here? Eq. (89) defines a so called quenched8 average: there are two nested sources of
randomness, (i) the disorder in the matrix H, and (ii) the Gibbs-Boltzmann distribution of the auxiliary degrees

of freedom v at inverse temperature β̃. A single instance of H is selected and kept fixed, while the v degrees of
freedom equilibrate at inverse temperature β̃, before another instance of the H disorder is picked, and the process
is repeated. In thermodynamical terms, a quenched average rests on the separation between two temporal scales,
the “fast” equilibration of the v degrees of freedom at fixed temperature and at fixed instance of the disorder, and a
“slower” scale of change of the background disorder. This should be contrasted with the annealed9 scheme, which is
only approximate but way easier to handle analytically, consisting in treating the averages over the disorder and over
the Gibbs-Boltzmann distribution on the same footing, and simultaneously. We will not consider annealed calculations
here – for more information, see [93, 94].

Clearly, the only obvious way to crack the integral (89) is to solve the v-integral first, take the logarithm of the
result, and take the H-integrals last. Unfortunately, this procedure fails in most cases, because the v-integral cannot
in general be solved exactly for a fixed instance of H (or – for different models – of the so called disorder, namely the

randomness inherent to the parameters entering the definition of the “cost function” that multiplies β̃ in the exponent
of the Gibbs-Boltzmann distribution).

It would therefore be very helpful to make some headway if we were able somehow to take the average over the
disorder H first, and the v-integral last – in the hope that swapping the order of integration would make the integrals
more friendly to tackle.

A heuristic recipe to do just that originated in the “theory of spin glasses” [93] in the 70s. Doing this swapping of
integrals in a fully rigorously manner is quite challenging even in the simplest possible instances, though considerable
progress has been achieved in the last decades in evaluating such averages in a mathematically controllable way in
the case when the cost function is normally distributed, see e.g. [95–97]. Even when the cost function is not normally
distributed, progress is still possible within the powerful but heuristic method of Theoretical Physics, known as the
“replica trick”, see e.g. [98].

The main idea rests on the exact identity

⟨log z⟩ = lim
n→0

1

n
log⟨zn⟩ , (90)

which can be proven by noting that ⟨zn⟩ = ⟨1 + n log z + o(n)⟩ = ⟨1⟩ + n⟨log z⟩ + . . . = 1 + n⟨log z⟩ + . . ., where we
used linearity of expectations, and normalization ⟨1⟩ = 1.
While the identity (90) is mathematically fully rigorous, and requires n to be real and in the vicinity of zero, the

way it is implemented in replica calculations is as follows: assume first that n is an integer.

8 From Merriam-Webster dictionary. Quench [transitive verb]: to cool (something, such as heated metal) suddenly by immersion (as in
oil or water).

9 Anneal [transitive verb]: to heat and then cool slowly (a material, such as steel or glass) usually for softening and making less brittle.



22

This approach assumes that the mean value we are after can be found not from directly calculating the average,
but by considering the expectation of the integer moments of the partition function, frequently called in the physical
literature the “replicated” disorder averaged partition function〈[

Z
(H)
N (β̃)

]n〉
H

(91)

and subsequently taking the limit10 n⇝ 0 to recover the averaged log

⟨logZ(H)
N (β̃)⟩H = lim

n⇝0

1

n
log
〈[

Z
(H)
N (β̃)

]n〉
H

. (92)

Note that in this way the annoying logarithm has been effectively neutralized and forced out of the average. Moreover,
the integer nature of n (at least initially) allows to replicate the v integral n-times, which simply results in a “larger”
integral that allows us to swap the integration order and perform the average over the disorder first (see below).

Eventually, one could compute the large-N limit of the average position of the largest eigenvalue by the following
chain of limits11

⟨r1⟩ = lim
N→∞

1

N
lim
β̃→∞

2

β̃
lim
n⇝0

1

n
log
〈[

Z
(H)
N (β̃)

]n〉
H

. (93)

I leave the calculation of the average largest eigenvalue following (93) as an exercise, which should be doable relatively
easily after we engage in the a priori more complicated task of computing the full distribution (and not just the
average) of r1 (in the large deviation sense). It turns out that the replica formalism described above can indeed be
slightly modified to give access to more general observables.

Consider indeed again the replicated average 〈[
Z

(H)
N (β̃)

]n〉
H

, (94)

where the average is taken over the joint distribution (80). We can write〈[
Z

(H)
N (β̃)

]n〉
H

=
〈
en logZ

(H)
N (β̃)

〉
H

(95)

and setting n = −s/β̃ (with s < 0), we can write

lim
β̃→∞

〈
e

−s

β̃
logZ

(H)
N (β)

〉
H

=
〈
e−sN

2 r1
〉
H

, (96)

where we have used Eq. (88).
Therefore, the moment generating function of the largest GOE eigenvalue (at finite N) – encoding information

about its full distribution – can be in principle retrieved from the following non-standard double-scaling limit12〈
e−sN

2 r1
〉
H

= lim
β̃→∞

〈 [
Z

(H)
N (β̃)

]−s/β̃ 〉
H

, (97)

where the replica index n and the fictitious temperature β̃ are coupled in a non-trivial way. I now proceed to compute
the r.h.s. of (97).

We have for integer n (ignoring pre-factors from now on)

〈[
Z

(H)
N (β̃)

]n〉
H

∝
∫ n∏

a=1

dva

n∏
a=1

δ(|va|2 −N)

∫ N∏
i=1

dHiie
−N

2

∑N
i=1 H2

ii×

×
∏
i<j

dHije
−N

∑N
i<j H2

ije
β̃
2

∑n
a=1

∑
i,j viaHijvja

=

∫ n∏
a=1

dva

n∏
a=1

δ(|va|2 −N) exp

 β̃2

8N

∑
i,j

(∑
a

viavja

)2
 , (98)

10 I use the wiggly arrow ⇝ to denote the “replica limit” procedure as follows: first convert n ∈ R to an integer. Then evaluate the
corresponding observable as an explicit function of the integer n. Then pretend that n could be analytically continued in the vicinity of
zero without ambiguities.

11 In practice, though, a second mathematically questionable step is needed, namely the exchange of the order of limits, with the N → ∞
limit taken first (see below).

12 Of course, the initial step of having to promote n to an integer is still necessary to kick the logarithm out of the way and perform the
disorder average first.
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where we used the Gaussian integral ∫ ∞

−∞
dx e−ax2+bx ∝ e

b2

4a (99)

and we have replicated the partition function integral (86) n times. Indeed, each of the diagonal integral would read∫
dHiie

−N
2 H2

ii+
β̃
2

∑
a v2

iaHii ∝ e
1

2N

[
β̃
2

∑
a v2

ia

]2
= e

β̃
8N (

∑
a v2

ia)
2

, (100)

while the off-diagonal integral reads∫
dHije

−NH2
ij+β̃

∑
a viavjaHij ∝ e

1
4N (β̃

∑
a viavja)

2

. (101)

Therefore, overall we have ∫ ∏
i

dHii

∏
i<j

dHij (. . . ) ∝ e
β̃2

8N

∑
i,j(

∑
a viavja)

2

. (102)

We now note that

β̃2

8N

∑
i,j

(∑
a

viavja

)2

=
β̃2

8N

∑
a,b

(∑
i

viavib

)∑
j

vjavjb

 =
β̃2

8N

∑
a,b

(∑
i

viavib

)2

. (103)

We now introduce in a standard way the n× n overlap matrix Q with elements

Qab =
1

N
vT
a vb =

1

N

∑
i

viavib , (104)

where va = (v1a, . . . , vNa)
T is a N dimensional column vector (and we have n of them). The overlap matrix Q has

the following properties:

• it is symmetric

• Qaa = 1 for all a

• it is positive semi-definite13

Enforcing the definition of the overlap matrix with a delta, we can write:

〈[
Z

(H)
N (β̃)

]n〉
H

∝
∫ ∏

a,b

dQab exp

Nβ̃2

8

∑
a,b

Q2
ab

∫ n∏
a=1

dva

n∏
a=1

δ(|va|2 −N)
∏
a,b

δ

(
NQab −

∑
i

viavib

)
. (105)

Moreover

δ(|va|2 −N) = δ

(∑
i

v2ia −N

)
= δ(NQaa −N) ∝ δ(Qaa − 1) , (106)

therefore

〈[
Z

(H)
N (β̃)

]n〉
H

∝
∫ ∏

a,b

dQab exp

Nβ̃2

8

∑
a,b

Q2
ab

 n∏
a=1

δ(Qaa − 1)

∫ n∏
a=1

dva

∏
a,b

δ

(
NQab −

∑
i

viavib

)
︸ ︷︷ ︸

ΦN,n(Q)

. (107)

13 This means that xTQx ≥ 0 if x ̸= 0. We can show this as follows:
∑

a,b xaQabxb = 1
N

∑
a,b

∑
i xavaivbixb =

1
N

∑
i

(∑
a xavba

) (∑
b xbvbi

)
= 1

N

∑
i

(∑
a xavai

)2 ≥ 0.
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Let us now compute the entropic term ΦN,n(Q) as follows

ΦN,n(Q) =

∫ n∏
a=1

dva

∏
a,b

δ

(
NQab −

∑
i

viavib

)

∝
∫ ∏

a,b

dQ̂a,be
iN

∑
a,b Q̂abQa,b

[∫ n∏
a=1

dvae
−i

∑
a,b vaQ̂abvb

]N
, (108)

where we used the Fourier representation of the delta function

δ(x) =

∫ ∞

−∞

dk

2π
eikx . (109)

The multiple va integral is Gaussian14 and therefore results in (omitting constants)

ΦN,n(Q) ∝
∫ ∏

a,b

dQ̂abe
iN

∑
a,b Q̂abQa,b(det Q̂)−N/2 ∝ (detQ)(N−n−1)/2 . (110)

The result follows noticing that the integral is quite close to the Ingham-Siegel integral formula 15[99, 100]

JIS
N,p(Q) =

∫
Q̂>0

dQ̂ eTrQ̂Q(det Q̂)p = πn(n−1)/4
n∏

k=1

Γ

(
p+

k + 1

2

)
detQ−(p+n+1

2 ) (111)

valid for p > 0 and positive definite real symmetric matrices Q̂ and Q of size n. This integral was generalized by
Fyodorov [101] by (i) lifting the requirement that the integration matrix Q̂ be positive definite, and (ii) allowing p < 0,
which is needed in our case. The final result is (omitting pre-factors) as given in (110) and valid for N ≥ n+ 1.

The leading large-N term therefore is

ΦN,n(Q) ≈ (detQ)
N
2 . (112)

Alternatively, one could have proceeded immediately from (108) with a saddle-point evaluation for large N writing

ΦN,n(Q) ∝
∫ ∏

a,b

dQ̂ab eNS[Q̂,Q] , (113)

with

S[Q̂,Q] = i
∑
a,b

Q̂abQab + log

∫ n∏
a=1

dvae
−i

∑
a,b vaQ̂abvb (114)

= i
∑
a,b

QabQ̂ab −
1

2
log det(Q̂) + . . . , (115)

where we neglect irrelevant constants in the n → 0 limit.
Evaluating the stationary point of this action yields

∂S

∂Q̂ab

= 0 ⇒ iQab − i

∫ ∏n
r=1 dvr vavbe

−i
∑

a,b vaQ̂abvb∫ ∏n
r=1 dvre

−i
∑

a,b vaQ̂abvb
= 0 ⇒ Qab = [Q̂−1]ba , (116)

where we have used the log-det identity given in Appendix VB.

14
∫
Rn dnv⃗ e−

1
2
v⃗TMv⃗ =

√
(2π)n

detM
.

15 It is a matrix generalization of the Gamma integral
∫
f>0 dff

pe−fq = Γ(p+ 1)q−(p+1).
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Inserting the saddle-point Q̂ = Q−1 solution back into the action (115) yields

S[Q̂,Q] = i
∑
a,b

Qab[Q
−1]ba −

1

2
log detQ−1 + . . . = i

∑
a

(QQ−1)aa +
1

2
log detQ = in+

1

2
log detQ . (117)

In the n → 0 limit, the leading term of ΦN,n(Q) therefore comes out as expected from the Ingham-Siegel exact
evaluation (see Eq. (110)), namely

ΦN,n(Q) ∝ exp

[
N

2
log detQ

]
. (118)

Inserting this back into Eq. (107), we can write

〈[
Z

(H)
N (β̃)

]n〉
H

∝
∫ ∏

a,b

dQab exp

Nβ̃2

8

∑
a,b

Q2
ab

 n∏
a=1

δ(Qaa − 1)(detQ)(N−n−1)/2 =

∫
dQ (detQ)(−n−1)/2eNS[Q] ,

(119)

where the integration runs over positive semi-definite matrices Q of size n, with diagonal elements equal to one, and
the action S[Q] is given by

S[Q] =
β̃2

8
TrQ2 +

1

2
log detQ . (120)

This is equivalent to Eq. (25) of the Fyodorov-Le Doussal paper [29].
A few observations are in order:

1. The replica approach as developed in this section leads to an action of the form ∼ NS[Q] (so of order O(N)),
but is seemingly unable to capture either (i) the typical order O(N−2/3) of fluctuations of r1 around its mean,
or (ii) the atypical fluctuations to the left of the mean, which are of order ∼ O(N2). How to recover the law
of typical fluctuations (Tracy-Widom) and the left large deviation tails via a replica calculation are two of the
most important unsolved issues in the field.

2. As in every replica calculation, in order to make further progress we need to exchange the natural order of limits,
and go for N ≫ 1 first (before taking the double-scaling (β̃, n) limit as per Eq. (97)).

3. The replica framework developed here has the advantage of not needing the joint probability density of eigen-
values, which is actually not known for a large class of random matrices. Only the joint probability density of
the entries is needed (of course along with our ability to compute explicit averages over it, as we did in Eq. (98)
for the Gaussian case).

Eq. (119) lends itself to a saddle-point approximation for large N , which we need to take first. This leads to〈[
Z

(H)
N (β̃)

]n〉
H

≈ eNS[Qextr] , (121)

where the matrix Qextr is determined via the saddle point equations

∂S

∂Qab

∣∣∣
Q=Qextr

= 0 ⇒ β̃2

4
Qab +

1

2
[Q−1]ba = 0 a > b , (122)

where we have again used the log-det identity in Appendix VB.
We now make a so-called replica-symmetric ansatz for the structure of the matrix Qextr, which extremizes the

action S[Q], namely we assume that all replicas are created equal, and Qextr takes up the form

Qextr =


1 q · · · q
q 1 · · · q
...

...
. . .

...
q q · · · 1

 , (123)

depending on a single off-diagonal parameter 0 ≤ q ≤ 1, where the last condition is necessary to ensure that the
matrix be positive semi-definite. We indeed apply here an extended version of the Sylvester’s criterion [102] that
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states that a symmetric matrix is positive semi-definite if and only if all its principal minors16 are nonnegative. This
results in the conditions

1− q ≥ 0 and
1

1− n
≤ q ≤ 1 . (124)

Given that – at this stage – the size of the matrix is an arbitrary integer, it follows that we should restrict the value
q of the off-diagonal entries to the range 0 ≤ q ≤ 1.

We now make the following ansatz for its inverse

Q−1
extr =


γ

ηγ
. . .

γη
γ

 . (125)

It follows that

[QextrQ
−1
extr]aa = γ + (n− 1)qη (126)

[QextrQ
−1
extr]ab = qγ + η + (n− 2)qη , (127)

which should be set to 1 and 0, respectively. Solving for γ and η, we find

γ =
1 + q(n− 2)

(1− q)(1 + q(n− 1))
(128)

η =
−q

(1− q)(1 + q(n− 1))
. (129)

Therefore the saddle-point equations (122) for the off-diagonal elements reduce to

β̃2

4
q − 1

2

q

(1− q)(1 + q(n− 1))
= 0 . (130)

Evaluating now the action (120) at the saddle point

S[Qextr] =
β̃2

8

[
n+ n(n− 1)q2

]
+

1

2
(n− 1) log(1− q) +

1

2
log(1 + (n− 1)q) , (131)

where we used that

det
n×n


γ

ηγ
. . .

γη
γ

 = (γ − η)n−1[γ + (n− 1)η] (132)

(formula left as an exercise), resulting in

detQextr = (1− q)n−1(1 + (n− 1)q) . (133)

Apart from the trivial solution q = 0, Eq. (130) admits another solution from

(1− q)(1 + q(n− 1)) =
2

β̃2
⇒ (1− n)q2 + (n− 2)q + 1− 2

β̃2
= 0 (134)

16 A principal minor of a matrix is the determinant of the sub-matrix obtained by erasing corresponding sets of rows and columns (e.g.
rows 1 and 6, and columns 1 and 6).
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with discriminant

∆ = (n− 2)2 − 4(1− n)(1− 2/β̃2) , (135)

which becomes (after setting n = −s/β̃)

∆ = (n− 2)2 − 4(1− n)(1− 2/β̃2) =
β̃
(
s2 + 8

)
+ 8s

β̃3
. (136)

Therefore, the values for q that solve Eq. (134) are

q1,2 =

2− n±
√

β̃(s2+8)+8s

β̃3

2(1− n)
=

2 + (s/β̃)±
√

β̃(s2+8)+8s

β̃3

2(1 + s/β̃)
≈ 1 +

±
√
s2 + 8− s

2β̃
+O(1/β̃2) , (137)

where I used the Taylor expansion for β̃ → ∞(
1 +

A

β̃

)b

∼ 1 +
Ab

β̃
+

A2b(b− 1)

2β̃2
+ . . . (138)

One of the roots q1,2 is > 1 (in the β̃ ≫ 1 limit and for s < 0) and should be discarded, as it would yield a
non-positive-definite matrix Qextr. The other is the physically relevant one and should be kept

q⋆ = 1− v(s)
1

β̃
+O(1/β̃2) , (139)

with

v(s) =
1

2
(
√
s2 + 8 + s) . (140)

Inserting this value into the action (131) with n = −s/β̃ yields

S[Qextr] =
β̃2

8

[
− s

β̃
− s

β̃
(−s/β̃ − 1)

(
1− v(s)

1

β̃

)2
]
+

1

2
(−s/β̃ − 1) log(v(s)/β̃) +

1

2
log(1 + (−s/β̃ − 1)(1− v(s)(1/β̃)))

≈ −s

8
(2v(s)− s)− 1

2
log v(s) +

1

2
log(v(s)− s) , (141)

in the limit β̃ → ∞.
Re-tracing the various steps from Eq. (97) and (121)〈

exp

(
−s

N

2
λ1

)〉
H

= lim
β̃→∞

〈[
Z

(H)
N (β̃)

]−s/β̃
〉

H

≈ exp

[
N

(
−s

8
(2v(s)− s)− 1

2
log v(s) +

1

2
log(v(s)− s)

)]
,

(142)
which can be written explicitly as ∫

dx fr1(x)e
−sN

2 x ≈ eNϕ(s) , (143)

where fr1(x) is the probability density function of the largest eigenvalue of the GOE, and

ϕ(s) = −s

8
(2v(s)− s)− 1

2
log v(s) +

1

2
log(v(s)− s)

=
1

8

(
−s
√
s2 + 8 + 4 log

(√
s2 + 8− s

)
− 4 log

(√
s2 + 8 + s

))
. (144)

Assuming for fr1(x) the large deviation form fr1(x) ≈ exp(−NΦ+(x)) – which we know is only valid for anoma-
lous fluctuations to the right of its expected value – and evaluating the integral on the l.h.s. using the Laplace
approximation, we get∫

dx fr1(x)e
−sN

2 x ≈
∫

dx e−N[Φ+(x)+ s
2x] ≈ exp

[
−N min

x

[
Φ+(x) +

s

2
x
]]

. (145)
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Comparing (143) with (145), we can write (see [1] for details on the Legendre-Fenchel method to recover the large
deviation function in real space from that in Laplace space)

ϕ(s) = −min
x

[
Φ+(x) +

s

2
x
]
. (146)

It now remains to check that Eq. (146) holds for Φ+(x) given by the Majumdar-Vergassola formula (41)

Φ+(x) =
1

2
x
√
x2 − 2 + log

(
x−

√
x2 − 2√
2

)
. (147)

If this were the case, we would have shown that the outcome of a replica calculation (the function ϕ(s) on the l.h.s.
(146)) indeed matches the result obtained for the large deviation function from a Coulomb gas physical analogy (the
function on the r.h.s. of (146)).

The value x⋆(s) that minimizes the term in square brackets in (146) is given by

Φ′
+(x

⋆(s)) + s/2 = 0 ⇒ s

2
+

x⋆(s)2

2
√

x⋆(s)2 − 2
+

√
x⋆(s)2 − 2

2
+

1− x⋆(s)√
x⋆(s)2−2

x⋆(s)−
√

x⋆(s)2 − 2
= 0 , (148)

which can be massively simplified into (note that s < 0)

s

2
+
√
x⋆(s)2 − 2 = 0 , (149)

giving (selecting the positive root as x⋆(s) >
√
2 represent fluctuations of the largest eigenvalue to the right of its

expected value)

x⋆(s) =
1

2

√
s2 + 8 . (150)

Therefore the relation we have to prove from (146) is

1

8

(
−s
√

s2 + 8 + 4 log
(√

s2 + 8− s
)
− 4 log

(√
s2 + 8 + s

))
?
= −Φ+(x

⋆(s))− (s/2)x⋆(s) , (151)

which can be verified after a bit of tedious algebra. Eq. (146) can also be verified directly in Mathematica using
the following code (see Fig. 8). I leave as an exercise to derive Φ+(x) from scratch from Eq. (146) by inverting
the Legendre transform. The remaining big challenge is to obtain the Tracy-Widom law for typical fluctuations, as
well as the left large deviation function describing fluctuations of O(N2), via a replica calculation. This remains an
outstanding puzzle.

1 Clear[Phiplus , v, s];

2 (* Majumdar -Vergassola right large deviation function *)

3

4 Phiplus[x_] := x/2 Sqrt[x^2 - 2] + Log[(x - Sqrt[x^2 - 2])/Sqrt [2]];

5

6 (* Find the Legendre -Fenchel minimum (r.h.s. of Eq. (146)) *)

7

8 LegendreMin =

9 Table[{-s, -FindMinimum[Phiplus[x] + (-s/2) x, {x, 3}][[1]]} , {s, 1,

10 100, 5}];

11

12 (* L.h.s. of Eq. (146) - obtained via replica *)

13

14 v[s_] := (1/2) (s + Sqrt[s^2 + 8]);

15 \[Phi][s_] := -(s/8) *(2 v[s] - s) - (1/2) Log[v[s]] + (1/2) Log[v[s] - s];

16

17 (* Plot of l.h.s. and r.h.s. *)

18 Plot1 = ListPlot[LegendreMin , PlotStyle -> {Red , PointSize[Large ]}];

19 Plot2 = Plot [\[Phi][s], {s, -100, 0}, PlotStyle -> {Blue , Thick }];

20 Show[

21 Plot1 , Plot2 ,

22 AxesLabel -> {Style["s", Larger], None},

23 Ticks -> {Automatic , None},

24 PlotRange -> All ,

25 GridLines -> None

26 ]
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FIG. 8. Numerical check of Eq. (146) in Mathematica. Solid blue line is the replica result ϕ(s). Red dots correspond to the
numerical minimization of the r.h.s. of (146), where Φ+(x) is the Majumdar-Vergassola formula (41) obtained via a Coulomb
gas method.

A. Appendix: Laplace method for the asymptotic evaluation of integrals

The Laplace method is a powerful technique used in the field of asymptotic analysis for approximating integrals.
This method is particularly useful when dealing with integrals that are difficult to evaluate using standard techniques.
The Laplace method is based on the principle of approximating the integral of an exponentially decaying function by
the function’s value at its extremal point(s).

Consider an integral of the form

I(T ) =

∫ b

a

eTf(x)g(x) dx, (152)

where T is a large parameter, and f(x) and g(x) are smooth functions. The objective is to find an asymptotic
approximation of I(T ) as T → ∞.
The Laplace method is based on the observation that, for large T , the main contribution to the integral comes

from the neighbourhood of the point where f(x) attains its maximum value inside the interval (a, b). Assume this
maximum occurs at a point x0 ∈ (a, b) such that f ′′(x0) < 0.

Expanding f(x) around x0 using Taylor’s theorem, we get

f(x) ≈ f(x0) +
1

2
f ′′(x0)(x− x0)

2 + . . . , (153)

where we used the fact that f ′(x0) = 0 being a maximum. We can also similarly expand the function g(x) to get

g(x) ≈ g(x0) + g′(x0)(x− x0) + . . . . (154)

Substituting these expansions into the integral, and keeping only the first terms, we obtain

I(T ) ≈ eTf(x0)g(x0)

∫ b

a

e−
1
2T |f ′′(x0)|(x−x0)

2

[
1 +

g′(x0)

g(x0)
(x− x0) + . . .

]
dx . (155)

Making a change of variables
√
T (x− x0) = y, we get

I(T ) ≈ eTf(x0)g(x0)

∫ √
T (b−x0)

−
√
T (x0−a)

e−
1
2 |f

′′(x0)|y2

[
1 +

g′(x0)

g(x0)

y√
T

+ . . .

]
dy . (156)
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For large T , the exponential function rapidly decays away from x0, allowing us to extend the limits of integration
to infinity. Ignoring also the sub-leading terms in square brackets, we get to leading order for large T

I(T ) ≈ eTf(x0)g(x0)

∫ ∞

−∞
e−

1
2 |f

′′(x0)|y2

dy = eTf(x0)g(x0)

√
2π

T |f ′′(x0)|
, (157)

where we have evaluated the Gaussian integral exactly.

B. Appendix: derivative of Log-Det identity (used in Eqs. (116) and (122))

We give here a proof of the identity (assuming detM > 0)

∂

∂Mab
log detM = [M−1]ba . (158)

Proof: By the chain rule

∂

∂Mab
log detM =

1

detM

∂

∂Mab
detM . (159)

Using the cofactor expansion of the determinant along the a-th row

detM =

n∑
k=1

MakCak , (160)

where the cofactor matrix C is

Cij = (−1)i+jTij (161)

and Tij is a minor of M , i.e. the determinant of the (n− 1)× (n− 1) matrix obtained removing the i-th row and j-th
column of M .

Hence

∂

∂Mab
detM =

n∑
k=1

∂Mak

∂Mab︸ ︷︷ ︸
δkb

Cak +Mak
∂Cak

∂Mab︸ ︷︷ ︸
=0

 , (162)

where the last term vanishes as the elements in row a do not affect the corresponding cofactor.
It follows from (159) and (162) that

∂

∂Mab
log detM =

Cab

detM
=

[adj(M)]ba
detM

, (163)

where we use the fact that the adjugate matrix adj(M) is the transpose of the cofactor matrix. The right hand side
of (163) is readily recognised as the element ba of the inverse matrix of M .

For symmetric M , this identity provides an integral representation for an entry of the inverse matrix M−1 as an
interesting corollary. Indeed we have

[M−1]ba =
∂

∂Mab
log detM = (−2)

∂

∂Mab
log(detM)−1/2 = (−2)

∂

∂Mab
log

∫
Rn

dnx e−
1
2 x⃗

TMx⃗

=

∫
Rn dnx xaxbe

− 1
2 x⃗

TMx⃗∫
Rn dnx e−

1
2 x⃗

TMx⃗
, (164)

where we have used the Gaussian integral formula given in footnote 12 (provided the integrals are convergent).
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VI. LECTURE 4/5 - PUSHED PHASE: SPECTRAL RADIUS FOR GENERAL CONFINING
POTENTIAL V (x)

In these two lectures, we start again from the real log-gas joint probability density (18)

Pβ,N (x1, . . . , xN ) =
1

ZN,β
e−βE(x1,...,xN ) , (165)

E (x1, . . . , xN ) = −1

2

∑
i ̸=j

log |xi − xj |+N
∑
k

V (xk) , (166)

this time keeping the potential sufficiently general (i.e. not restricted to Gaussian). We focus here on the spectral
radius

r2 = max
j

|xj | (167)

and ask whether the cumulative distribution Prob[r2 ≤ R] can be characterized in the large deviation sense. The
derivation of a general formula for the large deviation function (excess free energy) F (R) follows very closely the
paper [30]. We consider potentials V (x) satisfying the following assumption.

Assumption 1: V (x) is C3(R), symmetric V (x) = V (−x), strictly convex and satisfies lim inf |x|→∞
V (x)
log |x| > 1.

We remark that strictly convex and super-logarithmic V (x)’s are in the class of so-called one-cut, off-critical
potentials – namely, potentials for which the average spectral density is supported on a single interval on the real line,
and decays as a square root at the upper edge R⋆ (like the semicircle for Gaussian ensembles).

In the large-N limit, the eigenvalue empirical measure n(x) = 1
N

∑
i δx,xi

weakly converges to a deterministic

density17 n⋆
R⋆

(x). This limit is the equilibrium measure (the minimizer) of the energy functional

E [n(x)] = −1

2

∫∫
R×R

log |x− y|dn(x)dn(y) +
∫
R
V (x)dn(x) . (168)

An electrostatic derivation of this fact will be presented in the next sub-section.
For concreteness, let us focus on the Gaussian Unitary Ensemble (GUE) defined by the measure (18) with V (x) =

x2/2 and β = 2. In this case, the equilibrium measure is supported on the symmetric interval [−R⋆, R⋆] where

R⋆ =
√
2, with the Wigner semicircular density Eq. (24). Moreover, as N → ∞, the extreme statistics r2 = maxj |xj |

converges to the edge R⋆, namely Prob (maxj |xj | ≤ R) converges to a step function: 0 if R < R⋆, and 1 if R > R⋆.

For large N , the fluctuations of the spectral radius r2 = maxj |xj | around R⋆ over the typical scale O(N−2/3) are
described by a squared Tracy-Widom distribution. In formulae [103, 104],

lim
N→∞

Prob

[
max

j
|xj | ≤ R⋆ +

t√
2N2/3

]
= F2

2 (t) , (169)

where Fβ(t) is the β-Tracy-Widom distribution (32). The macroscopic (atypical) fluctuations of r2 = maxj |xj | are
instead described by a large deviation function. More precisely, for all β > 0 the following limit exists

− lim
N→∞

1

βN2
log Prob

[
max

j
|xj | ≤ R

]
= − lim

N→∞

1

βN2
log

ZN (R)

ZN (∞)
= F (R) , (170)

in complete analogy with Eq. (46), where this time

ZN (R) =

∫ R

−R

· · ·
∫ R

−R

dx1 · · · dxN e−βE(x1,...,xN ) . (171)

In physical term, ZN (R) is the canonical partition function at inverse temperature β of a log-gas on a line, subject
to a confining potential V (x) and constrained to lie within two hard “walls” at −R and R. The denominator is
nothing but the partition function of the same gas when the constraining walls are released to ±∞. The quantity
F (R) therefore represents the excess free energy of the gas (at zero temperature), which essentially measure the level
of discomfort the gas particles will feel in being squeezed within a much narrower region (the interval [−R,R]) than
they would normally occupy at equilibrium.

The general picture is as follows (see Fig. 9):

17 For the Gaussian confining potential V (x) = x2/2, this would be the semicircle law, n⋆
R⋆

(x) = ϱsc(x).
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FIG. 9. The pulled-to-pushed transition for a log-gas in dimension d = 1 in a quadratic potential (GUE). Figure taken from
[30].

i) If R > R⋆, the wall constraint is immaterial, and hence the equilibrium density of the gas is a certain function
n⋆
R⋆

(x), which minimizes the energy functional (168) over the entire real. This is the so-called pulled phase,
borrowing a terminology suggested in [64]. In this phase, the excess free energy is F (R) = 0.

ii) If R < R⋆ the system is in a pushed phase, the constraint is effective, and the equilibrium energy of the system
increases, leading to F (R) > 0.

iii) At R = R⋆ the gas undergoes a phase transition and the excess free energy F (R) displays a non-analytic
behavior.

Explicitly solvable models related to random matrices suggest that in the vicinity of the critical point

F (R) ≃ (R⋆ −R)31R≤R⋆
, (172)

implying that the transition between the pushed and pulled phases of the gas is third-order. In [30], we demonstrated
that (172) is generically true for a large class of systems with repulsive interactions.

The calculation of F (R) for the GUE (hereafter called FGUE(R)) and its β > 0 extensions was performed in detail by
Dean and Majumdar [58] and essentially reproduced in detail in the next subsection. They found explicit expressions
for the equilibrium density of the gas

n⋆
R(x) =


1

π

2 +R2 − 2x2

2
√
R2 − x2

1|x|<R if R < R⋆ (pushed phase)

1

π

√
2− x21|x|≤R⋆

if R ≥ R⋆ (pulled phase) ,

(173)

and for the excess free energy

FGUE(R) =


1

32

(
8R2 −R4 − 16 logR− 12 + 8 log 2

)
if R < R⋆

0 if R ≥ R⋆ .
(174)

As remarked earlier, we see that

FGUE(R) ∼ 1

3
√
2
(R⋆ −R)31R≤R⋆

, (175)

as R → R⋆. Therefore, the third derivative of the free energy of the log-gas at the critical point R⋆ =
√
2 is

discontinuous.
Similar phase transitions of the pulled-to-pushed type have been observed in several physics models related to

random matrices [28, 105], including large-N gauge theories [106–109], longest increasing subsequences of random
permutations [110], quantum transport fluctuations in mesoscopic conductors [111–115], non-intersecting Brownian
motions [50, 116], entanglement measures in a bipartite system [117–120], random tilings [121, 122], random land-
scapes [123], and the tail analysis in the KPZ problem [124]. (See also the recent popular science articles [125, 126].)

An explanation of the critical exponent ‘3’ for the largest eigenvalue r1 (even though their argument would work for
r2 as well) has been put forward by Majumdar and Schehr [28] based on a standard extreme value statistics criterion
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and a matching argument of the large deviation function behavior in the vicinity of the critical value R⋆ and the left
tail of the limiting distribution for typical fluctuations. I reproduce their argument here.

Let, in general, n⋆
R⋆

(x) ∼ (R⋆ − x)γ at the upper soft edge x = R⋆. One can easily estimate the scale of typical
fluctuation δr1 of r1 around its mean R⋆. Using the standard EVS criterion (see footnote 1), one gets (exercise)

δr1 = R⋆ − r1 ∼ O(N−1/(1+γ)) . (176)

For γ = 1/2 (valid for the semicircle law and in general for off-critical ensembles), one indeed recovers δr1 ∼ O(N−2/3).
Hence, one would expect that on this scale, the Cumulative Distribution Function of r1 will have the scaling form (cf.
Eq. (30))

Prob[r1 ≤ w] ∼ F
(
N1/(1+γ)(w −R⋆)

)
, (177)

where the scaling function F(x) is the γ-analogue of the Tracy-Widom law (32). Now, in general, we would expect
that far in the left tail, this function should decay asymptotically as,

F(x) ∼ exp[−a0 |x|δ] , for x → −∞ , (178)

where a0 is a constant. Clearly, for γ = 1/2 case (i.e., when F(x) is the standard Tracy-Widom), one has δ = 3 (see
Eq. (34)).

On the other hand, it follows from a general Coulomb gas argument (see detailed treatment below) that atypical
fluctuations of r1 of ∼ O(1) to the left of R⋆, i.e., when w < R⋆, are described by a large deviation form

Prob[r1 ≤ w] ∼ exp
[
−β N2Φ−(w)

]
, w < R⋆ , (179)

where Φ−(w) is a rate function that should vanish as w → R⋆ from the left. Interpreting Φ−(w) as the excess free
energy of the gas in the pushed phase, we then expect Φ−(w) ∼ a1 (R⋆ − w)σ as w → R⋆ where a1 is a constant
and the exponent σ then decides the order of the transition. To estimate σ, we match this left large deviation results
(when w → R⋆) with the extreme left tail of the central peak region as described in (178).

Recall: The most unlikely of typical fluctuations should smoothly match the most likely of atypical fluctuations.
Substituting Φ−(w) ∼ a1 (R⋆ − w)σ in (179) gives, for w → R⋆,

Prob[r1 ≤ w] ∼ exp
[
−β N2 a1 (R⋆ − w)σ

]
,

∼ exp
[
−β a1

[
N2/σ (R⋆ − w)

]σ]
. (180)

In contrast, for (R⋆ − w) ≫ N−1/(1+γ), we get, by using the left tail asymptotics (178) of the central peak behavior
in (177),

Prob[r1 ≤ w] ∼ exp

[
−a0

{
N1/(1+γ) (R⋆ − w)

}δ
]
. (181)

Assuming that the two behaviors merge smoothly, we find by comparing (180) and (181)

δ = σ and
δ

1 + γ
= 2 , (182)

which then relates the order of the transition σ to the exponent γ characterizing the vanishing of the charge density
at the soft edge, via the simple scaling relation

σ = 2 (1 + γ) . (183)

For example, for γ = 1/2, one recovers the third order transition σ = 3. As an example, a ‘critical’ potential whose
equilibrium density decays with an exponent γ = 5/2 at the upper edge R⋆, will then have a seventh order (σ = 7)
phase transition.

The criterion predicts that if the equilibrium density of a log-gas in the pulled phase vanishes as n⋆
R⋆

(x) ∼
√
R2

⋆ − x2

at the edges – the so-called off-critical case – then the pulled-to-pushed phase transition is of the third order. This
conjectural relation between the particular behavior of the gas density and the arising non-analyticities in the free
energies has been verified in several examples, even though each particular case (i.e. each matrix ensemble defined by
a potential V ) requires working out explicitly the model-dependent F (R) to compute the critical exponent. I show
later that a general formula for F (R) can be obtained for arbitrary confining potential satisfying Assumption 1,
which incidentally proves the universality of the third-order phase transition for one-cut, off-critical matrix models
and confirms the heuristic Majumdar-Schehr criterion.
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A. Electrostatic derivation of the energy functional (168)

Consider the N -fold integral (171)

ZN (R) =

∫ R

−R

· · ·
∫ R

−R

dx1 · · · dxN e−βE(x1,...,xN ) , (184)

where

E (x1, . . . , xN ) = −1

2

∑
i ̸=j

log |xi − xj |+N
∑
k

V (xk) (185)

and V (x) satisfies Assumption 1.
We may now derive a continuous field theory for the problem, where the individual charge locations {xi} are

replaced by a continuous density of charge. To this end, we introduce the empirical density

nR(x) =
1

N

∑
i

δx,xi
, (186)

which counts how many charged particles are there at location x within [−R,R]. We further assume that for large
N , nR(x) will converge to a non-negative, sufficiently regular, and normalized function of the position x.
We can now enforce the definition (186) via a functional delta integration over non-negative, regular, and normalized

functions as

1 =

∫
D[nR(x)]δ

[
nR(x)−

1

N

∑
i

δx,xi

]
. (187)

Inserting this identity (see [127] for details on functional integration) into the multiple integral (184), and using the
identities ∑

i

f(xi) = N

∫
dx nR(x)f(x) (188)

∑
i,j

g(xi, xj) = N2

∫∫
dxdx′nR(x)nR(x

′)g(x, x′) , (189)

we can express the two terms in the energy (185) as

N
∑
k

V (xk) = N2

∫
dx nR(x)V (x) (190)

−1

2

∑
i̸=j

log |xi − xj | = −1

2

∑
i,j

log |xi − xj | −
∑
i

log∆(xi)


= −1

2

[
N2

∫∫
dxdx′nR(x)nR(x

′) log |x− x′| −N

∫
dx nR(x) log∆(x)

]
, (191)

where in the second line we have added and subtracted the infinite self-energy contribution that arises when two
neighboring particles sitting around the point x attain a vanishing separation ∆(x). Dyson [4] gave a heuristic
argument for ∆(x) having the form ∆(x) ≈ c/(NnR(x)), based on the consideration that the higher the density of
particles around position x the smaller the inter-particle separation – note, however, that this simplistic argument
would not fix the constant c. There has been an impressive amount of work done in recent times (see e.g. [128, 129] and
references therein) to characterize rigorously the next-to-leading order in the approximation of the discrete-charge
energy functional and to take good care of the self-energy term. Fortunately, we do not need very sophisticated
considerations if we confine ourselves to the leading order term.

Eventually, the multiple integral defining ZN (R) in (184) can be rewritten (exchanging orders of integration) as

ZN (R) ≈
∫

D[nR(x)] exp

[
−βN2

(∫
dx nR(x)V (x)− 1

2

∫∫
dxdx′nR(x)nR(x

′) log |x− x′|

+
1

2N

∫
dx nR(x) log∆(x)

)]
×
∫ R

−R

· · ·
∫ R

−R

dx1 · · · dxNδ

[
nR(x)−

1

N

∑
i

δx,xi

]
. (192)
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In physical terms, what we have done is as follows. Instead of summing over the “microstates” (individual configu-
rations of charges), we first fix a certain charge density profile nR(x) (non-negative, regular, and normalized). Then,
we sum over all microstates “compatible” with nR(x) (as signalled by the last multiple integral in (192)). Finally, we
sum over all possible (non-negative, regular, and normalized) functions nR(x).
The term

Ψ[nR(x)] =

∫ R

−R

· · ·
∫ R

−R

dx1 · · · dxNδ

[
nR(x)−

1

N

∑
i

δx,xi

]
(193)

indeed counts how many microstates exist that are compatible with a given nR(x). Dean and Majumdar [58] have
shown that for large N , the term Ψ[nR(x)] indeed has an “entropy” form given by

Ψ[nR(x)] ≈ exp

[
−N

∫
dx nR(x) log nR(x)

]
. (194)

I will reproduce their derivation in the appendix VIB.
Fortunately, both the self-energy and the entropy terms are sub-leading (O(N)) with respect to the “energetic”

components (O(N2)), hence they can be ignored for large N . From (192), one indeed deduces that for large N

ZN (R) ≈ exp
[
−βN2E [nR(x)] +O(N)

]
≈ exp

[
−βN2E [n⋆

R(x)]
]
, (195)

where the mean-field energy functional E [σ] over the set of probability measures on [−R,R] is given by

E [σ] =
∫ R

−R

dx σ(x)V (x)− 1

2

∫∫
[−R,R]2

dxdx′σ(x)σ(x′) log |x− x′| , (196)

while n⋆
R(x) is the minimizer of this class of functionals, namely the solution of

δE
δσ

∣∣∣
σ=n⋆

R

= 0 ⇒ V (x)−
∫ R

−R

dx′ n⋆
R(x

′) log |x− x′|+ µR = 0 , (197)

for x in the support of n⋆
R(x), where the chemical potential µR is a R-dependent constant that ensures normalization

of the equilibrium density
∫ R

−R
n⋆
R(x)dx = 1. Eq. (197) is the Euler-Lagrange equation corresponding to the mean-

field energy functional E , and it has a clear physical interpretation: the electric field felt by an infinitesimal charge
at position x and generated by all other charges should perfectly balance the potential V (x) generated at x by the
neutralizing background. If this were not the case, charges would react to the field imbalance and spontaneously
re-arrange in order not to feel any net force.

Setting now x = Rt and x′ = Rt′, and defining ϱR(t) = Rn⋆
R(Rt), we obtain after simple algebra from (197)

V (Rt)−
∫ 1

−1

dt′ ϱR(t
′) log |t− t′|+ µ′

R = 0 . (198)

This integral equation for ϱR(t) represents an inverse electrostatic problem: contrary to the standard textbook problem
of determining the potential generated at position x by the distribution of charge ϱ(x′) elsewhere, we here ask what
distribution of charges is such that the field generated by it precisely balances the external potential elsewhere.

The integral equation can be solved by first differentiating Eq. (198) with respect to t. Since log |t − t′| is not
differentiable, this requires introducing the notion of weak derivative. Let u be a function in L1([a, b]). We say that
v in L1([a, b]) is a weak derivative of u if∫ b

a

dx u(x)φ′(x) = −
∫ b

a

dx v(x)φ(x) , (199)

for all infinitely differentiable functions φ(x) with φ(a) = φ(b) = 0. The notion of weak derivative extends the
standard (strong) derivative to functions that are not differentiable, but integrable in [a, b]. Also, if u is differentiable
in the standard sense, then its weak and strong derivatives coincide - just using integration by parts.

Setting u(x) =
∫ 1

−1
dt′ ϱR(t

′) log |x− t′|, we can write∫
φ′(x)

[∫ 1

−1

dt′ ϱR(t
′) log |x− t′|

]
dx =

1

2
lim
ϵ→0

∫
φ′(x)

[∫ 1

−1

dt′ ϱR(t
′) log((x− t′)2 + ϵ2)

]
dx

= −1

2

∫
φ(x)

[∫ 1

−1

dt′ ϱR(t
′)

2(x− t′)

(x− t′)2 + ϵ2

]
dx = −

∫
φ(x)

[
Pr

∫ 1

−1

ϱR(t
′)

x− t′
dt′
]
dx , (200)
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where Pr stands for Cauchy’s principal value18. Comparing with (199), we see that the weak derivative of u(x) is

Pr
∫ ϱR(t′)

x−t′ dt
′, therefore the singular integral equation to be solved is in the end

Pr

∫ 1

−1

ϱR(t
′)

x− t′
= V ′(Rx) . (201)

This equation is of the “airfoil” (or finite Hilbert transform) type, which was considered and explicitly solved long
ago by Tricomi (assuming the solution is one-cut) [130]. Applying Tricomi’s formula directly, we get

ϱR(t) =
1

π2
√
1− t2

Pr

∫ 1

−1

dt′
√
1− t′2 V ′(Rt′)

t′ − t
+

C√
1− t2

, (202)

where the constant

C =
1

π

∫ 1

−1

dt ϱR(t) =
1

π
(203)

by normalization.
Coming back to Eq. (197) and the equilibrium density n⋆

R(t) = (1/R)ϱR(t/R), we obtain straightforwardly

n⋆
R(t) =

PR(t)

π
√
R2 − t2

, (204)

where

PR(t) = 1− Pr

∫ R

−R

1

π

√
R2 − τ2V ′(τ)

t− τ
dτ . (205)

Note that PR(t) ≥ 0 to ensure that the equilibrium density is non-negative within its support. This may induce a
change of shape of n⋆

R(t) as R crosses over from a value R < R⋆ to a value R > R⋆, with the value of R⋆ depending
on the external potential V (x). I will not show this fact in general [131, 132], but only on the Gaussian special case,
which is sufficiently instructive.

Take V (x) = x2/2. Then

PR(t) = 1− Pr

∫ R

−R

1

π

√
R2 − τ2 τ

t− τ
dτ = 1− t2 +R2/2 , (206)

where I used the following auxiliary integral (proof left as an exercise)

Pr

∫ 1

−1

dy

√
1− y2 y

x− y
= π

(
x2 − 1

2

)
for x ∈ (−1, 1) . (207)

Clearly, PR(t) ≥ 0 over the full support [−R,R] only if R ≤ R⋆ =
√
2. If R > R⋆, then PR(t) can be ≥ 0 only

over a narrower interval [−
√

1 +R2/2,
√
1 +R2/2]. Imposing

√
1 +R2/2 = R gives R = R⋆ =

√
2, for which

PR⋆
(t) = 2− t2, and n⋆

R⋆
(t) = (1/π)

√
2− t2. Therefore, for the Gaussian case we have

n⋆
R(t) =

{
1−t2+R2/2

π
√
R2−t2

1−R≤t≤R for R < R⋆ =
√
2

1
π

√
R2

⋆ − t21−R⋆≤t≤R⋆
for R ≥ R⋆ =

√
2 ,

(208)

which is consistent with the physical picture that when the walls are not active (R > R⋆), the equilibrium density
sticks to the unperturbed semicircular law. Mathematically, this abrupt change of shape of the equilibrium density
– from a situation where the density diverges at the edges ±R of the support to one where the density vanishes as
a square root at the edges ±R⋆ of the support – is induced by the positivity constraint of the density over its entire
support.

18 This means the limit limϵ→0

[∫ x−ϵ F (x′)dx′ +
∫
x+ϵ F (x′)dx′

]
, if x is a singular point of F (x).
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To summarize, the cumulative distribution of the spectral radius for log-gases subject to an external potential
satisfying Assumption 1 reads

Prob

[
max

j
|xj | ≤ R

]
=

ZN (R)

ZN (∞)
≈ exp

−βN2 (E [n⋆
R(x)]− E [n⋆

R⋆
(x)])︸ ︷︷ ︸

F (R)

 , (209)

where the mean-field energy functional is given by

E [σ] =
∫ R

−R

dx σ(x)V (x)− 1

2

∫∫
[−R,R]2

dxdx′σ(x)σ(x′) log |x− x′| , (210)

and its minimizer n⋆
R(x) has the following general form

n⋆
R(t) =

{
PR(t)

π
√
R2−t2

1−R≤t≤R for R < R⋆ (pushed phase)
1
πQ(t)

√
R2

⋆ − t21−R⋆≤t≤R⋆
for R ≥ R⋆ (pulled phase) ,

(211)

where

Q(t) = lim
R→R⋆

PR(t)

R2 − t2
. (212)

The critical value R⋆ will be determined as the smallest positive solution of Eq. (226) below.
Inserting (208) into (210) and evaluating F (R) from (209) provides the result derived by [58] (see Eq. (174)) for

the Gaussian β-ensembles. This derivation is left as an exercise.
For a general potential V (x), it seems difficult to be able to go much beyond this general summary: to compute

F (R) and evaluate the order of the phase transition as R → R⋆, one would need to solve the integrals (210), which
can only be done by specifying (on a case-by-case basis) the potential V (x) at hand. Is this really the case, though?

In [30], we have actually managed to prove a general formula for the excess free energy (rate function) for r2 in the
form

F (R) =
1

2

∫ R⋆

min(R,R⋆)

P 2
r (r)

r
dr , (213)

where Pr(r) is the numerator of the equilibrium density in the pushed phase (see (211)), where both the parameter
and the argument are set to the integration variable r.

The formula is based on the intriguing identity

− log |x− y| = log 2 +
∑
n≥1

2

n
Tn(x)Tn(y) |x| ≤ 1, |y| ≤ 1, x ̸= y , (214)

where Tn’s are the Chebyshev polynomials of the first kind, defined by the relation

Tn(cos θ) = cos(nθ) . (215)

These polynomials are orthogonal on [−1, 1] with respect to the “arcsine” measure∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx = hnδnm with hn =

{
π n = m = 0
π
2 n = m ≥ 1

. (216)

They also form a complete basis of L2([−1, 1]). The first few polynomials are

T0(x) = 1 (217)

T1(x) = x (218)

T2(x) = 2x2 − 1 , (219)

and in general

Tn+1(x) = 2xTn(x)− Tn−1(x) . (220)
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The above identity was recently used and discussed in [133, 134] (the authors refer to some unpublished lecture
notes by U. Haagerup).

I now proceed to proving it. Calling X = arccosx and Y = arccos y, we first evaluate the auxiliary sum

S =
∑
n≥1

cos(nX) cos(nY )

n
. (221)

Using the trigonometric identity

2 cosα cosβ = cos(α− β) + cos(α+ β) , (222)

we have

S =
1

2

∑
n≥1

cos(n(X − Y ))

n
+
∑
n≥1

cos(n(X + Y ))

n

 =
1

2
Re

∑
n≥1

exp(in(X − Y ))

n
+
∑
n≥1

exp(in(X + Y ))

n


= −1

2
Re
[
log(1− ei(X−Y )) + log(1− ei(X+Y ))

]
= −1

4
[log(2− 2 cos(X − Y )) + log(2− 2 cos(X + Y ))] , (223)

where we have used the Maclaurin expansion log(1 − x) = −
∑

n≥1 x
n/n, the Euler formula eiθ = cos θ + i sin θ and

Re log z = log |z|. Therefore, all we need to compute is

cos(X ± Y ) = cos (arccosx± arccos y) = cos(arccosx) cos(arccos y)∓ sin(arccosx) sin(arccos y)

= xy ∓
√
1− x2

√
1− y2 , (224)

using the standard trigonometric addition formula. After simplifications

S = −1

4
log[4(x− y)2] = −1

2
(log 2 + log |x− y|) . (225)

Using now cos(nX) = Tn(cosX) = Tn(x) (and similarly for Y ) and substituting in (221), we establish the claim.
To prove the main formula (213), we first have to determine R⋆, the edge point of the constrained density in the

pushed phase. This follows from a classical result in potential theory–see [131, 132]–which states that if the walls are
not active (pulled phase) the density is supported on [−R⋆, R⋆] with R⋆ solution of

1

π

∫ +R⋆

−R⋆

τV ′(τ)√
R2

⋆ − τ2
dx = 1 . (226)

While I will not prove this result in full generality, I can at least show that this condition follows easily from imposing
that the equilibrium density in the pulled phase should vanish at the edge point, n⋆

R⋆
(R⋆) = 0. This in turn would

require the condition

PR⋆
(R⋆) = 0 ⇒ 1− Pr

∫ R⋆

−R⋆

1

π

√
R⋆

2 − τ2V ′(τ)

R⋆ − τ
dτ = 0 (227)

from Eq. (205). Multiplying the integrand up and down by R⋆ + τ yields

1 = R⋆

∫ R⋆

−R⋆

1

π

V ′(τ)√
R2

⋆ − τ2
dτ︸ ︷︷ ︸

=0

+

∫ R⋆

−R⋆

1

π

τV ′(τ)√
R2

⋆ − τ2
dτ , (228)

where the first integral vanishes because the integrand is odd (V (x) is even by Assumption 1). This quick derivation
at least provides some rationale behind the condition (226). One could check as an exercise that for the Gaussian

case, V (x) = x2/2, the condition (226) yields back R⋆ =
√
2.

In order to establish the main formula (213), we expand the potential V and the regular part of the equilibrium
density into Chebyschev polynomials

V (Ru) =
∑
n≥0

cn(R)Tn(u) , PR(Ru) =
∑
n≥0

an(R)Tn(u) , (229)
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where

an(R) =
1

hn

∫ 1

−1

PR(Ru)Tn(u)√
1− u2

du , cn(R) =
1

hn

∫ 1

−1

V (Ru)Tn(u)√
1− u2

du . (230)

A priori, the above expansions are in L2([−1, 1]). In fact, V ∈ C3 implies that cn(R) = O(n−3) so that the series∑
n≥0 cn(R)Tn(u) and its derivative are pointwise convergent almost everywhere to V and V ′, respectively. We will

see in the course of the proof that the absolute convergence of
∑

n ncn(R) implies the pointwise convergence of∑
n an(R)Tn(u), too. Note also that cn = 0 if n is odd (the potential V (x) is symmetric by Assumption 1). To

proceed we use the following identity. Let n ≥ 0 be an even integer. Then,

uT ′
n(u) = nT0(u) + nTn(u) + 2n (T2(u) + T4(u) + · · ·+ Tn−2(u)) . (231)

We first express the condition (226) for the critical edge point R⋆ in terms of the cn’s. After the change of variable
x = R⋆u, Eq. (226) becomes

1 =
R⋆

π

∫ 1

−1

uV ′(R⋆u)
du√
1− u2

=
1

π

∫ 1

−1

∑
n≥0

cn(R⋆)uT
′
n(u)

du√
1− u2

=
∑
n≥0

ncn(R⋆) , (232)

where we used (231) and the orthogonality relation (216). Note that ncn(R⋆) = O(n−2) and hence the series is
absolutely convergent.

We now recall the Euler-Lagrange equation (197) in the pushed phase

V (x)−
∫ R

−R

dx′ n⋆
R(x

′) log |x− x′|+ µR = 0 , (233)

as well as the general expression for the equilibrium density (211)

n⋆
R(x) =

PR(x)

π
√
R2 − x2

. (234)

Setting x = Ru and x′ = Ru′, we can apply the expansion (214) of the logarithmic interaction term, as well as the
expansions (229) for the potential and the numerator PR(x) to obtain

− logR+R

∫ 1

−1

du′

log 2 +∑
n≥1

2

n
Tn(u)Tn(u

′)

 1

πR
√
1− u′2

∑
m≥0

am(R)Tm(u′) +
∑
n≥0

cn(R)Tn(u) + µR = 0 . (235)

This leads to

− log
R

2
+

1

π

∑
m,n

2

n
am(R)Tn(u)

∫ 1

−1

Tn(u
′)Tm(u′)√
1− u′2

du′︸ ︷︷ ︸
hnδnm

+c0(R) +
∑
n≥1

cn(R)Tn(u) + µR = 0 (236)

leading eventually to

− log
R

2
+ c0(R) +

∑
n≥1

(
1

n
an(R) + cn(R)

)
Tn (u) = −µR if |u| ≤ 1 . (237)

To ensure that the l.h.s. is indeed equal to a R-dependent constant, we need to kill any u-dependence on the l.h.s. .
This provides the condition

1

n
an(R) + cn(R) = 0 ∀n ≥ 1 (238)

between the coefficients of the expansion of the external potential and the regular term of the constrained density. As
a byproduct, we also obtain an explicit formula for the chemical potential

µR = log
R

2
− c0(R) = log

R

2
−
∫ R

−R

V (x)

π
√
R2 − x2

dx . (239)
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Combining (238) with (229) and using a0(R) = 1 (which follows from density normalization) shows that

PR(Ru) = 1−
∑
n≥1

ncn(R)Tn(u) . (240)

The sequence ncn(R) is O(n−2) and hence the series is pointwise convergent almost everywhere.
Now, we focus on the excess free energy for the distribution of r2 = maxj |xj | in case of a general confining potential

satisfying Assumption 1 (see (209))

F (R) = E [n⋆
R(x)]− E [n⋆

R⋆
(x)] =∫ R

−R

dx n⋆
R(x)V (x)− 1

2

∫∫
[−R,R]2

dxdx′n⋆
R(x)n

⋆
R(x

′) log |x− x′| − C(R⋆) , (241)

where

C(R⋆) =

∫ R⋆

−R⋆

dx n⋆
R⋆

(x)V (x)− 1

2

∫∫
[−R⋆,R⋆]2

dxdx′n⋆
R⋆

(x)n⋆
R⋆

(x′) log |x− x′| . (242)

The relation (241) can be significantly simplified by appealing to the Euler-Lagrange equation (233). Multiplying Eq.
(233) by n⋆

R(x) and integrating over x, we get the following identity for the double integral appearing in (241)∫∫
[−R,R]2

dxdx′n⋆
R(x)n

⋆
R(x

′) log |x− x′| =
∫ R

−R

dx n⋆
R(x)V (x) + µR , (243)

leading to

F (R) =
1

2

[∫ R

−R

dx n⋆
R(x)V (x)− µR

]
− C(R⋆) . (244)

Expanding (244) using (229)

F (R) =
1

2

(
−µR +

∫ 1

−1

V (Ru)
PR(Ru)

π
√
1− u2

du

)
− C(R⋆)

=
1

2

−µR +
∑

n,m≥0

cn(R)am(R)

∫ 1

−1

Tn(u)Tm(u)

π
√
1− u2

du

− C(R⋆)

=
1

2

−µR + c0(R)a0(R) +
1

2

∑
n≥1

cn(R)an(R)

− C(R⋆)

=
1

2

− log
R

2
+ 2c0(R)−

∑
n≥1

nc2n(R)

2

− C(R⋆) . (245)

I used the orthogonality condition, the fact that a0(R) = 1, the equation (239) for the chemical potential, and the
relation (238) between the coefficients an(R) and cn(R) of the expansion.
Differentiating Eq. (245) w.r.t. R

F ′(R) = − 1

2R

1− 2Rc′0(R) +R
∑
n≥1

ncn(R)c′n(R)

 . (246)

To establish the main formula (213), it is sufficient to prove that the above expression (246) is equal to −PR(R)2/(2R).
First, notice from (240) that PR(R) is

PR(R) =
∑
n≥0

an(R)Tn(1) =
∑
n≥0

an(R) = 1−
∑
n≥1

ncn(R) ,
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so that

−PR(R)2

2R
= − 1

2R

1−
∑
n≥1

ncn(R)

2

. (247)

Comparing with (246), the identity to show to complete the proof is

1− 2Rc′0(R) +R
∑
n≥1

ncn(R)c′n(R)
?
=

1−
∑
n≥1

ncn(R)

2

. (248)

We need an identity to express the derivatives c′n(R) of the coefficient cn(R), which appear in (248). We may use
u∂V (Ru)/∂u = R∂V (Ru)/∂R, together with V (Ru) =

∑
n≥0 cn(R)Tn(u) from (229) to get∑

m≥1

cm(R)uT ′
m(u) =

∑
n≥0

Rc′n(R)Tn(u) . (249)

We can now use the identity (231) to get

∑
m≥1

cm(R)

m∑
ℓ=0

dℓ(m)Tℓ(u) =
∑
n≥0

Rc′n(R)Tn(u) , (250)

where the coefficients d0(m) = dm(m) = m, dℓ(m) = 2m for ℓ even between 2 and m − 2, and 0 otherwise. We now
need to match coefficients corresponding to the same polynomial on both sides. To do so, we use the identity

∑
m≥1

m∑
ℓ=0

f(m, ℓ) =
∑
n≥0

m∑
m≥n

f(m,n)− f(0, 0) (251)

and then match the coefficients of Tn(u) on both sides of (250). Take for instance n = 0. The coefficient of T0(u) on
the r.h.s. is Rc′0(R), whereas on the l.h.s. we have (taking into account that f(0, 0) = 0 since d0(0) = 0)∑

m≥n=0

cm(R)dn=0(m) =
∑

m≥n=0

cm(R)m =
∑
m≥1

cm(R)m . (252)

In summary, we get

c′n(R) =


∑
m≥1

mcm(R)

R
if n = 0

∑
m≥n

2mcm(R)

R
− ncn(R)

R
if n > 0 .

(253)

Therefore we find for the l.h.s. of (248)

1− 2Rc′0(R) +R
∑
n≥1

ncn(R)c′n(R) (254)

= 1− 2
∑
m≥1

mcm(R) +
∑
n≥1

ncn(R)

∑
m≥n

2mcm(R)− ncn(R)

 (255)

= 1− 2
∑
m≥1

mcm(R) +
∑

m,n≥1

ncn(R)mcm(R) (256)

=

1−
∑
n≥1

ncn(R)

2

, (257)
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which essentially concludes the proof of the integral formula (213) for F (R), where we have used that∑
n≥1

f(n)
∑

1≤m≤n

f(m) =
∑
n≥1

f(n)
∑
m≥n

f(m) . (258)

We now proceed to prove that F (R) has always a jump in the third derivative at R = R⋆. First, note that F (R) is
identically zero for R ≥ R⋆, while F (R) ≥ 0 for R ≤ R⋆. From (213) and the fact that PR⋆

(R⋆) = 0, one sees that

lim
R↑R⋆

F (R) =
1

2

∫ R⋆

R⋆

Pr(r)
2

r
dr = 0 , (259)

lim
R↑R⋆

F ′(R) = −1

2

PR⋆(R⋆)
2

R⋆
= 0 , (260)

lim
R↑R⋆

F ′′(R) = −
2PR⋆

(R⋆)P
′
R⋆

(R⋆)R⋆ − PR⋆
(R⋆)

2

2R2
⋆

= 0 . (261)

On the other hand,

lim
R↑R⋆

F ′′′(R) = −
P ′
R⋆

(R⋆)
2

R⋆
< 0 . (262)

Indeed, by Assumption 1 on the potential V (x), it is possible to check that P ′
R⋆

(R⋆) < 0 strictly. Computing
further derivative allows us to understand what conditions must happen for the potential to get an even weaker phase
transition. Our proof valid for one-cut and off-critical potentials fully and rigorously confirms the Majumdar-Schehr
criterion for the existence of a third-order phase transition.

B. Appendix: Derivation of the entropic term in Eq. (194)

Consider the term in Eq. (193)

Ψ[nR(x)] =

∫ R

−R

· · ·
∫ R

−R

dx1 · · · dxNδ

[
nR(x)−

1

N

∑
i

δx,xi

]
. (263)

Introducing a Fourier representation of the functional delta (the functional analog to Eq. (109)), we can write
(omitting overall constants)

Ψ[nR(x)] ∝
∫

D[n̂R(x)]e
iN

∫
dx n̂R(x)nR(x)

∫ R

−R

· · ·
∫ R

−R

dx1 · · · dxN e−i
∫
dx n̂R(x)

∑
i δx,xi

∝
∫

D[n̂R(x)]e
iN

∫
dx n̂R(x)nR(x)

[∫ R

−R

dz e−i
∫
dx n̂R(x)δx,z

]N
, (264)

where in the last step one uses that the multiple {xi} integral factorizes into N identical copies of the same integral.
Using now the delta to kill the z-integral, and re-casting the integral in a more convenient form, we get

Ψ[nR(x)] ∝
∫

D[n̂R(x)]e
NS[n̂R(x),nR(x)] ≈ eNS[n̂⋆

R(x),nR(x)] (265)

for large N , where the action reads

S[n̂R(x), nR(x)] = i

∫
dx n̂R(x)nR(x) + log

∫ R

−R

dz e−in̂R(z) . (266)

The functional integral (265) can then be evaluated by a saddle-point method for large N . The saddle-point equation
reads

δS
δn̂R(x)

∣∣∣
n̂R=n̂⋆

R

= 0 ⇒ inR(x)− i
e−in̂⋆

R(x)∫ R

−R
dz e−in̂⋆

R(z)
= 0 . (267)
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We see by inspection that e−in̂⋆
R(x) = nR(x) is a solution of the above equation, since

∫ R

−R
dz e−in̂⋆

R(z) =
∫ R

−R
dz nR(z) =

1 by normalization. Therefore in̂⋆
R(x) = − log n̂⋆

R(x), which gives the action at the saddle point

S[n̂⋆
R(x), nR(x)] = −

∫
dx nR(x) log nR(x) , (268)

which can be inserted back into (265) to give eventually Eq. (194).
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