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Active matter systems, from self-propelled colloids to motile bacteria, are characterized
by the conversion of free energy into useful work at the microscopic scale. They
involve physics beyond the reach of equilibrium statistical mechanics, and a persistent
challenge has been to understand the nature of their nonequilibrium states. The entropy
production rate and the probability current provide quantitative ways to do so by
measuring the breakdown of time-reversal symmetry. Yet, their efficient computation
has remained elusive, as they depend on the system’s unknown and high-dimensional
probability density. Here, building upon recent advances in generative modeling, we
develop a deep learning framework to estimate the score of this density. We show
that the score, together with the microscopic equations of motion, gives access to the
entropy production rate, the probability current, and their decomposition into local
contributions from individual particles. To represent the score, we introduce a spatially
local transformer network architecture that learns high-order interactions between
particles while respecting their underlying permutation symmetry. We demonstrate the
broad utility and scalability of the method by applying it to several high-dimensional
systems of active particles undergoing motility-induced phase separation (MIPS). We
show that a single network trained on a system of 4,096 particles at one packing
fraction can generalize to other regions of the phase diagram, including to systems with
as many as 32,768 particles. We use this observation to quantify the spatial structure
of the departure from equilibrium in MIPS as a function of the number of particles
and the packing fraction.

machine learning | scientific computing | active matter | stochastic thermodynamics

Active matter systems are driven out of equilibrium by a continuous injection of energy
at the microscopic scale of the constituent particles (1–3). The nonequilibrium nature
of their dynamics manifests itself in the breakdown of time-reversal symmetry (TRS),
which can be quantified by the global rate of entropy production (EPR) (4–7), and by
the presence of probability currents at statistical steady state (8–10). Despite their wide
recognition as quantities of fundamental importance, computing either the global EPR
or the magnitude of the probability current has remained a long-standing challenge. At a
fundamental level, both are defined via the microscopic density for the system (11, 12),
which is generically unknown outside of a few simplistic cases due to its high
dimensionality and its complexity (13).

The global EPR can in principle be computed directly from the microscopic equations
of motion (14–18) by making use of the Crooks fluctuation theorem (19). However, this
leads to a single number, which fails to quantify where TRS breaks down spatially in the
system, and fails to reveal which particles are responsible. This issue can be addressed for
active matter field theories, where a similar approach leads to a local, spatially dependent
definition of the EPR (20, 21), but only after a coarse-graining of the microscopic
dynamics. In general, methods based on the Crooks fluctuation theorem require a suitable
definition of a time-reversed dynamics, which has been debated in the literature (22–24).
The use of a time reversal can be avoided via the stochastic thermodynamics definition of
the “entropy of the system” (7, 11), but doing so requires the logarithm of the system’s
microscopic density, which is unavailable outside of the simplest cases. An orthogonal
approach makes use of data compression algorithms to compute the global (25) or local
EPR (26), but these methods are only valid asymptotically in the limit of infinite system
size, and it is difficult to understand what they compute away from this limit. Several
methods have also been developed to infer a global measure of the probability current
(27–29), but thus far have been restricted to low-dimensional systems. For a detailed
coverage of the use of the EPR and steady-state currents to quantify nonequilibrium
effects in active matter, we refer the reader to ref. 2.
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Here, building upon recent advances in generative model-
ing (30–34), we tackle the challenging problem of estimating
spatially local probability currents and entropy production rates
(EPR) directly from their microscopic definitions. To this end,
we develop a machine learning method that estimates the
gradient of the logarithm of the system’s probability density,
which can be characterized as a solution to the many-body
stationary Fokker–Planck equation (FPE). This quantity, known
as the score function (30, 31), enters the definition of both the
probability current and the EPR. We show how the method
naturally decomposes the global EPR or probability current
into microscopic contributions from the individual particles and
their degrees of freedom, which enables us to identify spatial
structure in the breakdown of TRS. To validate the accuracy of
the learned solution, we develop diagnostics based on invariants
of the stationary FPE that can be verified a posteriori.

We apply the method to several model systems involving active
swimmers: two swimmers on the torus, where we can visualize
the EPR and the probability flow across the entire phase space,
a system of 64 swimmers in a harmonic trap, and a system of
4,096 swimmers undergoing motility-induced phase separation
(MIPS) (35). For the MIPS system, we learn using a spatially
local architecture that does not depend on the total number of
swimmers, and we show that it can be extended to systems of up
to 32,768 swimmers at values of the packing fraction that differ
from those seen during training. Despite the high dimensionality
of these latter examples, our approach provides us with a micro-
scopic description of both the current and the local EPR. Impor-
tantly, this enables us to visualize the contributions of the indi-
vidual particles directly without any need for averaging. We use
this property to confirm theoretical predictions about the spatial
features of entropy production in MIPS, such as concentration on
the interface between the dilute and condensed phases (20, 26).
Our main contributions can be summarized as follows:

1. We revisit the framework of stochastic thermodynamics and
show how signatures of nonequilibrium behavior and lack
of time reversibility, such as the probability current and the
EPR, can be related to the score of the system’s stationary
probability density.

2. We show how to use machine learning tools from the
field of generative modeling to estimate the score function
from microscopic data (Fig. 1). To approximate this high-
dimensional function accurately, we develop a transformer
neural network architecture that incorporates spatial locality
and permutation symmetry. This enables transferability to
systems with differing numbers of particles or packing
fractions than seen during training.

3. We illustrate the usefulness of the approach on systems
involving active particles undergoing MIPS, where we show
that the method can quantify the EPR at the individual
particle level as a function of the activity, number of particles,
or packing fraction. We confirm that entropy is dominantly
produced at the interface between the cluster and the gas.

These contributions continue in a line of work that seeks to
apply methods based on machine learning to high-dimensional
problems in scientific computing (36–40), applied mathematics
(34, 41–49), and the physical sciences (50–54). In particular,
considerable research effort has been spent designing machine
learning methods to compute solutions of the many-body
Schrödinger equation (55–58); our work can be seen as an
extension of this research effort to classical statistical mechanics
and stochastic thermodynamics.

Stochastic Thermodynamics
Active Swimmers. As an application of our approach, we consider
a suspension of N self-propelled particles in d = 1 or d = 2

Fig. 1. Method overview. (Green) The starting point for our approach is a microscopic dynamics describing the evolution of a set of interacting active particles.
(Purple) The target is estimation of several definitions of the EPR of the system, which we will accomplish by means of the probability flow. (Blue) Mathematically,
our approach is built on viewing the system from the perspective of dynamical transport of measure. The microscopic stochastic dynamics induces an FPE for
the high-dimensional density describing the configuration of the system. This FPE is equivalent to a transport equation that depends on the unknown “score”
∇ log � of the solution. The characteristics of this equation obey a probability flow ordinary differential equation, which gives immediate access to the EPR.
(Center) Illustration of nonequilibrium transport of measure at stationarity. (Orange) Algorithmically, our method approximates the unknown score by machine
learning over a dataset of microscopic particle data. The learned approximation can be validated a posteriori by checking invariants of the stationary FPE and
can be plugged in directly to the definition of the EPR to obtain an estimate.
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A B

C D

Fig. 2. Stochastic dynamics and probability flows. (A) Individual stochastic trajectories of Eq. 1 forN = 2 and d = 1 in the variables xt = x2
t −x

1
t and gt = g2

t −g
1
t ,

with periodic boundary conditions on [0, L]. The trajectories (xt , gt) tend to accumulate in two clusters corresponding to situations where particle 1 is just in
front of particle 2 or vice versa. This occurs because one particle catches up to the other in a typical trajectory (since either |g1

t | > |g
2
t | or |g1

t | < |g
2
t |), but does

not pass over it due to the short-range repulsive force between them. Random transitions between these modes occur when the magnitudes of |g1
t | and |g2

t |
change order. (B) Stationary probability density function � of (xt , gt) confirming the metastability observed in (A): � is the solution of the stationary FPE (Eq. 3).
(C) Visualization of the (diffusion-weighted) norm of the probability current j, defined in Eq. 4, over the phase space. The current is concentrated in the two
modes but is also nonzero along transition pathways between them. (D) Phase portrait of the probability flow Eq. 7. Similar to the stochastic trajectories in (A),
the flow lines preserve the density � in (B), but are deterministic and interpretable, highlighting limit cycles within and between the two clusters. A movie of
these limit cycles in a frame with one particle fixed is available at this link.

dimensions with translational degrees of freedom xit ∈ Rd and
orientational degrees of freedom g it ∈ Rd . Their dynamics is
given by the so-called active Ornstein–Uhlenbeck or Gaussian
colored-noise model (15, 23, 59–62):

ẋit = �
∑
j 6=i

f (xit − xjt) + v0g it +
√

2� �ix(t),

ġ it = −g it +
√

2 �ig(t).
[1]

In Eq.1,� is the mobility, f (x) is a short-range repulsive potential
force whose specific form will be specified later, and v0 ≥ 0
is the self-propulsion speed of the particles. �ix(t) and �ig(t)
are independent white-noise sources, i.e., Gaussian processes
with mean zero and covariances given by 〈�ix(t)�

j
x(t ′)〉 =

〈�ig(t)�
j
g(t ′)〉 = �(t − t ′)�i,jId . The parameter � ≥ 0 sets

the scale of the thermal noise (and need not be small), while
 > 0 tunes the persistence timescale of the self-propulsion. The
orientational degrees of freedom g it introduce an active noise term
with a finite correlation time 1/ into the translational dynamics

for rit ; the presence of this correlated noise drives the system out
of equilibrium for any v0 6= 0 and  <∞.

Trajectories of Eq. 1 are shown in Fig. 2A, where we consider
N = 2 particles in dimension d = 1 on the interval [0, L] with
periodic boundary conditions. By translation invariance, we can
define x = x2

− x1 and g = g2
− g1 to reduce dimensionality,

which allows us to visualize the entire phase space. We will use this
low-dimensional system as a running illustrative example, while
our main results consider Eq. 1 in higher-dimensional situations
with up to N = 32,768 particles in d = 2 dimensions.

General Microscopic Description. Since the tools that we intro-
duce to study Eq. 1 are transportable to other nonequilibrium
systems, it is convenient to view these equations as an instance of
the generic stochastic differential equation (SDE) for rt ∈ Ω

ṙt = b(rt) +
√

2D �(t), [2]

where b(r) denotes the deterministic drift, D denotes the
diffusion tensor (assumed to be symmetric and positive semidef-
inite but not necessarily invertible), and �(t) is a white noise
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process. Eq. 1 can be cast into the form of Eq. 2 by setting
rt = (r1

t , . . . , r
N
t ) with rit = (xit , g

i
t ) ∈ R2d for i = 1, . . . , N (so

that Ω = R2Nd ), along with proper identification of b(r) and D.
For simplicity, we focus on drifts b(r) that are independent of
time, along with diffusion tensors D that are constant in both
space and time. Importantly, we study systems that may not
respect detailed balance, so that b(r) 6= −D∇U (r) for some
potential U (r).

Many-Body FPE. The probability density function �t of the
solution rt to Eq. 2 satisfies a many-body FPE that can be written
as a continuity equation

∂t�t(r) + ∇ · jt(r) = 0, [3]

where we have defined the probability current jt(r)

jt(r) = b(r)�t(r)− D∇�t(r). [4]

We study systems that have reached statistical steady state, so
that �t(r) = �(r) and jt(r) = j(r). Then, Eq. 3 reduces to
∇ · j(r) = 0 with j(r) = b(r)�(r) − D∇�(r). Since we do
not assume that the system is in detailed balance, its stationary
density � and current j are in general unknown. In particular, the
system can sustain a nonequilibrium stationary current j 6= 0.
We visualize the stationary density � and the steady-state current
j for our low-dimensional illustrative system in Fig. 2 B and C,
respectively.

Current Velocity and Probability Flow. At stationarity, assuming
that �(r) > 0 everywhere in Ω, we may rewrite Eq. 3 as a
time-independent transport equation

0 = ∇ · (v(r)�(r)) , [5]

where v is the current (mean local) velocity field (11, 63) defined
as

v(r) = j(r)/�(r) = b(r)− D∇ log �(r). [6]

The current velocity v is a fundamental object, and we will
show that various definitions of the EPR can be computed from
it (64, 65). It contains strictly more information than � alone,
because it is always possible to construct an equilibrium system
with the same �. Calculation of the EPR requires access to
the steady state currents captured by v, which arise through
an interplay between both the system’s stationary density and
structural information about its dynamics.

To gain access to v without explicit knowledge of �, we will
develop a learning algorithm that estimates the high-dimensional
∇ log � from data from the SDE in Eq. 2: ∇ log � is known
as the Hyvärinen “score” function in the machine learning
literature (30). In addition to enabling the computation of various
definitions of the EPR, v allows us to directly interrogate the
flow of probability in the system. To do so, we may study the
characteristics of Eq. 5 via solution of the ordinary differential
equation (ODE)

Ṙt(r) = v(Rt(r)), Rt=0(r) = r. [7]

We refer to Eq. 7 as the probability flow equation, as it
describes the transport of samples in phase space according to
the probability current j. In particular, at stationarity, the flow
map Rt(r) leaves the density � invariant, so that the density of

Rt(r) is � when r is drawn randomly from �. This means that for
any observable A(r), we have

∀t ∈ R :
∫
Ω
A(Rt(r))�(r)dr =

∫
Ω
A(r)�(r)dr. [8]

We stress that for j 6= 0, transport can occur even at stationarity;
the condition in Eq. 8 ensures that this transport preserves �.
We visualize the phase portrait of Eq. 7 for our low-dimensional
illustrative example in Fig. 2D. The resulting ordered limit cycles
may be contrasted with trajectories of the equivalent stochastic
dynamics (Eq. 2) in Fig. 2A; despite their striking qualitative
differences, both leave � invariant.

EPR
In this work, we are primarily interested in nonequilibrium
systems, and we will study how their nonequilibrium dynamics
arises spatially from nonzero v and ∇ · v. To this end, we now
relate ∇ · v and |v|2 to several definitions of the EPR.

Gibbs Entropy and System EPR. Given the stationary solution �
to Eq. 3, the Gibbs entropy of the system is defined as

Ssys = −
∫
Ω

log �(r)�(r)dr. [9]

At stationarity, Ssys is time independent and hence must be
preserved by the dynamics. To see how this occurs at the level of
the individual degrees of freedom, following Seifert (7, 11), we
can study the evolution of the stochastic entropy of the system along
trajectories of the SDE 7

s̃sys(t) = − log �(rt). [10]

Taking the time derivative of Eq. 10 gives

˙̃ssys(t) = −∇ log �(rt) ◦ ṙt , [11]

where ◦ denotes the Stratonovich product. The quantity defined
in Eq. 11 is a stochastic function of time that can be evaluated
along any trajectory. To obtain a deterministic function of r
that conveys local information about the EPR, we can take the
expectation of Eq. 11 conditioned on the event rt = r (7, 11).
The current velocity defined in Eq. 6 can be expressed in
terms of this conditional expectation as v(r) = 〈ṙ(t)|r(t) = r〉
(SI Appendix), so that ṡsys(r) = 〈˙̃ssys(t)|rt = r〉 is given by

ṡsys(r) = −∇ log �(r) · v(r) = ∇ · v(r), [12]

where the last equality follows from Eq. 5 after division by � > 0.
The function defined in Eq. 12 is referred to as the (local)

system EPR: it is visualized over the phase space of our low-
dimensional illustrative example in Fig. 3, which highlights alter-
nating regions of system entropy production and consumption in
the two modes. Because Ssys is a constant of motion at stationarity,
we arrive at the condition

Ṡsys =
∫
Ω

(∇ · v(r)) �(r)dr = 0. [13]

Later, we will make use of Eq. 13 as a quantitative test to measure
convergence of our learning algorithm. To understand how ṡsys
is distributed spatially in systems with a high-dimensional phase
space, we may decompose ∇ · v into a local sum of contributions

4 of 12 https://doi.org/10.1073/pnas.2318106121 pnas.org
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Fig. 3. System EPR. Visualization of ∇ · v(r) across the phase space for Eq. 1
with N = 2 and d = 1 in the variables xt = x2

t − x1
t and gt = g2

t − g1
t . The

system EPR at a point r in phase space can be written as ṡsys(r) = ∇ · v(r), so
that ∇ · v(r) gives insight into how entropy is generated locally by the system.
Even though E�[∇·v] = 0 at stationarity, ∇ · v 6= 0 pointwise when the system
is out of equilibrium. Here, system entropy is produced locally when the two
particles collide, and released when they separate.

from individual particles using v(r) = (v1(r), . . . , vN (r)) to
obtain

∇ · v(r) =
N∑
i=1
∇i · vi(r), [14]

where ∇i denotes the gradient with respect to ri.

Total EPR. Assuming thatD is invertible, we can use Eq. 6written
as ∇ log � = D−1(v − b) to decompose Eq. 12 as

ṡsys(r) = |v(r)|2D−1︸ ︷︷ ︸
ṡtot(r)

− b(r) · D−1v(r)︸ ︷︷ ︸
ṡm(r)

.
[15]

The quantity ṡtot is nonnegative and can be identified as the
(local) total EPR (7, 11, 66). The quantity ṡm is of indefinite sign
and can be identified as the (local) EPR of the medium (4, 11,
19, 22, 67, 68). Similar to Eq. 14, assuming that D is made of
N diagonal blocks Di, we may decompose

ṡtot(r) = |v(r)|2D−1 =
N∑
i=1
|vi(r)|2

D−1
i
, [16]

into local contributions from individual particles.

Global EPR. The global EPR is defined as the Kullback–Leibler
divergence between the forward and reverse path measures (4, 19)

Ṡtot =
1
T

〈
log
(
P(�T )
PR(�T )

)〉
, [17]

where T > 0 is arbitrary and where �T = {rt}0≤t≤T denotes a
path of the SDE 2 with the initial condition drawn from �. P
denotes the path measure of �T ,PR denotes the path measure of
a reverse-time path, and the angular brackets denote an average
over �T drawn from P . The global EPR can be challenging to
compute because it requires a choice of reverse-time dynamics (to

set PR), and the correct choice has been a subject of debate (22–
24, 62, 69, 70). Interestingly, there is a way to construct a reverse-
time dynamics such that Ṡtot can be written as an expectation of
ṡtot(r) over �, but it again requires knowledge of v(r). This
reverse-time dynamics is the SDE whose solutions have the
same statistical properties as the solutions to Eq. 2 played in
reverse (71). It reads (SI Appendix)

ṙR
t = b(rR

t )− 2v(rR
t ) +

√
2D �(t), [18]

where �(t) is the same Gaussian white noise process as in the
forward SDE 2. It is easy to check that the stationary density
of Eq. 18 is also �. By a standard path integral argument (72) or
an application of the Girsanov theorem (73), whenD is invertible,
we may compute (SI Appendix)

Ṡtot =
∫
Ω
|v(r)|2D−1�(r)dr, [19]

which, by Eq. 8, may be understood as the total EPR ṡtot averaged
over r drawn from �. Eq. 19 highlights that a system is at
equilibrium if and only if v = 0, so that Ṡtot = 0. An analogous
relation first appeared in ref. 11 for driven colloidal particles,
where the definition of the reverse-time process is less ambiguous
than for the active systems we study here.

Learning Algorithm
Score. The expressions for v, the system EPR, and the total EPR
depend on the score ∇ log �(r), which is a high-dimensional
function we typically do not have access to. In this section,
we develop a machine learning algorithm to approximate it: a
graphical summary of the method is given in Fig. 1. In addition
to providing access to v, and therefore to the total and system
EPRs,∇ log � has the important advantage that it is independent
of the normalizing constant of �, which is typically unknown and
intractable. This enables us to exploit expressive function classes
that need not represent normalized probability distributions.

ScoreMatching. The score∇ log � can be shown to be the unique
minimizer of the loss

Lsm[ĥ] = E�

[
|ĥ|2 + 2∇ · ĥ

]
,

∇ log � = argmin
ĥ

Lsm[ĥ],
[20]

where E� denotes expectation over �. Eq. 20 is known as the
“score matching” loss in the machine learning literature (30).
For the reader’s convenience, we provide a derivation of this loss
and demonstrate the uniqueness of its minimizers in SI Appendix.

Exploiting the Stationary FPE. While a useful loss function,
Eq. 20 is valid for any data distribution and does not make
use of the fact that � solves the stationary FPE [3]; it is therefore
agnostic to the underlying physics. Intuitively, exploiting our
prior knowledge that � solves Eq. 3 should impose additional
structure that can be leveraged to improve the quality of the
learned score. As written, Eq. 3 is an equation for �, while we are
interested in estimating ∇ log �. Dividing by � yields a nonlinear
equation for the score

∇ · v + v · ∇ log � = 0. [21]

PNAS 2024 Vol. 121 No. 25 e2318106121 https://doi.org/10.1073/pnas.2318106121 5 of 12
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Eq. 21 may be used to construct a physics-informed loss based
on the squared residual (39, 53)

LFPE[ĥ] = E�

[(
∇ · v̂ + v̂ · ĥ

)2
]
, [22]

where v̂(r) = b(r) − Dĥ(r). We propose minimization of the
composite loss

L[ĥ] = �1Lsm[ĥ] + �2LFPE[ĥ], [23]

which consists of both the physics-agnostic score matching loss
Lsm and the physics-informed loss LFPE. In our experiments,
we find best performance incorporating both terms, and we set
�1 = �2 = 1 throughout unless otherwise indicated.

Empirical Loss. In practice, we minimize an empirical approxi-
mation of Eq. 23

L̂[ĥ] =
�1

n

n∑
�=1

(
|ĥ(r�)|2 + 2∇ · ĥ(r�)

)
+

�2

n

n∑
�=1

(
∇ · v̂(r�) + v̂(r�) · ĥ(r�)

)2
[24]

over a dataset of samples {r�}n�=1 with each r� ∼ �. We can
generate such a dataset by simulating the SDE in Eq. 2 with a
numerical integration scheme like the Euler–Maruyama method.
To make the optimization computationally tractable for high-
dimensional systems of particles, we can perform the estimation
of ĥ(r) over an expressive parametric class of functions such as a
class of neural networks, and can use a first-order optimization
scheme such as Adam (74) to optimize the parameters. To
increase the diversity of the dataset, we can take steps of the
SDE 1 between steps of the optimization algorithm, which is
similar to online learning and helps prevent overfitting.

Quantitative Validation. There are several metrics that we can
use to verify the accuracy of the learned approximation ĥ to
∇ log �. The loss in Eq. 22 is exactly the squared residual
for the stationary score-based FPE [21] and hence provides a
quantitative measure of how well the learned score satisfies its gov-
erning equation. At optimality, Eq. 20 satisfies Lsm[∇ log �] =
−E�

[
|∇ log �|2

]
(SI Appendix); deviation from this relation also

provides a measure of convergence. Last, we can verify the
constraint Eq. 13 to ensure that the global EPR is a constant
of the motion.

Neural Network Architecture
Permutation Symmetry. An important ingredient in our learn-
ing algorithm is a proper choice of the neural network used to
estimate ∇ log �. One guiding principle that can be used for
physical problems is to build the symmetries of the system into
the network (50). In addition to its conceptual motivation, this
approach has been shown to be statistically advantageous (75).
In Eq. 1, the most relevant symmetry group is permutation
invariance among the particles, which generates complex mul-
timodal structure in the stationary density �. Generically, all the
configurations generated by permutations will not be present in
a given dataset, and this makes it crucial to use a representation
of ∇ log �(r) where the permutation invariance is built in.

Invariance and Equivariance. Permutation invariance at the
level of � gives rise to permutation equivariance at the level
of ∇ log �. In a numerical implementation, we can choose to
parameterize log � and take its gradient or to parameterize∇ log �
directly. While it seems physically natural to parameterize∇ log �
as a gradient field, state-of-the-art results in diffusion-based
generative modeling directly parameterize the score without this
added constraint (31, 76, 77), and we follow this approach
here. Doing so reduces the number of gradients that must be
computed via automatic differentiation during training and tends
to improve performance.

Transformers. Perhaps the most natural way to proceed is to
employ an architecture that can directly learn the relevant order of
the interactions in the system. The transformer architecture (78)
has emerged as a powerful tool for learning complex interactions
in language (79, 80) and is built upon operations (self-attention
and token-wise mappings) that are naturally permutation equiv-
ariant. In addition to language modeling, transformers currently
achieve state of the art in image classification (81, 82) and have
been applied to problems such as protein structure prediction (83)
and quantum chemistry (84). Yet, to our knowledge, they have
not been used to study interacting particle systems in active matter
and stochastic thermodynamics. Transformers also have the
advantage that their attention maps can be inspected a posteriori
for insight into the interactions learned by the model (85).

We introduce a transformer architecture that learns inter-
actions between embeddings of the particle positions xi and
orientations g i (Fig. 4). The output of a series of transformer
encoder blocks consisting of self-attention, LayerNorm (86),
and particle-wise multilayer perceptrons (MLPs) is decoded by
an additional particle-wise MLP to obtain the score ĥ. For
large numbers of interacting particles (as we will study in the
MIPS system), we introduce a modification of this architecture
that exploits a spatially local ansatz to define the score ĥi at

Fig. 4. Network architecture. Depiction of the transformer architecture introduced in this work. The particle positions and orientations are fed into separate
multilayer perceptrons (MLPs) that embed the input into a latent space of higher dimensionality. The embeddings are concatenated particle-wise and fed into
a transformer encoder block (see SI Appendix for further details), where multiple layers of multihead attention modules learn relevant interactions between
particles. The output of the encoder block is decoded by a shared MLP applied to each particle state to obtain the score.
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the level of the individual particles. Remarkably, in addition
to a large gain in memory efficiency, this architecture enables
transfer learning to datasets with a larger number of particles,
where we find physically meaningful predictions without any
additional training. We provide an overview of the relevant
features of the transformer architecture, including more detail on
the constituent elements of the encoder blocks in SI Appendix.

Active Swimmers in a Trap
Dynamics. As a first application of our method, we now consider
a system of N = 64 interacting active Ornstein–Uhlenbeck
particles in a harmonic trap, similar to what was studied by
Martin et al. (15); this gives rise to a 256-dimensional many-
body FPE in Eq. 3. In this case, the system under study is given
by Eq. 1 with � = 0.1,  = 0.1, � = 1, and where f is a
conservative force governed by the many-body potential

Φ(x) =
A
2

N∑
i=1
|xi|2 +

1
2

N∑
i,j=1
i 6=j

V (xi − xj). [25]

Above, A = 0.05 and V (x) = k
2 (2a− |x|)2 Θ(2a − |x|) with

a = 1 the particle radius, k = 2.5, and where Θ denotes the
Heaviside step function. To make the system more amenable to
learning, we smooth the force slightly to avoid the hard cutoff
mediated by Θ (see SI Appendix for details). Due to the presence
of the trap, the system assembles into an active cluster with a dense
core and a motile boundary that is similar to the phase separation
observed in MIPS. The trap makes the presence of these features
more robust to variations in the parameters  , �, and v0, which
enables us to study the structure of the total and system EPRs
as a function of the activity v0 at fixed persistence  and bath
temperature �. Localizing the cluster also allows us to perform
spatial averaging of the EPR, which connects our results with the
field-theoretic approach developed in ref. 20. We stress, however,

that our approach does not require this spatial averaging, and we
will remove the trap when we study MIPS.

EPR Decomposition. The contribution of each particle to the
system EPR∇i·vi(r) = ∇xi ·vix(r)+∇g i ·v

i
g(r) can be decomposed

additively into local contributions from the orientational degrees
of freedom g i and the translational degrees of freedom xi to
understand how they independently contribute to the system
EPR. Similarly, the contribution to the total EPR decomposes as
|vi(r)|2

D−1
i

= 1
 |v

i
g(r)|

2 + 1
� |v

i
x(r)|

2. In the following, we make
use of these decompositions to isolate further how the total and
system EPRs are built up from individual particle contributions.

Orientational Contributions. We first focus on the contribution
of the orientational degrees of freedom to the total EPR |vg |
and the system EPR ∇g · vg (Figs. 5 and 6, Top). For v0 = 0,
the system is at equilibrium and hence the EPR vanishes. As v0
is increased, the system becomes increasingly nonequilibrium,
and spatial structure begins to emerge in the EPR. Consistent
with theoretical predictions (20), we find that both quantities
concentrate on the boundary of the cluster. The contribution
to the EPR of the system ∇g · vg increases smoothly with radial
distance from the center of the cluster. The contribution to the
total entropy production |vg | is similar but is more dominated
by a few outliers on the boundary.

In SI Appendix, Figs. S5 and S6, we visualize the translational
contributions |vx| and ∇x · vx , as well as the EPR |v| and the
system EPR ∇ · v. |vx| displays similar features to |vg | with
slightly lower contrast between the core and the boundary, so
that |v| also displays concentration on the interface. We find that
∇x ·vx ≈ −∇g ·vg , which causes∇ ·v to roughly vanish pointwise
per-particle. Small-scale fluctuations in the particles are present
around zero, which together average so that E�[∇ · v] ≈ 0 as
required by stationarity. We find high accuracy as measured by
the residual of the score-based FPE in Eq. 21 and the stationarity
condition Eq. 13 (SI Appendix, Fig. S7).

Fig. 5. 64 swimmers in a harmonic trap: system EPR. (Top) The contribution of the per-particle orientational degrees of freedom to the system EPR ∇gi · v
i
g as

a function of the activity v0, visualized directly on the particles. For v0 = 0, the system is at equilibrium and the network learns that the system EPR vanishes. As
v0 increases, nonequilibrium effects emerge, and the particles on the boundary display the highest contribution to the EPR. (Bottom) A spatial map visualizing
the typical contribution of a particle at position (x, y) to the system EPR, obtained by averaging the data in the top row over many system snapshots. The map
highlights the role of interfacial contributions and displays a prominent ring at the boundary of the cluster.
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Fig. 6. 64 swimmers in a harmonic trap: total EPR. (Top) The contribution of the per-particle orientational degrees of freedom to the total EPR |v ig |2 as a
function of the activity v0, visualized directly on the particles. As in Fig. 5, the network learns that the system is at equilibrium for v0 = 0, and the total EPR
vanishes. As v0 increases, the total EPR is dominated by outlier contributions from particles on the edge of the cluster. (Bottom) A spatial map visualizing the
typical contribution of a particle at position (x, y) to the total EPR, obtained by averaging the data in the top row over many system snapshots. The map distills
the signal present in the outliers in the top row and displays a concentrated ring of entropy production at the interface.

A Spatial Map of Entropy Production. The presence of the trap
constrains the shape and location of the cluster, which facilitates
averaging in space and in time. To build up a spatial map of the
entropy production, we discretize space into a 256 × 256 grid.
We can then sum the particle-wise contributions ∇g i · vig and
|vig |

2 in each grid cell over a dataset of samples, normalizing by
the number of particles that appear in each cell in the dataset. The
result is a spatial map that describes the typical value of the EPR
a particle would attain at a given spatial position. We visualize
these spatial maps in Figs. 5 and 6 (Bottom), where we find a
distinct ring of entropy production at the boundary of the core.

Attention Map. An advantage of the transformer architecture is
that we can visualize the attention map, which gives us insight into
which other particles are used to compute the score of a given
particle. We employed attention rollout (85) to propagate the
flow of attention across all heads from layer to layer (SI Appendix).
The result reveals that the network learns a physically intuitive
spatially local attention pattern, where each particle is primarily
influenced by its nearest neighbors (SI Appendix, Fig. S8).
Interestingly, the interactions are still significantly longer range
than those present in the interaction potential for the system.

Motility-Induced Phase Separation
We now consider a system of N = 4,096 interacting particles
undergoing motility-induced phase separation, given by Eq. 1
with v0 = 0.025, � = 1,  = 10−4, � = 0, and with periodic
boundary conditions. In this case, the corresponding many-body
FPE is 16,384-dimensional, and its solution poses a formidable
challenge. Because we consider the athermal, hypoelliptic setting
with � = 0, the velocity field defined in Eq. 6 only depends on
the score in the g variables ∇g log �. To target ∇g log � directly,
we consider only the score matching loss Eq. 20 and set �2 = 0
in the combined loss Eq. 23. The resulting loss decouples into
equivalent losses for ∇x log � and ∇g log �, while the physics-
informed loss Eq. 22 couples the two scores, so they cannot
be learned independently. Because � = 0, the diffusion tensor
D is no longer invertible, and the connection between v and

the total EPR ṡtot(r) = |v(r)|2D−1 breaks down. By contrast, the
identity ṡsys(r) = ∇·v(r) still holds, and v remains a fundamental
object that describes the transport of the particles according to the
probability current. For further details, including an overview of
a variant of the denoising score matching loss function (87) that
we use to reduce computational expense, along with a discussion
of the technical issues that arise for � = 0, see SI Appendix. We
learn ∇g log � on a single dataset with N = 4,096 particles and
with a packing fraction � = 0.5, but make use of an architecture
that enables transfer learning to higher values of N and other
values of �, as we now describe.

Network Architecture. The large number of particles makes
it computationally intractable to use the same transformer
architecture we used for N = 64: the self-attention mechanism
has time and memory complexities that scale as O

(
N 2), which

quickly both become prohibitive for large N . Nevertheless,
SI Appendix, Fig. S8 shows that the learned attention map is
spatially local in the N = 64 case, and we expect the same
behavior to hold true for the MIPS system. To exploit spatial
locality, we developed a transformer architecture defined at
the level of an individual particle, which restricts the attention
mechanism to a local neighborhood (SI Appendix). This approach
has the additional advantage of increasing the effective size of the
dataset because there are many distinct local neighborhoods in a
given snapshot of the system. As the size of the attention window
is increased, the architecture used for N = 64 is recovered.
Because we define the transformer at the single particle level,
our network can be extended to systems with larger N or with a
different packing fraction �, which we also demonstrate in this
section.

System EPR and Magnitude of the Probability Flow. Fig. 7A
shows the MIPS cluster for reference, while Fig. 7 B and C
display the orientational contributions to the magnitude of the
probability flow |vg | and the system EPR ∇g · vg , respectively.
Both quantities are visualized as individual particle contributions
without any averaging in space or in time. Consistent with the
results for N = 64 from the previous section, we find that the
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A B C

Fig. 7. Motility-induced phase separation. (A) Reference depiction of the MIPS cluster. (B and C) Particle-wise orientational contributions to the total EPR
|v ig |2 and the system EPR ∇gi · v

i
g . Both quantities concentrate on the boundary of the cluster, with sporadic contributions throughout the dilute phase when

particles collide. |v ig | vanishes in the center of the cluster, indicating a nontrivial phase dependence in the velocity field. A movie visualizing the evolution of
these quantities along stochastic trajectories can be found at this link.

dominant source of entropy production is at the interface between
the gas and solid phases. There are also pockets of entropy
production spread sporadically throughout the gas in regions with
particle–particle collisions. A movie of a stochastic trajectory,
colored as in Fig. 7, can be found at this link (we recommend
downloading the movie for high-resolution viewing).

Transfer Learning Toward Larger Systems. Because our neural
network architecture is defined at the particle level, it is agnostic
to the number of particles N in the system. This means that we
can take a single network trained withN = 4,096 and investigate
whether it can make reasonable predictions for higher values of
N without any retraining. Physically, because the possible local
environments for a given particle should be roughly independent
of N for N sufficiently large, we expect our learned network
to generalize beyond the training data. In Fig. 8, we show
predictions of |vg | and ∇g · vg as a function of N , ultimately
scaling up to 32,768 particles. As the number of particles
increases, the cluster becomes more well defined, and the signals
in the probability flow and the EPR seen for N = 4,096
become increasingly high resolution. These results highlight
the remarkable fact that the local environment learned with
N = 4,096—where dataset generation is significantly cheaper—
can be used to make predictions about systems with a larger
number of interacting particles.

Probability Flow. We can use our ability to scale to larger N
to investigate the probability flow near the thermodynamic
limit. In Fig. 9A, we visualize the directionality of vig , and we
compare it to g i in Fig. 9B. The result reveals a surprising set
of observations: vig vanishes in the solid phase, typically points
outward at the solid edge of the interface, and typically points
inward at the gaseous edge of the interface. While it follows by
force-balance that |vix| must vanish in the solid, an equivalent
for |vig | is nontrivial. This is highlighted when contrasting the
particle-wise values of |vig | with those of |g i|. Unlike the |vig |, the
|g i| appear random, and by eye, uncorrelated with their phase.

This is consistent with the fact that their dynamics is decoupled
from the translational degrees of freedom in Eq. 1.

Together, these observations reveal a simple picture for the
probability flow. Particles in the solid are frozen with vix =
vig = 0. Free particles in the gas have vix = v0g i and vig = 0. At
particle–particle collisions, vig becomes nonzero, and entropy is
produced. These events are mostly concentrated at the interface
between the gas and the solid, where there are particles both
exiting and entering the cluster, but also occur sporadically
throughout the gas.

Packing Fraction Transfer. In addition to transferring to larger
values of N , we can investigate the ability of the learned network
to transfer to other regimes of the phase diagram, so long as the
system parameters defining the particles are fixed. For example,
because the score is defined at the level of the local neighborhood
of each particle, and because these local environments should
be statistically similar in some regions of the phase diagram, we
expect the score to be able to transfer to other packing fractions
�. In Fig. 10, we show that a single network trained on a dataset
of N = 4,096 particles with � = 0.5 can make physically
consistent predictions for a range of values from � = 0.01 to
� = 0.9 on a dataset with N = 8,192 particles. For very
low packing fraction, there are few particle–particle collisions
and no cluster, and the EPR is essentially zero everywhere. As
the packing fraction increases, particle–particle collisions begin
to occur, so that pockets of entropy production become spread
throughout the gas. As a cluster forms for intermediate�, the EPR
becomes concentrated at the interface. As � increases further, the
cluster becomes dominant, again leaving few regions of entropy
production. Analogous figures for N = 4,096, N = 16,384,
and N = 32,768 are shown in SI Appendix, Figs. S8–S10.

Discussion
In this work, we demonstrated the capability of machine learning
algorithms to learn the EPR and the probability flow of complex
interacting particle systems, even in high-dimensional scenarios

PNAS 2024 Vol. 121 No. 25 e2318106121 https://doi.org/10.1073/pnas.2318106121 9 of 12
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Fig. 8. Motility-induced phase separation: transfer learning toward larger systems. Our network architecture is defined at the level of individual particles and
depends only on local neighborhoods. This enables us to extend the learned solution from the N = 4,096 training set to larger values of N. We consider values
of N up to 8× larger and find physically consistent predictions in all cases. Movies visualizing the evolution of the EPR along stochastic trajectories can be found
at the following links: N = 8,192, N = 16,384, N = 32,768.

typically plagued by the curse of dimensionality. In addition to
uncovering structure in the EPR, we highlighted that a network
trained with a given number of particles N and a fixed packing

fraction � can generalize to other values of N and �. As a result,
our method paves the way to investigating questions about active
systems in the thermodynamic limit.

BA

Fig. 9. Motility-induced phase separation: probability flow. Particle values of v ig (A) and g i (B), with directionality visualized as arrows for N = 16,384. v ig
vanishes in the interior of the solid but points outward near the solid side of the interface. There is also a layer of particles pointing both inward and outward
directly at the interface, corresponding to particles that are exiting and leaving the cluster. The values of g i appear random and do not have a clear phase
dependence by eye, in contrast with v ig .
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Fig. 10. Motility induced phase separation: transfer learning to other packing fractions. Similar to Fig. 8, we find that the learned solution generalizes to other
packing fractions �. Here, we vary � at resolution N = 8,192 by varying the size L of the box; for presentation, we rescale the results to the same square. The
solution identifies contributions to the EPR from particle–particle collisions in the gaseous phase and at the interface of the gaseous and solid phases. For low
and high packing fraction, the EPR diminishes, as the system becomes dominated by a gas or a solid.

Physically, we focused on active particles without alignment
interactions. A natural extension of this work is to consider more
complex models such as the Vicsek model (88). Numerically,
we considered transformer architectures based on standard self-
attention modules, but could likely scale to larger systems with
less local interactions by incorporating recent advances such as
FlashAttention (89, 90).

Materials and Methods

All implementation and algorithmic details are included in either the main text
or SI Appendix. In particular, we include a review of stochastic thermodynamics,
derivations of the EPRs, and a derivation of the reverse-time stochastic dynamics.
We also include a review of score-matching algorithms and transformer neural

networks. Finally, we provide fine-grained details about neural network training,
architectures, initialization, and further results.

Data, Materials, and Software Availability. Code data have been deposited
in Github (91).
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