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Abstract
The method of choice for integrating the time-dependent Fokker–Planck equation (FPE) in
high-dimension is to generate samples from the solution via integration of the associated stochastic
differential equation (SDE). Here, we study an alternative scheme based on integrating an ordinary
differential equation that describes the flow of probability. Acting as a transport map, this equation
deterministically pushes samples from the initial density onto samples from the solution at any
later time. Unlike integration of the stochastic dynamics, the method has the advantage of giving
direct access to quantities that are challenging to estimate from trajectories alone, such as the
probability current, the density itself, and its entropy. The probability flow equation depends on
the gradient of the logarithm of the solution (its ‘score’), and so is a-priori unknown. To resolve
this dependence, we model the score with a deep neural network that is learned on-the-fly by
propagating a set of samples according to the instantaneous probability current. We show
theoretically that the proposed approach controls the Kullback–Leibler (KL) divergence from the
learned solution to the target, while learning on external samples from the SDE does not control
either direction of the KL divergence. Empirically, we consider several high-dimensional FPEs from
the physics of interacting particle systems. We find that the method accurately matches analytical
solutions when they are available as well as moments computed via Monte-Carlo when they are
not. Moreover, the method offers compelling predictions for the global entropy production rate
that out-perform those obtained from learning on stochastic trajectories, and can effectively
capture non-equilibrium steady-state probability currents over long time intervals.

1. Introduction

The time evolution of many dynamical processes occurring in the natural sciences, engineering, economics,
and statistics are naturally described in the language of stochastic differential equations (SDE) [12, 14, 40].
Typically, one is interested in the probability density function (PDF) of these processes, which describes the
probability that the system will occupy a given state at a given time. The density can be obtained as the
solution to a Fokker–Planck equation (FPE), which can generically be written as [1, 45]

∂tρ
∗
t (x) =−∇ · (bt(x)ρ∗t (x)−Dt(x)∇ρ∗t (x)) , x ∈ Ω⊆ Rd, (1)

where ρ∗t (x) ∈ R⩾0 denotes the value of the density at time t, bt(x) ∈ Rd is a vector field known as the drift,
and Dt(x) ∈ Rd×d is a positive-semidefinite tensor known as the diffusion matrix. (1) must be solved for
t⩾ 0 from some initial condition ρ∗t=0(x) = ρ0(x), but in all but the simplest cases, the solution is not
available analytically and can only be approximated via numerical integration.
High-dimensionality. For many systems of interest—such as interacting particle systems in statistical

physics [4, 56], stochastic control systems [26], and models in mathematical finance [40]—the
dimensionality d can be very large. This renders standard numerical methods for partial differential
equations inapplicable, which become infeasible for d as small as five or six due to an exponential scaling of
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the computational complexity with d. The standard solution to this problem is a Monte-Carlo approach,
whereby the SDE associated with (1)

dxt = bt(xt)dt+∇·Dt(xt)dt+
√
2σt(xt)dWt, x0 ∼ ρ0 (2)

is evolved via numerical integration to obtain a large number n of trajectories [24]. In (2), σt(x) satisfies
σt(x)σT

t (x) = Dt(x) andWt is a standard Brownian motion on Rd. Assuming that we can draw samples
{xi0}ni=1 from the initial PDF ρ0, simulation of (2) enables the estimation of expectations via empirical
averages

ˆ
Ω

ϕ(x)ρ∗t (x)dx≈
1

n

n∑
i=1

ϕ(xit), (3)

where ϕ : Ω→ R is an observable of interest. While widely used, this method only provides samples from ρ∗t ,
and hence other quantities of interest like the value of ρ∗t itself or the time-dependent differential entropy of
the system Ht =−

´
Ω
logρ∗t (x)ρ

∗
t (x)dx require sophisticated interpolation methods that typically do not

scale well to high-dimension.
A transport map approach. Another possibility, building on recent theoretical advances that connect

transportation of measures to the FPE [22], is to recast (1) as the transport equation [49, 60]

∂tρ
∗
t (x) =−∇ · (v∗t (x)ρ∗t (x)) , ρ∗t=0 = ρ0 (4)

where we have defined the velocity field

v∗t (x) = bt(x)−Dt(x)∇ logρ∗t (x). (5)

This formulation reveals that ρ∗t can be viewed as the pushforward of ρ0 under the flow map X∗
τ,t(·) of the

ordinary differential equation

d

dt
X∗
τ,t(x) = v∗t (X

∗
τ,t(x)), X∗

τ,τ (x) = x, t, τ ⩾ 0. (6)

Equation (6) is known as the probability flow equation, and its solution has the remarkable property that if x
is a sample from ρ0, then X∗

0,t(x) will be a sample from ρ∗t . Viewing X
∗
τ,t : Ω→ Ω as a transport map and

letting ♯ denote the push-forward operation, ρ∗t = X∗
0,t♯ρ0 can be evaluated at any position in Ω via the

change of variables formula [49, 60]

ρ∗t (x) = ρ0(X
∗
t,0(x))exp

(
−
ˆ t

0
∇· v∗τ (X∗

t,τ (x))dτ

)
(7)

where X∗
t,0(x) is obtained by solving (6) backward from some given x. Importantly, access to the PDF as

provided by (7) immediately gives the ability to compute quantities such as the probability current or the
entropy; by contrast, this capability is absent when directly simulating the SDE.
Learning the flow. The simplicity of the probability flow equation (6) is somewhat deceptive, because the

velocity v∗t depends explicitly on the solution ρ∗t to the FPE (1). Nevertheless, recent work in generative
modeling via score-based diffusion [52–54] has shown that it is possible to use deep neural networks to
estimate v∗t , or equivalently the so-called score∇ logρ∗t of the solution density. Here, we introduce a variant
of score-based diffusion modeling in which the score is learned on-the-fly over samples generated by the
probability flow equation itself. The method is self-contained and enables us to bypass simulation of the SDE
entirely; moreover, we provide both empirical and theoretical evidence that the resulting self-consistent
training procedure offers improved performance when compared to training via samples produced from
simulation of the SDE.

1.1. Contributions
Our contributions are both theoretical and computational:

• We provide a bound on the Kullback–Leibler (KL) divergence from the estimate ρt produced via an approx-
imate velocity field vt to the target ρ∗t . This bound motivates our approach, and shows that minimizing
the discrepancy between the learned score and the score of the push-forward distribution systematically
improves the accuracy of ρt .
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• Based on this bound, we introduce two optimization problems that can be used to learn the velocity field (5)
in the transport equation (4) so that its solution coincides with that of the FPE (1). Due to its similarities with
score-based diffusion approaches in generative modeling (SBDM), we call the resultingmethod score-based
transport modeling (SBTM).

• We provide specific estimators for quantities that can be computed via SBTM but are not directly avail-
able from samples alone, like point-wise evaluation of ρt itself, the differential entropy, and the probability
current.

• We test SBTM on several examples involving interacting particles that pairwise repel but are kept close
by common attraction to a moving trap. In these systems, the FPE is high-dimensional due to the large
number of particles, which vary from 5 to 50 in the examples below. Problems of this type frequently appear
in the molecular dynamics of externally-driven soft matter systems [13, 56]. We show that our method
can be used to accurately compute the entropy production rate, a quantity of interest in the active matter
community [39], as it quantifies the out-of-equilibrium nature of the system’s dynamics.

1.2. Notation and assumptions
Throughout, we assume that the stochastic process (2) evolves over Ω= Rd, though our results can easily be
extended to domains with either reflecting [30] or periodic boundary conditions. We let | · | : Rd → R⩾0

denote the Euclidean norm on vectors and | · |F : Rd×d → R⩾0 denote the Fröbenius norm on matrices. For
our theory, we assume that the drift vector bt : Rd → Rd and the diffusion tensor Dt : Rd → Rd×d with
Dt(x) = σt(x)σt(x)T are both twice-differentiable in x for each t and satisfy, for some fixed C> 0, L> 0,
and T> 0

|bt(x)|+ |σt(x)|F ⩽ C(1+ |x|) ∀ (x, t) ∈ Rn × [0,T],

|b(t,x)− b(t,y)|+ |σ(t,x)−σ(t,y)|F ⩽ L|x− y| ∀ (x,y, t) ∈ Rn ×Rn × [0,T],
(8)

so that the solution to the SDE (2) is well-defined for t ∈ [0,T] [40]. We further assume that the initial PDF
ρ0 is three-times differentiable, positive everywhere on Ω, and such thatH0 =−

´
Ω
logρ0(x)ρ0(x)dx<∞; ρ∗t

then enjoys the same properties at all times t ∈ [0,T]. Finally, we assume that logρ∗t is K-smooth globally for
(t,x) ∈ [0,∞)×Ω, i.e.

∃K> 0 : ∀(t,x) ∈ [0,∞)×Ω |∇ logρ∗t (x)−∇ logρ∗t (y)|⩽ K|x− y|. (9)

This technical assumption is needed to guarantee global existence and uniqueness of the solution of the
probability flow equation. Throughout, we use the shorthand notation ẏt =

d
dtyt interchangeably for a

time-dependent quantity yt.

2. Related work

Score matching. Our approach builds directly on the toolbox of score matching originally developed by
Hyvärinen [17–20] and more recently extended in the context of diffusion-based generative modeling [7, 10,
38, 52, 53, 55]. These approaches assume access to training samples from the target distribution (e.g. in the
form of examples of natural images). Here, we bypass this need and use the probability flow equation to
obtain the samples needed to learn an approximation of the score. Lu et al [34] recently showed that using
the transport equation (10) with a velocity field learned via SBDM can lead to inaccuracies in the likelihood
unless higher-order score terms are well-approximated. Proposition 1 shows that the self-consistent
approach used in SBTM solves these issues and ensures a systematic approximation of the target ρ∗t . Lai et al
[27] recently used a similar idea to improve sample quality with score-based probability flow equations in
generative modeling.
Density estimation and Bayesian inference. Our method shares commonalities with transport

map-based approaches [37] for density estimation and variational inference [2, 62] such as normalizing
flows [16, 25, 41, 44, 57, 58]. Moreover, because expectations are approximated over a set of samples
according to (3), the method also inherits elements of classical ‘particle-based’ approaches for density
estimation such as Markov chain Monte Carlo [46] and sequential Monte Carlo [6, 9].

Our approach is also reminiscent of a recent line of work in Bayesian inference that aims to combine the
strengths of particle methods with those of variational approximations [5, 48]. In particular, the method we
propose bears some similarity with Stein variational gradient descent (SVGD) [31–33] (see also [28, 35]), in
that both methods approximate the target distribution via deterministic propagation of a set of samples. The
key differences are that (i) our method learns the map used to propagate the samples, while the map in
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SVGD corresponds to optimization of the kernelized Stein discrepancy, and (ii) the methods have distinct
goals, as we are interested in capturing the dynamical evolution of ρ∗t rather than sampling from an
equilibrium density. Indeed, many of the examples we consider do not have an equilibrium density, i.e.
limt→∞ ρ∗t does not exist.
Approaches for solving the FPE.Most closely connected to our paper are the works by Maoutsa et al

[36] and Shen et al [50], who similarly propose to bypass the SDE through use of the probability flow
equation, building on earlier work by Degond and Mustieles [8] and Russo [47]. The critical differences
between Maoutsa et al [36] and our approach are that they perform estimation over a linear space or a
reproducing kernel Hilbert space rather than over the significantly richer class of neural networks, and that
they train using the original score matching loss of Hyvärinen [18], while the use of neural networks requires
the introduction of regularized variants. Because of this, [36] studies systems of dimension less than or equal
to five; in contrast, we study systems with dimensionality as high as 100.

Concurrently to our work, Shen et al [50] proposed a variational problem similar to SBTM. A key 
difference is that SBTM is not limited to FPEs that can be viewed as a gradient flow in the Wasserstein metric 
over some energy (i.e. the drift term in the SDE (2) need not be the gradient of a potential), and that it allows 
for spatially-dependent and rank-deficient diffusion matrices. Moreover, our theoretical results are similar, 
but by avoiding the use of costly Sobolev norms lead to a practical optimization problem that we show can be 
solved in high dimension and over long times. In a follow-up to Shen et al [50] and our present work, Li et al 
[29] propose an algorithm that can be seen as an expectation-maximization algorithm for the loss function 
in (15), which avoids calculation of Gt according to equation (13).
Neural-network solutions to PDEs. Our approach can also be viewed as an alternative to recent neural

network-based methods for the solution of partial differential equations (see e.g. [3, 11, 15, 42, 51]). Unlike
these existing approaches, our method is tailored to the solution of the FPE and guarantees that the solution
is a valid probability density. Our approach is fundamentally Lagrangian in nature, which has the advantage
that it only involves learning quantities locally at the positions of a set of evolving samples; this is naturally
conducive to efficient scaling for high-dimensional systems.

3. Methodology

3.1. Score-based transport modeling
Let st : Ω→ Rd denote an approximation to the score of the target∇ logρ∗t , and consider the solution
ρt : Ω→ R⩾0 to the transport equation

∂tρt(x) =−∇ · (vt(x)ρt(x)) with vt(x) = bt(x)−Dt(x)st(x), (10)

subject to the initial condition ρt=0 = ρ0. Our goal is to develop a variational principle that may be used to
adjust st so that ρt tracks ρ∗t . Our approach is based on the following inequality, whose proof may be found
in appendix B.1:

Proposition 1 (Control of the KL divergence). Assume that the conditions listed in section 1.2 hold. Let ρt
denote the solution to the transport equation (10), and let ρ∗t denote the solution to the FPE (1). Assume that
ρt=0(x) = ρ∗t=0(x) = ρ0(x) for all x ∈ Ω. Then

d

dt
KL(ρt ∥ ρ∗t )⩽

1

2

ˆ
Ω

|st(x)−∇ logρt(x)|2Dt(x)
ρt(x)dx, (11)

where | · |2Dt(x)
= ⟨·,Dt(x)·⟩.

In particular, (11) implies that for any T ∈ [0,∞) we have explicit control on the KL divergence

KL(ρT ∥ ρ∗T)⩽
1

2

ˆ T

0

ˆ
Ω

|st(x)−∇ logρt(x)|2Dt(x)
ρt(x)dxdt. (12)

Remarkably, (12) only depends on the approximate ρt and does not include ρ∗t : it states that the accuracy of
ρt as an approximation of ρ∗t can be improved by enforcing agreement between st and∇ logρt. This means
that we can optimize (12) without making use of external data from ρ∗t , which offers a self-consistent
objective function to learn the score st using (10) alone.

The primary difficulty with this approach is that ρt must be considered as a functional of st, since the
velocity vt used in (10) depends on st. To render the resulting minimization of the right-hand side of (12)
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practical, we can exploit that (10) can be solved via the method of characteristics, as summarized
in appendix A. Specifically, if Ẋt(x) = vt(Xt(x)) is the probability flow equation associated with the velocity
vt, then ρt = Xt♯ρ0. This means that the expectation of any function ϕ(x) over ρt(x) can be expressed as the
expectation of ϕt(Xt(x)) over ρ0(x). Observing that the score of the solution to (10) along trajectories of the
probability flow∇ logρt(Xt(x)) solves a closed equation leads to the following proposition.

Proposition 2 (Score-based transport modeling). Assume that the conditions listed in section 1.2 hold. Define
vt(x) = bt(x)−Dt(x)st(x) and consider

Ẋt(x) = vt(Xt(x)), X0(x) = x,

Ġt(x) =−[∇vt(Xt(x))]
TGt(x)−∇∇ · vt(Xt(x)), G0(x) =∇ logρ0(x).

(13)

Then ρt = Xt♯ρ0 solves (10), the equality Gt(x) =∇ logρt(Xt(x)) holds, and for any T ∈ [0,∞)

KL(XT♯ρ0 ∥ ρ∗T)⩽
1

2

ˆ T

0

ˆ
Ω

|st(Xt(x))−Gt(x)|2Dt(Xt(x))
ρ0(x)dxdt. (14)

Moreover, if s∗t is a minimizer of the constrained optimization problem

min
s

ˆ T

0

ˆ
Ω

|st(Xt(x))−Gt(x)|2Dt(Xt(x))
ρ0(x)dxdt subject to (13) (15)

then Dt(x)s∗t (x) = Dt(x)∇ logρ∗t (x) where ρ
∗
t solves the FPE (1). The map X∗

t associated to any minimizer is a
transport map from ρ0 to ρ∗t , i.e.

x∼ ρ0 implies that X∗
t (x)∼ ρ∗t , ∀t ∈ [0,T]. (16)

Proposition 2 is proven in appendix B.3. The result also holds with a standard Euclidean norm replacing
the diffusion-weighted norm, in which case the minimizer is unique and is given by s∗t (x) =∇ logρ∗t (x). In
the special case when the SDE is an Ornstein–Uhlenbeck (OU) process, the score and the equations for both
Xt and Gt can be written explicitly; they are studied in appendix C.

In practice, the objective in (15) can be estimated empirically by generating samples from ρ0 and solving
the equations for Xt(x) and Gt(x) with x∼ ρ0. The constrained minimization problem (15) can then in
principle be solved with gradient-based techniques via the adjoint method. The corresponding equations are
written in appendix B.3, but they involve fourth-order spatial derivatives that are computationally expensive
to compute via automatic differentiation. Moreover, each gradient step requires solving a system of ordinary
differential equations whose dimensionality is equal to the number of samples used to compute expectations
times the dimension of (1). Instead, we now develop a sequential timestepping procedure that avoids these
difficulties entirely, and as a byproduct can scale to arbitrarily long time windows.

3.2. Sequential score-based transport modeling
An alternative to the constrained minimization in proposition 2 is to consider an approach whereby the score
st is obtained independently at each time to ensure that KL(ρt ∥ ρ∗t ) remains small. This suggests choosing st
to minimize d

dtKL(ρt ∥ ρ
∗
t ), which admits a simple closed-form bound, as shown in proposition 1. While this

explicit form can be used directly, an application of Stein’s identity recovers an implicit objective analogous
to Hyvärinen score-matching that is equivalent to minimizing d

dtKL(ρt ∥ ρ
∗
t ) but obviates the calculation of

Gt. Expanding the square in (11) and applying
´
Ω
st(x)T∇ logρt(x)ρt(x)dx=−

´
Ω
∇· st(x)ρt(x)dx, we may

write

d

dt
KL(ρt ∥ ρ∗t )⩽

1

2

ˆ
Ω

(
|st(Xt(x))|2Dt(Xt(x)) + 2∇· (Dt(Xt(x))st(Xt(x)))

)
ρ0(x)dx

+
1

2

ˆ
|Gt(x)|2ρ0(x)dx.

Because∇ logρt(Xt(x)) = Gt(x) is independent of st, we may neglect the corresponding square term during
optimization. This leads to a simple and comparatively less expensive way to build the pushforward X∗

t such
that X∗

t ♯ρ0 = ρ∗t sequentially in time, as stated in the following proposition.

5
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Proposition 3 (Sequential SBTM). In the same setting as proposition 2, let Xt(x) solve the first equation in (13)
with vt(x) = bt(x)−Dt(x)st(x). Let st be obtained via

min
st

ˆ
Ω

(
|st(Xt(x))|2Dt(Xt(x)) + 2∇· (Dt(Xt(x))st(Xt(x)))

)
ρ0(x)dx. (17)

Then, each minimizer s∗t of (17) satisfies Dt(x)s∗t (x) = Dt(x)∇ logρ∗t (x) where ρ
∗
t is the solution to (1).

Moreover, the map X∗
t associated to s

∗
t is a transport map from ρ0 to ρ∗t .

Proposition 3 is proven in appendix B.4. Critically, (17) is no longer a constrained optimization problem.
Given the current value of Xt at any time t, we can obtain st via direct minimization of the objective in (17).
Given st, we may compute the right-hand side of (13) and propagate Xt (and possibly Gt) forward in time.
The resulting procedure, which alternates between self-consistent score estimation and sample propagation,
is presented in algorithm 1 for the choice of a forward-Euler integration routine in time. The output of the
method produces a feasible solution ρt = Xt♯ρ0 for (15) because Ẋt satisfies the first constraint in (13) by
construction. Moreover, because the method controls d

dtKL(ρt ∥ ρ
∗
t ) at each t, it also controls KL(ρt ∥ ρ∗t ) by

integration; an a-posteriori bound can be obtained by calculating Gt(x) according to the second equation
in (13) and computing the loss in (15). A few remarks on algorithm 1 are now in order.

Algorithm 1. Sequential score-based transport modeling.

1: Input: An initial time t0 ∈ R⩾0. A set of n samples {xi}ni=1 from ρt0 . A set of NT timesteps {∆tk}NT−1
k=0 .

2: Initialize sample locations Xi
t0 = xi for i = 1, . . . ,n.

3: for k= 0, . . . ,Nt − 1do

4: Optimize: stk = argmins
1
n

∑n
i=1

[
|s(Xi

tk)|
2
Dtk

(Xi
tk
) + 2∇·

(
Dtk(X

i
tk)s(X

i
tk)
)]
.

5: Propagate samples:
Xi
tk+1

= Xi
tk +∆tk

(
btk(X

i
tk)−Dtk(X

i
tk)stk(X

i
tk)
)
.

6: Set tk+1 = tk +∆tk.
7: Output: A set of n samples {Xi

tk}
n
i=1 from ρtk and the score {stk(Xi

tk)}
n
i=1 for all {tk}

NT

k=0.

Higher-order integrators. Algorithm 1 is stated for choice of forward-Euler integration for simplicity. In
practice, any off-the-shelf integrator can be used, such as an adaptive Runge–Kutta method, by temporal
discretization of the dynamics

Ẋt(x) = vt(Xt(x))

st = argmin
s

ˆ
Ω

(
|s(Xt(x))|2Dt(Xt(x)) + 2∇· (Dt(Xt(x))s(Xt(x)))

)
ρ0(x)dx

and spatial discretization of the expectation over a set of samples propagated according to the equation for
Xt(x). In practice, the minimization can be performed over a parametric class of functions such as neural
networks via a few steps of gradient descent.
Divergence computation. To avoid computation of the divergence—which can be costly for neural

networks with high input dimension—we can use the denoising score matching loss function introduced
by [61], which we discuss in appendix B.6. Empirically, we find that use of either the denoising objective or
explicit derivative regularization is necessary for stable training to avoid overfitting to the training data; the
level of regularization (or the noise scale in the denoising objective) can be decreased as the size of the dataset
increases.
Time-dependence.When optimizing over a parametric class of functions, the score can be taken to be

explicitly time-dependent, or the time-dependence can originate only through the parameters. In either case,
all required outputs can be computed on-the-fly to avoid saving the entire history of parameters, which
could be memory-intensive for large neural networks. If a time-dependent architecture is used, the method is
amenable to online learning by randomly re-drawing initial conditions and optimizing over the resulting
trajectory. In the numerical experiments below, we consider time-independent models with time-dependent
parameters, because we found them to be sufficient.
SBTM vs. Sequential SBTM. Given the simplicity of the optimization problem (17), one may wonder

if (15) is useful in practice, or if it is simply a stepping stone to arrive at (17). The primary difference is
that (15) offers global control on the discrepancy between st and∇ logρt over t ∈ [0,T], in the sense that it
directly minimizes the time-integrated error, while (17) controls a local truncation error that could lead to
the accumulation of learning and time-discretization errors. In the numerical examples below, we took the
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timestep∆t sufficiently small, and the number of samples n sufficiently large, that we did not observe any
accumulation of error. Nevertheless, (15) may allow for more accurate approximation, because the loss is
exactly minimized at zero. Moreover, the higher-order derivatives contained in∇∇· (Dtst)must remain
well-behaved when using (15) because this term appears in the definition of Ġt, while (17) only contains
∇· (Dtst).

3.3. Learning on external data
An alternative to the sequential procedure outlined here would be to generate samples from the target ρ∗t via
simulation of the associated SDE (2), and then to approximate the score∇ logρ∗t via minimization of the loss

ˆ T

0

ˆ
Ω

(|st(x)−∇ logρ∗t (x)|2Dt(x)ρ
∗
t (x)dxdt, (18)

similar to SBDM. ρt can be computed as in SBTM or sequential SBTM by simulation of the probability flow
with the learned st. As we now show, neither KL(ρt ∥ ρ∗t ) nor KL(ρ∗t ∥ ρt) are controlled when using this
procedure.

Proposition 4 (Learning on external data). Let ρt : Ω→ R>0 solve (10), and let ρ∗t : Ω→ R>0 solve (1).
Then, the following equality holds

KL(ρ∗T ∥ ρT) =
ˆ T

0

ˆ
Ω

|st(x)−∇ logρ∗t (x)|2Dt(x)ρ
∗
t (x)dxdt

+

ˆ T

0

ˆ
Ω

(∇ logρt(x)− st(x))
TDt(x)(st(x)−∇ logρ∗t (x))ρ

∗
t (x)dxdt. (19)

Proposition 4 shows that minimizing the error between st and∇ logρ∗t on samples of ρ∗t leaves a
remainder term, because in general∇ logρt ̸= st. Young’s inequality gives the simple upper bound

KL(ρ∗T ∥ ρT)⩽
3

2

ˆ T

0

ˆ
Ω

|st(x)−∇ logρ∗t (x)|2Dt(x)ρ
∗
t (x)dxdt

+
1

2

ˆ T

0

ˆ
Ω

|st(x)−∇ logρt(x)|2Dt(x)ρ
∗
t (x)dxdt. (20)

However, controlling the above quantity requires enforcing agreement between st and∇ logρt in addition to
st and∇ logρ∗t , which is precisely the idea of SBTM. Empirically, we find in our numerical experiments that
training on external data alone is significantly less stable than sequential SBTM. In particular, and
importantly for the applications we consider, we could not stably estimate the trajectory of the entropy
production rate using a score model learned from the SDE with the same number of samples as used for
sequential SBTM.

4. Numerical experiments

In the following, we study two high-dimensional examples from the physics of interacting particle systems,

where the spatial variable of the FPE (1) can be written as x=
(
x(1),x(2), . . . ,x(N)

)T
with each x(i) ∈ Rd̄. Here,

d̄ describes a lower-dimensional ambient space, e.g. d̄= 2, so that the dimensionality of the FPE d= Nd̄ will
be high if the number of particles N is even moderate1. The still figures shown in this section do not fully
depict the complexity of the interacting particle dynamics, and we encourage the reader to view the movies
available here. With a timestep∆t= 10−3, a horizon T= 10, and a fixed nNd̄= 105, we find that the
sequential SBTM procedure takes around two hours for each simulation on a single NVIDIA RTX8000 GPU.
In addition, study a low-dimensional example from the physics of active matter, which highlights the ability
of sequential SBTM to remain stable over long times and to capture non-equilibrium probability currents.
Our second and third examples go beyond the conditions required for existence and uniqueness assumed in
section 1.2; nevertheless, due to the presence of a confining potential, solutions to the SDE (2), FPE (1), and
probability flow (6) exist, as our numerical results show.

1 We would like to emphasize at this stage the difference between the number of physical particles N, which is a parameter for the system
under study and sets the dimensionality of the resulting FPE, and the number of algorithmic samples n, which is a hyper-parameter that
can be chosen at will to improve the accuracy of the learning.
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4.1. Harmonically interacting particles in a harmonic trap
Setup.Here we study a problem that admits a tractable analytical solution for direct comparison. We
consider N two-dimensional particles (d̄= 2) that repel according to a harmonic interaction but experience
harmonic attraction towards a moving trap βt ∈ R2. The motion of the physical particles is governed by the
stochastic dynamics

dx(i)t = (βt − x(i)t )dt+α
(
x(i)t − 1

N

N∑
j=1

x( j)t

)
dt+

√
2DdW(i)

t , i = 1, . . . ,N (21)

where α ∈ (0,1) is a fixed coefficient that sets the magnitude of the repulsion and each x(i)0 ∼ ρ0. The
dynamics (21) is an OU process in the extended variable x ∈ Rd̄N with block components x(i). Assuming a
Gaussian initial condition, the solution to the FPE associated with (21) is a Gaussian for all time and hence
can be characterized entirely by its meanmt and covariance Ct. These can be obtained analytically
(appendices C and D), which facilitates a quantitative comparison to the learned model. The differential
entropy St is given by

Ht =
1
2 d̄N(log(2π)+ 1)+ 1

2 logdetCt. (22)

In the experiments, we take βt = a(cosπωt, sinπωt)T with a= 2, ω= 1, D= 0.25, α= 0.5, and N = 50,
giving rise to a 100-dimensional FPE. The particles are initialized from an isotropic Gaussian with mean β0

(the initial trap position) and variance σ2
0 = 0.25.

Network architecture.We take st(x) =−∇Uθt(x), where the potential Uθt(·) is given as a sum of one-
and two-particle terms

Uθt

(
x(1), . . . ,x(N)

)
=

N∑
i=1

Uθt,1

(
x(i)
)
+

1

N

N∑
i,j=1
i ̸=j

Uθt,2

(
x(i),x( j)

)
, (23)

which ensures permutation symmetry amongst the physical particles by direct summation over all pairs.
Modeling at the level of the potential introduces an additional gradient into the loss function, but makes it
simple to enforce permutation symmetry; moreover, by writing the potential as a sum of one- and
two-particle terms, the dimensionality of the function estimation problem is reduced. As motivation for this
choice of architecture, we show in appendix D.1 that the class of scores representable by (23) contains the
analytical score for the harmonic problem considered in this section. To obtain the parameters θtk+∆tk , we
perform a warm start and initialize from θtk , which reduces the number of optimization steps that need to be
performed at each iteration. All networks are taken to be multi-layer perceptrons with the swish activation
function [43]; further details on the architectures used can be found in appendix D.
Quantitative comparison. For a quantitative comparison between the learned model and the exact

solution, we study the empirical covariance Σ over the samples and the entropy production rate dHt
dt .

Because an analytical solution is available for this system, we may also compute the target∇ logρt(x) =
−C−1

t (x−mt) and measure the goodness of fit via the relative Fisher divergence

´
Ω
|st(x)−∇ logρt(x)|2ρ̄(x)dx´

Ω
|∇ logρt(x)|2ρ̄(x)dx

. (24)

In equation (24), ρ̄ can be taken to be equal to the current empirical estimate of ρt (the training data), or
estimated using samples from the SDE(the SDE data).
Results. The representation of the dynamics (21) in terms of the flow of probability leads to an intuitive

deterministic motion that accurately captures the statistics of the underlying stochastic process. Snapshots of
particle trajectories from the learned probability flow (6), the SDE (21), and the noise-free equation obtained
by setting D= 0 in (21) are shown in figure 1(A).

Results for this quantitative comparison are shown in figure 1(B). The learned model accurately predicts
the entropy production rate of the system and minimizes the relative metric (24) to the order of 10−2. The
noise-free system incorrectly predicts a constant and negative entropy production rate, while the SDE cannot

8
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Figure 1. A system of N= 50 particles in a harmonic trap with a harmonic interaction: (A) A single sample trajectory. The mean
of the trap βt is shown with a red star, while past positions of the particles are indicated by a fading trajectory. The noise-free
system (right) is too concentrated, and fails to capture the variance of the stochastic dynamics (center). The learned system (left)
accurately captures the variance, and in addition generates physically interpretable trajectories for the particles. (B) Quantitative
comparison to the analytical solution. The learned solution matches the entropy production rate, score, and covariance well. A
movie of the particle motion can be found here.

make a prediction for the entropy production rate without an additional learning component; we study this
possibility in the next example. In addition, the learned model accurately predicts the high-dimensional
covariance Σ of the system (curves lie directly on top of the analytical result, trace shown for simplicity). The
SDE also captures the covariance, but exhibits more fluctuations in the estimate; the noise-free system
incorrectly estimates all covariance components as decaying to zero.

4.2. Soft spheres in an anharmonic trap
Setup.Here, we consider a system of N = 5 physical particles in an anharmonic trap in dimension d̄= 2 that
exhibit soft-sphere repulsion. This system gives rise to a 10-dimensional (1), which is significantly too high
for standard PDE solvers. The stochastic dynamics is given by

dx(i)t = 4B
(
βt − x(i)t

)
|x(i)t −βt|2dt

+
A

Nr2

N∑
j=1

(
x(i)t − x( j)t

)
exp

(
−|x(i)t − x( j)t |2

2r2

)
dt+

√
2DdWt, i = 1, . . . ,N,

(25)

where βt again represents a moving trap, A> 0 sets the strength of the repulsion between the spheres, r sets

their size, B> 0 sets the strength of the trap, and each x(i)0 ∼ ρ0. We set β(t) = a(cosπωt, sinπωt)T or
β(t) = a(cosπωt,0)T with a= 2,ω = 1,D= 0.25,A= 10, and r= 0.5. We fix B= D/R2 with R=

√
γNr and

γ= 5.0. This ensures that the trap scales with the number of particles and that they have sufficient room in
the trap to generate a complex dynamics. The circular case converges to a distribution ρ∗t = ρ∗ ◦Qt that can
be described as a fixed distribution ρ∗ composed with a time-dependent rotation Qt, and hence the entropy
production rate converges to zero by change of variables. The linear case does not exhibit this kind of
convergence, and the entropy production rate should oscillate around zero as the particles are repeatedly
pushed and pulled by the trap. We make use of the same network architecture as in section 4.1.
Results. Similar to section 4.1, an example trajectory from the learned system, the SDE (25), and the

noise-free system obtained by setting D= 0 are shown in figure 2(A) in the circular case. The learned particle
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Figure 2. A system of N= 5 soft-spheres in an anharmonic trap: (A) Example particle trajectories in the case of a rotating trap.
Trap position shown with a red star. Movies of the circular and linear motion can be viewed here and here, respectively. ((B)/(C))
A single component of the covariance of the samples, in the case of a rotating trap in (B) and a linearly oscillating trap in (C). The
learned system agrees well with the SDE, while the noise-free system under-predicts the moments. ((D)/(E)) Prediction of the
entropy production rate for a rotating trap in (D) and linearly oscillating trap in (E). Main figure depicts the prediction obtained
from sequential SBTM, while the inset depicts the prediction obtained when learning on samples from the SDE. Sequential SBTM
captures the temporal evolution of the entropy production rate, while learning on the SDE is initially offset and later divergent.

trajectories exhibit an intuitive circular motion when compared to the SDE trajectory. When compared to
the noise-free system, the learned trajectories exhibit a greater amount of spread, which enables the
deterministic dynamics to accurately capture the statistics of the stochastic dynamics. Numerical estimates of
a single component of the covariance and of the entropy production rate are shown in figures 2(B)/(C), with
all moments shown in appendix D.2. The learned and SDE systems accurately capture the covariance, while
the noise-free system underestimates the covariance in both the linear and the circular case. The prediction
of the entropy production rate via algorithm 1 is reasonable in both cases, exhibiting the expected
convergence to and oscillation around zero in the circular and linear cases, respectively. In the inset, we show
the prediction of the entropy production rate when learning on samples from the SDE; the prediction is
initially offset, and later becomes divergent. We found that this behavior was generic when training on the
SDE, but never observed it when training on self-consistent samples.

4.3. An active swimmer
Setup.We now consider a model from the physics of active matter, which describes the motion of a single
motile swimmer in an anharmonic trap. The swimmer can be thought of as a run-and-tumble
bacterium [59]; it travels in a fixed direction for a fluctuating duration before picking a new direction at
random in which to swim. The system is two-dimensional, and is given by the SDE for the position x and
velocity v
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Figure 3. An active swimmer: probability flow phase portrait. Phase portrait of the probability flow, computed with parameters
frozen at the fixed time t= 10/γ. Low-opacity curves depict closed limit cycles, while arrows indicate the direction of the
probability flow. The phase portrait reveals non-equilibrium steady-state currents, both within and between the two modes. The
nullcline v= x3 passes through the two modes (shown in blue), with an unstable equilibrium at the origin.

dx=
(
−x3 + v

)
dt,

dv=−γvdt+
√
2γDdWt.

(26)

While low-dimensional, (26) exhibits convergence to a non-equilibrium statistical steady state in which the
probability current jt(x) = vt(x)ρt(x) is non-zero. Here, we show that sequential SBTM is capable of
accurately capturing such currents, which is necessary to resolve the dynamics of the FPE: if our goal were
solely to sample at equilibrium, it would be sufficient to freeze the samples after an initial transient.
Moreover, we show that the method preserves the stationary distribution over long times relative to the
persistence time 1/γ of the swimmer, and does not display appreciable accumulation of error.

We set γ= 0.1 and D= 1.0. Because noise only enters the system through the velocity variable v in (26),
the score can be taken to be one-dimensional, which is equivalent to learning the score only in the range of
the rank-deficient diffusion matrix. Further details on the architecture can be found in appendix D.3.
Results. A phase portrait for the learned probability flow dynamics is shown in figure 3, computed by

rolling out an additional set of 50 trajectories for time 5/γ with a fixed set of parameters (after learning for
time 10/γ). The phase portrait depicts closed limit cycles between and centered within the modes
reminiscent of the classical phase portrait for the pendulum. Here, the closed limit cycles correspond to
non-equilibrium currents that preserve the steady-state density.

A kernel density estimate for the distribution of samples produced by the learned system, the stochastic
system, and the noise-free systems are shown in figure 4, which demonstrate that the distribution of the
learned samples qualitatively matches the distribution of the SDE samples. Comparatively, the noise-free
system grows overly concentrated with time, ultimately converging to a singular dirac measure at the origin.
A movie of the motion of the samples (xi(t),vi(t))t⩾0 over a duration 10/γ in phase space can be seen at this
link. The movie highlights convergence of the learned solution to one with a non-zero steady-state
probability current that qualitatively matches that of the SDE, but which enjoys more interpretable sample
trajectories.
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Figure 4. An active swimmer: kernel density estimates. PDFs computed via kernel density estimation in the xv plane. Columns
denote solution type and rows denote snapshots in time (t= 0.5/γ,1.5/γ, and 3.0/γ, respectively). The KDE reveals bimodality
in the probability density brought about by the activity of the particle. The noise free system becomes too concentrated around
the nullcline v= x3, and does not accurately capture the shape of the SDE and learned solutions, while the SDE and learned
solutions are nearly identical.

5. Outlook and conclusions

Building on the toolbox of score-based diffusion recently developed for generative modeling, we introduced
a related approach—SBTM – that gives an alternative to simulating the corresponding SDE to solve the FPE.
While SBTM is more costly than integration of the SDE because it involves a learning component, it gives
access to quantities that are not directly accessible from the samples given by integrating the SDE, such as
pointwise evaluation of the PDF, the probability current, or the entropy. Our numerical examples indicate
that SBTM is scalable to systems in high dimension where standard numerical techniques for partial
differential equations are inapplicable. The method can be viewed as a deterministic Lagrangian integration
method for the FPE, and our results show that its trajectories are more easily interpretable than the
corresponding trajectories of the SDE.
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Appendix A. Some basic formulas

Here, we derive some results linking the solution of the transport equation (10) with that of the probability
flow equation (6).

A.1. Probability density and probability current
We begin with a lemma.

Lemma 5. Let ρt : Ω→ R⩾0 satisfy the transport equation

∂tρt(x) =−∇ · (vt(x)ρt(x)) . (A.1)

Assume that vt(x) is C2 in both t and x for t⩾ 0 and globally Lipschitz in x. Then, given any t, t ′ ⩾ 0, the
solution of (A.1) satisfies

ρt(x) = ρt ′(Xt,t ′(x))exp

(
−
ˆ t

t ′
∇· vτ (Xt,τ (x))dτ

)
(A.2)

where Xτ,t is the probability flow solution to (6). In addition, given any test function ϕ : Ω→ R, we have
ˆ
Ω

ϕ(x)ρt(x)dx=

ˆ
Ω

ϕ(Xt ′,t(x))ρt ′(x)dx. (A.3)

In words, lemma 5 states that an evaluation of the PDF ρt at a given point xmay be obtained by evolving
the probability flow equation (6) backwards to some earlier time t

′
to find the point x

′
that evolves to x at

time t, assuming that ρt ′(x ′) is available. In particular, for t ′ = 0, we obtain

ρt(x) = ρ0(Xt,0(x))exp

(
−
ˆ t

0
∇· vτ (Xt,τ (x))dτ

)
, (A.4)

and ˆ
Ω

ϕ(x)ρt(x)dx=

ˆ
Ω

ϕ(X0,t(x))ρ0(x)dx. (A.5)

Since the probability current is by definition vt(x)ρt(x), using (A.4) to express ρt(x) also gives the following
equation for the current:

vt(x)ρt(x) = vt(x)ρ0(Xt,0(x))exp

(
−
ˆ t

0
∇· vτ (Xτ,t(x))dτ

)
. (A.6)

Proof. The assumed C2 and globally Lipschitz conditions on vt guarantee global existence (on t⩾ 0) and
uniqueness of the solution to (6). Differentiating ρt(Xt ′,t(x)) with respect to t and using (6) and (A.1) we
deduce

d

dt
ρt(Xt ′,t(x)) = ∂tρt(Xt ′,t(x))+

d

dt
Xt ′,t(x) ·∇ρt(Xt ′,t(x))

= ∂tρt(Xt ′,t(x))+ vt(Xt ′,t(x)) ·∇ρt(Xt ′,t(x))

=−∇ · vt(Xt ′,t(x))ρt(Xt ′,t(x)).

(A.7)

Integrating this equation in t from t= t ′ to t= t gives

ρt(Xt ′,t(x)) = ρt ′(x)exp

(
−
ˆ t

t ′
∇· vτ (Xt ′,τ (x))dτ

)
. (A.8)
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Evaluating this expression at x= Xt,t ′(x) and using the group properties (i) Xt ′,t(Xt,t ′(x)) = x and (ii)
Xt ′,τ (Xt,t ′(x)) = Xt,τ (x) gives (A.2). Equation (A.3) can be derived by using (A.2) to express ρt(x) in the integ-
ral at the left hand-side, changing integration variable x→ Xt ′,t(x) and noting that the factor exp(−

´ t
t ′ ∇·

vτ (Xt ′,τ (x))) is precisely the Jacobian of this change of variable. To see this, note that by definition the flow
map satisfies

d

dt
Xt′,t(x) = vt(Xt′,t(x)), Xτ,τ (x) = x ∀τ ⩾ 0.

Hence,

d

dt
∇Xt′,t(x) =∇vt(Xt′,t(x))∇Xt′,t(x), ∇Xτ,τ (x) = I ∀τ ⩾ 0.

By Jacobi’s formula for determinants,

d

dt
det(∇Xt′,t(x)) = Tr(∇vt(Xt′,t(x)))det(∇Xt′,t(x)) , det(∇Xτ,τ (x)) = 1 ∀τ ⩾ 0.

Integrating this equation with respect to t and using that Tr(∇vt(·)) =∇· vt(·), we obtain

det(∇Xt′,t(x)) = exp

(ˆ t

t′
∇· vτ (Xt′,τ (x))dτ

)
.

The result is the integral at the right hand-side of (A.3).

Lemma 5 also holds locally in time for any vt(x) that is C2 in both t and x. In particular, it holds locally if
we set st(x) =∇ logρt(x) and if we assume that ρ0(x) is (i) positive everywhere on Ω and (ii) C3 in x. In this
case, (A.1) is the FPEs (1) and (A.2) holds for the solution to that equation.

A.2. Calculation of the differential entropy
We now consider computation of the differential entropy, and state a similar result.

Lemma 6. Assume that ρ0 : Ω→ R⩾0 is positive everywhere on Ω and C3 in its argument. Let ρt : Ω→ R⩾0

denote the solution to the FPE (1) (or equivalently, to the transport equation (A.1) with st(x) =∇ logρt(x) in
the definition of vt(x)). Then the differential entropy Ht =−

´
Ω
logρt(x)ρt(x)dx can expressed as

Ht =−
ˆ
Ω

logρt(X0,t(x))ρ0(x)dx=H0 +

ˆ t

0

ˆ
Ω

∇· vτ (X0,τ (x))ρ0(x)dxdτ (A.9)

or

Ht =H0 −
ˆ t

0

ˆ
Ω

sτ (X0,τ (x)) · vτ (X0,τ (x))ρ0(x)dxdτ. (A.10)

Proof. We first derive (A.9). Observe that applying (A.5) with ϕ = logρt leads to the first equality. The second
can then be deduced from (A.4). To derive (A.10), notice that from (A.1),

d

dt
Ht =

ˆ
Ω

logρt(x)∇· (vt(x)ρt(x))dx,

=−
ˆ
Ω

∇ logρt(x) · vt(x)ρt(x)dx,

=−
ˆ
Ω

st(x) · vt(x)ρt(x)dx.

(A.11)

Above, we used integration by parts to obtain the second equality and st =∇ logρt to get the third. Now,
using (A.5) with ϕ = st · vt integrating the result gives (A.10).

A.3. Resampling of ρt at any time t
If the score st ≈∇ logρt is known to sufficient accuracy, ρt can be resampled at any time t using the dynamics

dXτ = st(Xτ )dτ + dWτ . (A.12)

In (A.12), τ is an artificial time used for sampling that is distinct from the physical time in (2). For
st =∇ logρt, the equilibrium distribution of (A.12) is exactly ρt . In practice, st will be imperfect and will have
an error that increases away from the samples used to learn it; as a result, (A.12) should be used near samples
for a fixed amount of time to avoid the introduction of additional errors.
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Appendix B. Further details on score-based transport modeling

B.1. Bounding the KL divergence
Let us restate proposition 1 for convenience:

Proposition 1 (Control of the KL divergence). Assume that the conditions listed in section 1.2 hold. Let ρt
denote the solution to the transport equation (10), and let ρ∗t denote the solution to the FPE (1). Assume that
ρt=0(x) = ρ∗t=0(x) = ρ0(x) for all x ∈ Ω. Then

d

dt
KL(ρt ∥ ρ∗t )⩽

1

2

ˆ
Ω

|st(x)−∇ logρt(x)|2Dt(x)
ρt(x)dx, (11)

where | · |2Dt(x)
= ⟨·,Dt(x)·⟩.

Proof. By assumption, ρt solves (10) and ρ∗t solves (1). Denote by vt(x) = bt(x)−Dt(x)st(x) and v∗t (x) =
bt(x)−Dt(x)s∗t (x) with s

∗
t (x) =∇ logρ∗t (x). Then, we have

d

dt
KL(ρt ∥ ρ∗t ) =

d

dt

ˆ
Ω

log

(
ρt(x)

ρ∗t (x)

)
ρt(x)dx,

=−
ˆ
Ω

ρt(x)

ρ∗t (x)
∂tρ

∗
t (x)dx+

ˆ
Ω

log

(
ρt(x)

ρ∗t (x)

)
∂tρt(x)dx,

=−
ˆ
Ω

v∗t (x) ·∇
(
ρt(x)

ρ∗t (x)

)
ρ∗t (x)dx+

ˆ
Ω

vt(x) ·∇ log

(
ρt(x)

ρ∗t (x)

)
ρt(x)dx,

=−
ˆ
Ω

(v∗t (x)− vt(x)) · (∇ logρt(x)−∇ logρ∗t (x))ρt(x)dx,

=

ˆ
Ω

(s∗t (x)− st(x)) ·Dt(x)(∇ logρt(x)− s∗t (x))ρt(x)dx.

Above, we used integration by parts to obtain the third equality. Now, dropping function arguments for sim-
plicity of notation, we have that

|∇ logρt − st|2Dt
= |∇ logρt − s∗t + s∗t − st|2Dt

,

= |∇ logρt − s∗t |2Dt
+ |s∗t − st|2Dt

+ 2(∇ logρt − s∗t ) ·Dt(s
∗
t − st),

⩾ 2(∇ logρt − s∗t ) ·Dt(s
∗
t − st).

Hence, we deduce that

d

dt
KL(ρt ∥ ρ∗t )⩽

1

2

ˆ
Ω

|st(x)−∇ logρt(x)|2Dt(x)ρt(x)dx. (B.1)

B.2. SBTM in the Eulerian frame
The Eulerian equivalent of proposition 2 can be stated as:

Proposition 7 (SBTM in the Eulerian frame). Assume that the conditions listed in section 1.2 hold. Fix
T ∈ (0,∞] and consider the optimization problem

min
{st:t∈[0,T)}

ˆ T

0

ˆ
Ω

|st(x)−∇ logρt(x)|2Dt(x)
ρt(x)dxdt

subject to: ∂tρt(x) =−∇ · (vt(x)ρt(x)) , x ∈ Ω

(B.2)

with vt(x) = bt(x)−Dt(x)st(x). Then every minimizer of (B.2) satisfies Dt(x)s∗t (x) = Dt(x)∇ logρ∗t (x) where
ρ∗t : Ω→ R>0 solves (1).

In words, this proposition states that solving the constrained optimization problem (B.2) is equivalent to
solving the FPE (1).

Proof. The constrained minimization problem (B.2) can be handled by considering the extended objective

ˆ T

0

ˆ
Ω

(
|st(x)−∇ logρt(x)|2Dt(x)

ρt(x)+µt(x)(∂tρt(x)+∇· (vt(x)ρt(x)))
)
dxdt (B.3)
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where vt(x) = bt(x)−Dt(x)st(x) and µt : Rd → R⩾0 is a Lagrange multiplier. The Euler–Lagrange equations
associated with (B.3) read

∂tρt(x) =−∇ · (vt(x)ρt(x))
∂tµt(x) =−vt(x) ·∇µt(x)+ |st(x)|2Dt(x) − |∇ logρt|2Dt(x)

+ 2∇· [Dt(x)(st(x)−∇ logρt(x))] , (B.4)

0= µT(x),

0= 2Dt(x)(st(x)−∇ logρt(x))ρt(x)−Dt(x)∇µt(x)ρt(x).

Clearly, these equations will be satisfied if s∗t (x) =∇ logρ∗t (x) for all x ∈ Ω, µ∗
t (x) = 0 for all x, and ρ∗t

solves (1). This solution is also a global minimizer, because it zeroes the value of the objective. Moreover,
all global minimizers must satisfy Dt(x)s∗t (x) = Dt(x)∇ logρ∗t (x) (ρt−almost everywhere), as this is the only
way to zero the objective.

It is also easy to see that there are no other local minimizers. To check this, we can use the fourth equation
to write

Dt(x)(st(x)−∇ logρt(x)) =
1
2Dt(x)∇µt(x).

Then,

|st(x)|2Dt(x) − |∇ logρt(x)|2Dt(x) =
1
2 (st(x)+∇ logρt(x))

TDt(x)∇µt(x).

This reduces the first three equations to

∂tρt(x) =−∇ ·
(
bt(x)ρt(x)−Dt(x)∇ρt(x)− 1

2ρtDt(x)∇µt(x)
)

∂tµt =
(
bt(x)−Dt(x)∇ logρt(x)− 1

2Dt(x)∇µt(x)
)T∇µt(x)

+∇· (Dt(x)∇µt(x))+
1
2 (st(x)+∇ logρt(x))

TDt(x)∇µt(x).

µT(x) = 0.

(B.5)

Since the equation for µt is homogeneous in µt and µT = 0, we must have µt = 0 for all t ∈ [0,T), and the
equation for ρt reduces to (1).

B.3. SBTM in the Lagrangian frame
As stated, proposition 7 is not practical, because it is phrased in terms of the density ρt . The following result
demonstrates that the transport map identity (7) can be used to re-express proposition 7 entirely in terms of
known quantities.

Proposition 2 (Score-based transport modeling). Assume that the conditions listed in section 1.2 hold. Define
vt(x) = bt(x)−Dt(x)st(x) and consider

Ẋt(x) = vt(Xt(x)), X0(x) = x,

Ġt(x) =−[∇vt(Xt(x))]
TGt(x)−∇∇ · vt(Xt(x)), G0(x) =∇ logρ0(x).

(13)

Then ρt = Xt♯ρ0 solves (10), the equality Gt(x) =∇ logρt(Xt(x)) holds, and for any T ∈ [0,∞)

KL(XT♯ρ0 ∥ ρ∗T)⩽
1

2

ˆ T

0

ˆ
Ω

|st(Xt(x))−Gt(x)|2Dt(Xt(x))
ρ0(x)dxdt. (14)

Moreover, if s∗t is a minimizer of the constrained optimization problem

min
s

ˆ T

0

ˆ
Ω

|st(Xt(x))−Gt(x)|2Dt(Xt(x))
ρ0(x)dxdt subject to (13) (15)

then Dt(x)s∗t (x) = Dt(x)∇ logρ∗t (x) where ρ
∗
t solves the FPE (1). The map X∗

t associated to any minimizer is a
transport map from ρ0 to ρ∗t , i.e.

x∼ ρ0 implies that X∗
t (x)∼ ρ∗t , ∀t ∈ [0,T]. (16)
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Proof. Let us first show that Gt(x) =∇ logρt(Xt(x)) satisfies (13) if ρt = Xt♯ρ0, i.e. if ρt satisfies the transport
equation (10). Since (10) implies that

∂t logρt(x)+ vt(x) ·∇ logρt(x) =−∇ · vt(x), (B.6)

taking the gradient gives

∂t∇ logρt(x)+ [∇vt(x)]
T∇ logρt(x)+∇∇ logρt(x) · vt(x) =−∇∇ · vt(x). (B.7)

Therefore Gt(x) =∇ logρt(Xt(x)) solves

d

dt
Gt(x) = ∂t∇ logρt(Xt(x))+∇∇ logρt(Xt(x)) ·

d

dt
Xt(x),

= ∂t∇ logρt(Xt(x))+∇∇ logρt(Xt(x)) · vt(x),
=−∇∇ · vt(Xt(x))− [∇vt(Xt(x))]

T∇ logρt(Xt(x)),

(B.8)

which recovers the equation for Gt(x) in (13). Hence, the objective in (15) can also be written as

ˆ T

0

ˆ
Ω

|st(Xt(x))−∇ logρt(Xt(x))|2Dt(Xt(x))
ρ0(x)dxdt

=

ˆ T

0

ˆ
Ω

|st(x)−∇ logρt(x)|2Dt(x)
ρt(x)dxdt

(B.9)

where the second equality follows from (A.5) if ρt(x) satisfies (A.1). Hence, (15) is equivalent to (B.2). The
bound on KL(XT♯ρ0 ∥ ρ∗T) follows from (12).

Adjoint equations. In terms of a practical implementation, the objective in (B.2) can be evaluated by
generating samples {xi}ni=1 from ρ0 and solving the equations for Xt and Gt using the initial conditions
X0(xi) = xi and G0(xi) =∇ logρ0(xi). Note that evaluating this second initial condition only requires one to
know ρ0 up to a normalization factor. To evaluate the gradient of the objective, we can introduce equations
adjoint to those for Xt and Gt. To do so, we can consider the extended objective

L[st] =

ˆ T

0

ˆ
Ω

|st(Xt(x))−Gt(x)|2Dt(Xt(x))ρ0(x)dxdt

+

ˆ T

0

ˆ
Ω

θt(x)
(
Ẋt(x)− vt(Xt(x))

)
ρ0(x)dxdt

+

ˆ T

0

ˆ
Ω

ηt(x)
(
Ġt(x)+∇vt(Xt(x))

TGt(Xt(x))+∇∇· vt(Xt(x))
)
ρ0(x)dxdt.

(B.10)

Taking the first variation with respect to Gt(x) and Xt(x), respectively, gives the equations

∂tηt(x) =∇vt(Xt(x))ηt(x)+ 2Dt(Xt(x))(Gt(x)− st(Xt(x)))

ηT(x) = 0

∂tθt(x)+∇vt(Xt(x))
Tθt(x) = 2∇st(Xt(x))

TDt(Xt(x))(st(Xt(x))−Gt(x))

+ (st(Xt(x))−Gt(x)) ·∇Dt(Xt(x))(st(Xt(x))−Gt(x))

+ ηt(x) ·
(
∇∇vt(Xt(x))

TGt(x)
)
+ ηt ·∇∇∇ · vt(Xt(x))

θT(x) = 0.

(B.11)

B.4. Sequential SBTM
Let us restate proposition 3 for convenience:

Proposition 3 (Sequential SBTM). In the same setting as proposition 2, let Xt(x) solve the first equation in (13)
with vt(x) = bt(x)−Dt(x)st(x). Let st be obtained via

min
st

ˆ
Ω

(
|st(Xt(x))|2Dt(Xt(x)) + 2∇· (Dt(Xt(x))st(Xt(x)))

)
ρ0(x)dx. (17)

Then, each minimizer s∗t of (17) satisfies Dt(x)s∗t (x) = Dt(x)∇ logρ∗t (x) where ρ
∗
t is the solution to (1).

Moreover, the map X∗
t associated to s

∗
t is a transport map from ρ0 to ρ∗t .
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Proof. If Xt♯ρ0 = ρt, then by definition we have the identity

ˆ
Ω

(
|st(Xt(x))|2Dt(Xt(x)) + 2∇· (Dt(Xt(x))st(Xt(x)))

)
ρ0(x)dx

=

ˆ
Ω

(
|st(x)|2Dt(x) + 2∇· (Dt(x)st(x))

)
ρt(x)dx. (B.12)

This means that the optimization problem in (17) is equivalent to

min
st

ˆ
Ω

(
|st(x)|2Dt(x) + 2∇· (Dt(x)st(x))

)
ρt(x)dx.

All minimizers s∗t of this optimization problem satisfy Dt(x)s∗t (x) = Dt(x)∇ logρt(x). Hence, by (10),

∂tρt(x) =−∇ · (bt(x)ρt(x)−Dt(x)∇ρt(x)) (B.13)

which recovers (1), so that ρt(x) = ρ∗t (x) solves (1).

B.5. Learning from the SDE
In this section, we show that learning from the SDE alone—i.e. avoiding the use of self-consistent
samples—does not provide a guarantee on the accuracy of ρt . We have already seen in (12) that it is sufficient

to control
´ T
0

´
Ω
|st(x)−∇ logρt(x)|2Dt(x)

ρt(x)dxdt to control KL(ρT ∥ ρ∗T). The proof of proposition 1 shows
that control on

ˆ T

0

ˆ
Ω

|st(x)−∇ logρ∗t (x)|2Dt(x)ρ
∗
t (x)dxdt, (B.14)

as would be provided by training on samples from the SDE, does not ensure control on KL(ρT ∥ ρ∗T). The
following proposition shows that control on (B.14) does not guarantee control on KL(ρ∗T ∥ ρT) either. An
analogous result appeared in [34] in the context of SBDM for generative modeling; here, we provide a
self-contained treatment to motivate the use of the sequential SBTM procedure discussed in the main text.

Proposition 4 (Learning on external data). Let ρt : Ω→ R>0 solve (10), and let ρ∗t : Ω→ R>0 solve (1).
Then, the following equality holds

KL(ρ∗T ∥ ρT) =
ˆ T

0

ˆ
Ω

|st(x)−∇ logρ∗t (x)|2Dt(x)ρ
∗
t (x)dxdt

+

ˆ T

0

ˆ
Ω

(∇ logρt(x)− st(x))
TDt(x)(st(x)−∇ logρ∗t (x))ρ

∗
t (x)dxdt. (19)

Proof. By an analogous argument as in the proof of proposition 1, we find

d

dt
KL(ρ∗t ∥ ρt) =

ˆ
(∇ logρt(x)−∇ logρ∗t (x))

TDt(x)(st(x)−∇ logρ∗t (x))ρ
∗
t (x)dx.

Adding and subtracting st(x) to the first term in the inner product and expanding gives
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d

dt
KL(ρ∗t ∥ ρt) =

ˆ
Ω

|st(x)−∇ logρ∗t (x)|2Dt(x)ρ
∗
t (x)dx

+

ˆ
Ω

(∇ logρt(x)− st(x))
TDt(x)(st(x)−∇ logρ∗t (x))ρ

∗
t (x)dx. (B.15)

Integrating from 0 to T completes the proof.

B.6. Denoising loss
The following standard trick can be used to avoid computing the divergence of st(x):

Lemma 8. Given ξ = N(0, I), we have

lim
α↓0

α−1E
(
st(x+αξ) · ξ

)
=∇· st(x),

lim
α↓0

α−1E
(
st(x+ασt(x)ξ) ·σt(x)ξ

)
= tr(Dt(x)∇st(x)) .

(B.16)

Proof. We have

α−1st(x+αξ) · ξ = α−1st(x) · ξ +(∇st(x)ξ ) · ξ + o(α). (B.17)

The expectation of the first term on the right-hand side of this equation is zero; the expectation of the second
gives the result in (B.16). Hence, taking the expectation of (B.17) and evaluating the result in the limit as α ↓ 0
gives the first equation in (B.16). The second equation in (B.16) can be proven similarly using σt(x)σt(x)T =
Dt(x).

Replacing∇· st(x) in (17) with the first expression in (B.17) for a fixed α> 0 gives the loss

L[st] = Eξ

[ˆ
Ω

(
|st(Xt(x))|2 +

2

α
st(Xt(x)+αξ) · ξ

)
ρ0(x)dx

]
. (B.18)

Evaluating the square term at a perturbed data point recovers the denoising loss of Vincent [61]

L[st] = Eξ

[ˆ
Ω

∣∣∣∣st(Xt(x)+αξ)+
ξ

α

∣∣∣∣2 ρ0(x)dx
]
. (B.19)

We can improve the accuracy of the approximation with a ‘doubling trick’ that applies two draws of the noise
of opposite sign to reduce the variance. This amounts to replacing the expectations in (B.16) with

1
2α

−1E
[
st(x+αξ) · ξ − st(x−αξ) · ξ

]
,

1
2α

−1E
[
st(x+ασt(x)ξ) ·σt(x)ξ − st(x−ασt(x)ξ) ·σt(x)ξ

]
,

(B.20)

whose limits as α→ 0 are∇· st(x) and tr(Dt(x)∇st(x)), respectively. In practice, we observe that this
approach always helps stabilize training. Moreover, we observe that use of the denoising loss also stabilizes
training, so that it is preferable to full computation of∇· st(x) even when the latter is feasible.

Appendix C. Gaussian case

Here, we consider the case of an OU process where the score can be written analytically, thereby providing a
benchmark for our approach. The example treated in section 4.1 with details in appendix D.1 is a special case
of such an OU process with additional symmetry arising from permutations of the particles. The SDE reads

dXt =−Γt(Xt − bt)dt+
√
2σtdWt (C.1)

where Xt ∈ Rd, Γt ∈ Rd×d is a time-dependent positive-definite tensor (not necessarily symmetric), bt ∈ Rd

is a time-dependent vector, and σt ∈ Rd×d is a time-dependent tensor. The FPE associated with (C.1) is

∂tρ
∗
t (x) =−∇ · ((Γtx− bt)ρ

∗
t (x)−Dt∇ρ∗t (x)) (C.2)
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where Dt = σtσ
T
t . Assuming that the initial condition is Gaussian, ρ0 = N(m0,C0) with C0 = CT

0 ∈ Rd×d

positive-definite, the solution is Gaussian at all times t⩾ 0, ρ∗t = N(mt,Ct) withmt and Ct = CT
t solutions to

ṁt =−Γt(mt − bt)

Ċt =−ΓtCt −CtΓ
T
t + 2Dt.

(C.3)

This implies in particular that

∇ logρ∗t (x) =−C−1
t (x−mt), (C.4)

so that the probability flow equation for Xt and the equation for Gt written in (13) read

Ẋt(x) = (DtC
−1
t −Γt)Xt(x)+Γtbt −DtC

−1
t mt,

Ġt(x) = (ΓT
t −C−1

t Dt)Gt(x),
(C.5)

with initial condition X0(x) = x and G0(x) =∇ logρ0(x) =−C−1
0 (x−m0). It is easy to see that with

x∼ ρ0 = N(m0,C0) we have Xt(x)∼ ρ∗t = N(mt,Ct) since, from the first equation in (C.5), the mean and
variance of Xt satisfy (C.3). Similarly, when x∼ ρ0 = N(m0,C0), G0(x)∼ N(0,C−1

0 ), so that
Gt(x)∼ N(0,C−1

t ) because the second equation in (C.5) is linear and hence preserves Gaussianity. Moreover,
E0Gt(x) = 0 and Bt = BT

t = E0[Gt(x)GT
t(x)] satisfies

d

dt
Bt = (ΓT

t −C−1
t Dt)Bt +Bt(Γt −DtC

−1
t ). (C.6)

The solution to this equation is Bt = C−1
t since substituting this ansatz into (C.6) gives the equation for C−1

t

that we can deduce from (C.3)

d

dt
C−1
t = C−1

t ĊtC
−1
t =−C−1

t Γt −ΓT
tC

−1
t + 2C−1

t DtC
−1
t . (C.7)

Note that if Γt = Γ, bt = b, and Dt = D are all time-independent, then limt→∞ ρt = N(m∞,C∞) with
m∞ = b and C∞ the solution to the Lyapunov matrix equation

ΓC∞ +C∞ΓT = 2D. (C.8)

This means that at long times the coefficients at the right-hand sides of (C.5) also settle on constant values.
However, Xt and Gt do not necessarily stop evolving; one situation where they too converge is when the OU
process is in detailed balance, i.e. when Γ = DA for some A= AT ∈ Rd×d positive-definite. In that case, the
solution to (C.8) is C∞ = A−1 and it is easy to see that at long times the right-hand sides of (C.5) tend to zero.

Remark 9. This last conclusion is actually more generic than for a simple OU process. For any SDE in detailed
balance, i.e. that can be written as

dXt =−D(Xt)∇U(Xt)dt+∇·D(Xt)dt+
√
2σt(Xt)dWt (C.9)

where U : Rd → R>0 is a C2-potential such that Z=
´
Rd e−U(x)dx<∞, we have that limt→∞ ρt(x) =

Z−1e−U(x), and the corresponding flows Xt and Gt eventually stop as t→∞. In this case, ρt follows gradi-
ent descent inW2 over the energy

E[ρ] =

ˆ
Rd

(U(x)+ logρ(x))ρ(x)dx. (C.10)

The unique PDF minimizing this energy is Z−1e−U(x), and as t→∞ Xt converges towards a transport map
between the initial ρ0 and Z−1e−U(x).

Appendix D. Experimental details and additional examples

All numerical experiments were performed in jax using the dm-haiku package to implement the networks
and the optax package for optimization.
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D.1. Harmonically interacting particles in a harmonic trap
Network architecture. Both the single-particle energy Uθt,1 : Rd → R and two-particle interaction energy
Uθt,2 : Rd ×Rd → R are parameterized as single hidden-layer neural networks with the swish activation
function [43] and n_hidden= 100 hidden neurons. The hidden layer biases are initialized to zero while the
hidden layer weights are initialized from a truncated normal distribution with variance 1/fan_in, following
the guidelines recommended in [21].
Optimization. The Adam [23] optimizer is used with an initial learning rate of η = 10−4 and otherwise

default settings. At time t= 0, the analytical relative loss

L[s0] =

´
|s0(x)−∇ logρ0(x)|2ρ0(x)dx´

|∇ logρ0(x)|2ρ0(x)dx
(D.1)

is minimized to a value less than 10−4 using knowledge of the initial condition ρ0 = N
(
β0,σ

2
0I
)
with

σ0 = 0.25. In (D.1), the expectation with respect to ρ0 is approximated by an initial set of samples

xj = (x(1)j ,x(2)j , . . . ,x(N)j )T with j = 1, . . . ,n drawn from ρ0. In the experiments, we set n= 100, which we
found to be sufficient to obtain a few digits of relative accuracy on various quantities of interest. We set the
physical timestep∆t= 10−3 and take n_opt_steps= 25 steps of Adam on the standard sequential SBTM
loss function (17) until the norm of the gradient is below gtol= 0.1.
Analytical moments. First define the mean, second moment, and covariance according to

m(i)
t = E

[
X(i)
t

]
,

M(ij)
t = E

[
X(i)
t

(
X( j)
t

)T]
,

C(ij)
t =M(ij) −m(i)

(
m( j)

)T
.

It is straightforward to show that the mean and covariance obey the dynamics

ṁ(i)
t =−(m(i)

t −βt)+
α

N

N∑
k=1

(
m(i)

t −m(k)
t

)
, (D.2)

Ċ(ij)
t =−2(1−α)C(ij)

t + 2DIδij −
α

N

N∑
k=1

(
C(kj)
t +C(ik)

t

)
. (D.3)

Because the particles are indistinguishable so long as they are initialized from a distribution that is symmetric
with respect to permutations of their labeling, the moments will satisfy the ansatz

m(i)
t = m̄(t), i = 1, . . . ,N (D.4)

C(ij)
t = Cd(t)δij +Co(t)(1− δij), i, j = 1, . . . ,N. (D.5)

The dynamics for the vector m̄ : R⩾0 → Rd̄, as well as the matrices Cd : R⩾0 → Rd̄×d̄ and Co : R⩾0 → Rd̄×d̄

can then be obtained from (D.2) and (D.3) as

˙̄m= βt − m̄,

Ċd = 2(α− 1)Cd − 2
α

N
(Cd +(n− 1)Co)+ 2DI,

Ċo = 2(α− 1)Co − 2
α

N
(Cd +(n− 1)Co) .

For a given β : R→ Rd̄, these equations can be solved analytically in Mathematica as a function of time,
giving the meanmt = m̄(t)⊗ 1N ∈ RNd̄ and covariance
Ct = (Cd(t)−Co(t))⊗ IN×N +Co(t)⊗

(
1N1TN

)
∈ RNd̄×Nd̄. Because the solution is Gaussian for all t, we then

obtain the analytical solution to the FPE ρ∗t = N(mt,Ct) and the corresponding analytical score
−∇ logρ∗t (x) = C−1

t (x−mt).
Potential structure.Here, we show that the potential for this example lies in the class of potentials

described by (23). From equation (D.5), we have a characterization of the structure of the covariance matrix
Ct for the analytical potential Ut(x) =

1
2 (x−mt)

TC−1
t (x−mt). In particular, Ct is block circulant, and hence

is block diagonalized by the roots of unity (the block discrete Fourier transform). That is, we may take a
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‘block eigenvector’ of the form ωk =
(
Id̄×d̄ρ

k, Id̄×d̄ρ
2k, . . . , Id̄×d̄ρ

(N−1)k
)T
with ρ= exp(−2π i/N) for

k= 0, . . .N− 1. By direct calculation, this block diagonalization leads to two distinct block eigenmatrices,

Ct = V


Cd(t)+ (N− 1)Co(t) 0 0 . . . 0

0 Cd(t)−Co(t) 0 . . . 0

0 0
. . . . . . 0

0 0 0 . . . Cd(t)−Co(t)

V−1

where V ∈ RNd̄×Nd̄ denotes the matrix with block columns ωk. The inverse matrix C−1
t then must similarly

have only two distinct block eigenmatrices given by (Cd(t)+ (N− 1)Co(t))
−1 and (Cd(t)−Co(t))

−1. By
inversion of the block Fourier transform, we then find that(

C−1
t

)(ij)
= C̄dδij + C̄o(1− δij)

for some matrices C̄d, C̄o. Hence, by direct calculation

(x−mt)
TC−1

t (x−mt) =
N∑
i,j

(
x(i) −m(i)

t

)T (
C−1
t

)(ij)(
x( j) −m( j)

t

)

=
N∑
i,j

(
x(i) − m̄(t)

)T (
C̄dδij + C̄o(1− δij)

)(
x( j) − m̄(t)

)

=
N∑
i

(
x(i) − m̄(t)

)T
C̄d

(
x(i) − m̄(t)

)T
+

N∑
i̸=j

(
x(i) − m̄(t)

)T
C̄o

(
x( j) − m̄(t)

)
.

Above, we may identify the first term in the last line as
∑N

i=1U1(x(i)) and the second term in the last line as
1
N

∑N
i ̸=jU2(x(i),x( j)). Moreover, U2(·, ·) is symmetric with respect to its arguments.
Analytical entropy. For this example, the entropy can be computed analytically and compared directly to

the learned numerical estimate. By definition,

st =−
ˆ
RNd̄

logρt(x)ρt(x)dx,

=−
ˆ
RNd̄

(
−Nd̄

2
log(2π)− 1

2
logdetCt −

1

2
(x−mt)

TC−1
t (x−mt)

)
ρt(x)dx,

=
Nd̄

2
(log(2π)+ 1)+

1

2
logdetCt.

Additional figures. Images of the learned velocity field and potential in comparison to the corresponding
analytical solutions can be found in figures D1 and D2, respectively. Further detail can be found in the
corresponding captions. We stress that the two-dimensional images represent single-particle slices of the
high-dimensional functions.

D.2. Soft spheres in an anharmonic trap
Network architecture. Both potential terms Uθt,1 and Uθt,2 are modeled as four hidden-layer deep fully
connected networks with n_hidden= 32 neurons in each layer. The initialization is identical
to appendix D.2.
Optimization and initialization. The Adam optimizer is used with an initial learning rate of

η = 5× 10−3 and otherwise default settings. At time t= 0, the loss (D.1) is minimized to a value less than

10−6 over n samples X(i)
0 ∼⊗N

j=1N(β0,σ
2
0I), i = 1, . . . ,n with σ0 = 0.5 and n= 104. Past this initial stage, the

denoising loss is used with a noise scale σ= 0.1; we found that a higher noise scale regularized the problem
and led to a smoother prediction for the entropy, at the expense of a slight bias in the moments. By increasing
the number of samples n, the noise scale can be reduced while maintaining an accurate prediction for the
entropy. The loss is minimized by taking n_opt_steps= 25 steps of Adam at each timestep. The physical
timestep is set to∆t= 10−3.
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Figure D1. A system of N= 50 harmonically interacting particles in a harmonic trap: slices of the high-dimensional velocity field.
Cross sections of the velocity field for N= 50 harmonically interacting particles in a moving harmonic trap. Columns depict the
learned, analytical, noise-free, and error between the learned and analytical velocity fields, respectively. Rows indicate different
time points, corresponding to t= 1.25,2.5,3.75, and 5.0, respectively. Each velocity field is plotted as a function of a single
particle’s coordinate (denoted as x and y); all other particle coordinates are fixed to be at the location of a sample. Color depicts
the magnitude of the velocity field while arrows indicate the direction. Learned, analytical, and noise-free share a colorbar for
direct comparison; the error occurs on a different scale and is plotted with its own colorbar. White circles in the error plot indicate
samples projected onto the xy plane; locations of low error correlate well with the presence of samples.

Additional figures. Figures D3 and D4 show the full grid of covariance components for the SDE, learned,
and noise free systems. The noise free underestimates the moments, while the learned and SDE agree well.

D.3. An active swimmer
Setup.We parameterize the score directly st : R2 → R using a three hidden layer neural network with
n_hidden= 32 neurons per hidden layer. Because the dynamics is anti-symmetric, we impose that
s(x,v) =−s(−x,−v).
Optimization and initialization. The network initialization is identical to the previous two experiments.

The physical timestep is set to∆t= 10−3. The Adam optimizer is used with an initial learning rate of
η = 10−4. At time t= 0 the loss (D.1) is minimized to a tolerance of 10−4 over n= 104 samples drawn from
an initial distribution N(0,σ2

0I) with σ0 = 1. The denoising loss is used with a noise scale σ= 0.05, using
n_opt_steps= 25 steps of Adam until the norm of the gradient is below gtol= 0.5.
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Figure D2. A system of N= 50 harmonically interacting particles in a harmonic trap: slices of the high-dimensional potential.
Cross sections of the potential field Uθt

(x) computed via (23). Columns depict the learned, analytical, and error between the
learned and analytical, respectively. Rows indicate distinct time points, corresponding to t= 1.25,2.5,3.75, and 5.0, respectively.
As in figure D1, each potential field is plotted as a function of a single particle’s coordinate (denoted as x and y) with other particle
coordinates fixed on a sample. All potentials are normalized via an overall shift so that the minimum value is zero. White circles in
the error plot indicate samples from the learned system projected onto the xy plane.
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Figure D3. A system of N= 5 soft-sphere particles in an anharmonic trap: moments. All components of the covariance matrix
over time for the circular trap motion. The learned system and the stochastic system agree well, while the noise free system
underestimates the moments.
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Figure D4. A system of N= 5 soft-sphere particles in an anharmonic trap: moments. All components of the covariance matrix
over time for the linear trap motion. The learned system and the stochastic system agree well, while the noise free system
underestimates the moments.
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