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CrossMark
Abstract
The optimal fluctuation method—essentially geometrical optics—gives a
deep insight into large deviations of Brownian motion. Here we illustrate this
point by telling three short stories about Brownian motions, ‘pushed’ into a
large-deviation regime by constraints. In story 1 we compute the short-time
large deviation function (LDF) of the winding angle of a Brownian particle
wandering around a reflecting disk in the plane. Story 2 addresses a stretched
Brownian motion above absorbing obstacles in the plane. We compute the
short-time LDF of the position of the surviving Brownian particle at an
intermediate point. Story 3 deals with survival of a Brownian particle in
1 4+ 1 dimension against absorption by a wall which advances according to
a power law xy (#) ~ 7, where v > 1/2. We also calculate the LDF of the
particle position at an earlier time, conditional on the survival by a later time.
In all three stories we uncover singularities of the LDFs which have a simple
geometric origin and can be interpreted as dynamical phase transitions. We
also use the small-deviation limit of the geometrical optics to reconstruct the
distribution of typical fluctuations. We argue that, in stories 2 and 3, this is the
Ferrari—Spohn distribution.

Keywords: Brownian motion, large deviations, dynamical phase transitions,
optimal fluctuation method

(Some figures may appear in colour only in the online journal)

1. Introduction

Large deviations of many stochastic systems can be accurately described by the optimal fluc-
tuation method (OFM). This method is based on a saddle-point evaluation of the properly
constrained path integral of the stochastic system. It leads to a variational problem, where we
should minimize a ‘classical action’ of the system over possible trajectories. When applied
to Brownian motion, the OFM becomes geometrical optics [1-5]: an efficient, intuitive and
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easy-to-use framework for studying a whole class of systems, where additional constraints
‘push’ the Brownian motion into a large-deviation regime. In our recent works [4, 5] we
employed the geometrical optics for studying different large-deviation statistics of Brownian
excursions in 1 + 1 dimension, conditioned to stay away from rapidly swinging walls. Here
we illustrate the versatility and simplicity of the geometrical optics by telling three short
stories about constrained Brownian motions. In two of the stories we extend this approach to
2 + 1 dimensions.

Story 1 revisits the classical problem of the statistics of the winding angle of a Brownian
particle, wandering around a reflecting disk in the plane [1, 6, 7]. We focus on the short-time
statistics, which turn out to be very different from the (much better known) long-time statistics.

Story 2 was inspired by a recent work of Nechaev et al [8]. It deals with a stretched
Brownian motion above an absorbing disk, and absorbing obstacles of other shapes, in the
plane. We compute the short-time large deviation function (LDF) of the position, at an inter-
mediate point, of the Brownian particle which has not been absorbed by the disk. We also
obtain the distribution of typical fluctuations, by mapping this model to the Ferrari-Spohn
model [9] which describes a Brownian bridge in 1 + 1 dimension conditioned on avoiding
absorption by a swinging wall. Moreover, we discuss an extension of our results to barriers
of other shapes.

In story 3 we return to 1 4 1 dimensions, evaluate the (exponentially small) survival prob-
ability of a Brownian particle against absorption by a wall which advances toward the particle
faster than /7, and compare our results with existing ones. In addition, we calculate the LDF
of the particle position at an earlier time conditional on the survival by a later time.

In all three stories we uncover singularities of the LDFs, which have a simple geometric
mechanism and can be interpreted as dynamical phase transitions of different orders. Using
the small-deviation limit of our results and additional arguments, we reconstruct the distribu-
tion of fypical fluctuations (which are normally out of reach of the OFM). Remarkably, in
stories 2 and 3, the same (Ferrari—-Spohn [9]) distribution emerges in spite of the different
spatial dimensions.

The starting point of our calculations is the probability of a Brownian path x (z), which is
given, up to pre-exponential factors, by the Wiener’s action, see e.g. [10]:

1 [,
—mP=S=— [ %dr. 1
. 41)/0X M

The geometrical optics emerges from a minimization of the Wiener’s action (1) over trajec-
tories x (#) subject to problem-specific constraints. In more than one spatial dimension, the
action (1) is minimized by a motion with constant speed, |X| = const, along the shortest path
obeying the additional constraints. The action along such a path is

1 (T/c\? L2
= — o = —— 2
S 40/0 <T> 4= 1pr @

where L is the path’s length. The problem therefore reduces to minimizing £ under the addi-
tional constraints. Now we begin the first story.

2. Story 1: winding angle distribution

Suppose that a Brownian particle is released at t = 0 at a distance L from the center of a
reflecting disk with radius R < L in the plane. What is the probability distribution of the wind-
ing angle © of the particle around the disk at time 7, see figure 1(a)? This problem was studied
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Figure 1. (a) A realization of a Brownian motion in the plane outside a reflecting disk
with radius R. We study the distribution of the winding angle ©. The optimal paths
conditional on the winding angle © are shown in the subcritical (b) and supercritical (c)
regimes. At © = O, a second-order dynamical phase transition occurs, corresponding
to a jump in the second derivative of the rate function g (©).

in [1, 6, 7] which focused on the long-time limit, where the characteristic diffusion length
(DT)"? is much larger than both R and L, and © is not too large. In this limit the distribution
of © becomes independent of L and is described by the formula

X 2

PO®)=—F5">——, where x=—17-.
©) 4 cosh? (mx©/2) X In 46T 3

Here we are interested in the opposite, short-time limit, (DT) 12 « R,L — R, where a sizable
winding angle is a large deviation, and geometrical optics is perfectly suitable for its descrip-
tion!. As we will see shortly, the probability distribution P(©, T) in this limit is quite different.

In order to minimize the Wiener’s action, the Brownian particle must go with a constant
velocity along the shortest path. Because of the symmetry © +» —© it suffices to consider
0 < ® < oo. For sufficiently small ©, the shortest path is given by the perpendicular from
the initial point (r = L,6 = 0), to the ray § = ©, see figure 1(b). The length of this path is
Lsin O, and equations (1) and (2) yield

[?sin’ ©

4DT
This simple result, however, is valid only when © is less than a critical value ©, = arccos (R/L),
for which the geodesic is tangent to the disk. For © > ©, the optimal path is given by the tan-
gent construction of the calculus of one-sided variations [18]. The optimal path now consists
of two parts: the tangent to the disk, and the arc ©, < 6 < O along the disk circumference,
see figure 1(c). The total length of this path is Lsin ©, + R (© — ©.), and equations (1) and
(2) yield

—InP ~ )

[Lsin®, +R(© —6,)]

—InP~ 5
o 4DT ©)
Overall, equations (4) and (5) can be written as
flnPwR—2 @6 VDT < R,L—R 6
T ADT L)’ ’ ’ (6)

! The geometrical optics was used in [1] to describe the limit of tight entanglement of a polymer around a disk.
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Figure 2. The second-order dynamical phase transition in the winding angle
distribution at short times. Shown is the rate function g (©,R/L), see equation (6),
versus the winding angle © for L/R = 1.2 (left panel) and L/R = 3 (right panel). The
transition point ©, = arccos (R/L) is indicated by the fat point. On the right panel the
rate function is nonconvex on the interval 7/4 < © < 0.

with the rate function

w2sin’ @, |©] < arccosw, (7)

O,w) = 2
8(6:w) (\@\ +/I/wr=1- arccosw) , |©| = arccosw, (8)

and 0 < w < 1. The rate function g (6, w) is continuous with its first derivative with respect to
©. However, its second derivative with respect to © has a jump at © = arccos w, which can
be interpreted as a second-order dynamical phase transition, see figure 2. The mechanism of
this transition is purely geometrical. The sharp transition appears only in the limit of 7 — 0.
It is smoothed at finite 7, and it disappears at large 7, where the distribution (3) is observed.

Notice that, for L/R > /2, the rate function g (©, R/L)is nonconvex, that is 8*g/96? < 0,
for the winding angles 7/4 < © < arccos(R/L), as is evident in the right panel of figure 2.
This is one of the rare occasions when a LDF is not convex. For 1 < L/R < /2 the rate func-
tion is convex at all ©.

In principle, the distribution P (©) can be found exactly from the solution of the diffu-
sion equation subject to the reflecting boundary condition on the disk and a delta-function
initial condition. The exact expressions for this distribution, obtained in [1, 6], involve triple
integrals of combinations of Bessel functions and trigonometric and/or exponential functions.
Extracting asymptotics of these expressions is not a simple task, especially when compared
with the elementary calculations we have just shown. The authors of [1] succeeded in this task
in the long-time limit and, in particular, arrived at the asymptotic result (3). It would be inter-
esting to extract the short-time asymptotic (6), including its singularities at © = +0,, from
one of the exact expression of [1, 6].

3. Story 2: stretched Brownian motion

3.1 Large deviations above a disk

Here we again consider a Brownian motion around a disk of radius R in the plane, but this
time the disk is absorbing. The Brownian particle starts at a point which is infinitesimally to
the left of
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Figure 3. (a) A realization of the Brownian motion in 2 4 1 dimensions which exits the
point (—R,0) and is conditional on reaching the point (R, 0) and avoiding absorption
by a circular wall of radius R. We study the distribution of Y, the y coordinate of the
Brownian motion at x = 0. (b) The optimal path constrained on the value of Y.

x(t=0)=—R, y(t=0)=0 ©)]
and is constrained on arriving at the point
x(t=T)=R, yt=T)=0 (10)

and avoiding being absorbed by the disk, see figure 3(a). What is the distribution of the y-coor-
dinate of the particle at x = 07 This question has been recently posed, in a slightly different
setting?, by Nechaev et al [8].

The distribution P (¥, T) can be expressed as an infinite series, where each term involves
a double integral of a combination of Bessel functions and trigonometric and/or exponential
functions [8]. Instead, we will evaluate P (Y,T) in the short-time limit 7 < R*/D, where
the geometrical optics can be used’. In this limit, the conditional probability P is given by
the ratio of the probabilities of two different optimal paths: with and without the constraint
Y =y(x=0), and —In P scales as

2
—InP(Y,T) ~ ZI;—TS (;) (11)

For definiteness we only solve for Y > 0, so the optimal paths lie in the half-plane y > 0.
The unconstrained path simply follows the wall, and its length is wR. The constrained path
includes two tangents from the point (x = 0,y = Y) to the circle, see figure 3(b). The total
length of this path is

Y2 _R?
2 l\/ Y2 — R?2 + Rarccos ( >

Y2

Using equation (2), we calculate the difference of the Wiener actions evaluated on the two
paths. The result yields the large-deviation function s in equation (11):

2 The setting of [8] involves only the upper half plane, and the absorbing boundary also includes the two half-lines
|x| > R, y = 0. The difference between the two settings turns out to be inconsequential up to a normalization

factor 2.

3 Nechaev et al [8] imposed an additional scaling T ~ R. Here we do not impose any extraneous scaling of 7 with R
and only assume DT < R?.
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2
2_1 2
S(Z)ZZl Z2—1+arccos< Zzz >1 _%_ (12)
The asymptotic behaviors of s are
f(0) = M%(Zz_l)m—3‘/55”(Z—1)5/2+l§(z—1)3+..., —l<l,
WG 2t 2> 1.
(13)

As a result, the near tail of the distribution, (DT)%¥YR'/> < h < R (where h=Y — R) is a
stretched exponential with power 3/2:

zﬁﬂ_Rl/Zh3/2>

3DT (14

P (h) ~ exp <—
The characteristic decay length b of the distribution scales as b ~ (DT)?/3R~'/3, that is
h/R ~ (DT/R?)*/? < 1. The correlation length £, along the x axis can be estimated by evalu-
ating the x coordinates of the points of tangency on the optimal path for (the near tail of)
typical fluctuations, & ~ b. The result is £, ~ (RDT)'/3, or £./R ~ (DT/R*)'/> < 1. The
ensuing scaling relation £, ~ (Rb) 1/2 coincides with that obtained, from simple arguments, by
Nechaev et al [8] for T ~ R. Here we established it for any DT < R?.

3.2. Typical fluctuations above a disk and a mapping to the Ferrari-Spohn model

We now wish to extend our results to the regime of typical fluctuations, where the geometrical
optics approximation breaks down. In order to do so, we first present a different, 1 + 1 dimen-
sional model due to Ferrari and Spohn (FS) [9]. They studied the statistics of the position,
at an intermediate time 7 = 7, of a Brownian bridge x (), when the process is constrained
on staying away from an absorbing wall, that is x (¢) > xy(#), where x,(7) is a semicircle,
xw(t)=C (T2 - t2) 172 They also extended their results to other concave (that is, convex
upward) functions. FS proved that at T — oo, typical fluctuations of AX=x (1) — xy, (7)
away from the moving wall obey a universal distribution which depends only on the second
derivative X, (7)*. This universal distribution can be represented as

P(AX) = bAi* ({AX +a)), (15)
where Ai (... ) is the Airy function, a; = —2.338107..... is its first zero, and ¢ = [k, (1) /
(ZDZ)] 13 By using the normalization condition fooo P (AX)dAX = 1, we obtain:

1 ¢
AR (@) + LAX)AAX AV (@)

(16)

where Ai’ is the derivative of the Airy function with respect to its argument. The tail /AX > 1
of the FS distribution (15) can be obtained by taking the z — oo asymptotic of Ai (z):

P (AX) exp [—263/2 (AX)3/2] . (17)

b
CAmVIAX

* Large deviations in the FS model and in its extensions were studied in [5].
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The scaling form of our near-tail result (14), a stretched exponential with power 3/2, coincides
with that of the asymptotic (17). This suggests that, in the regime of typical fluctuations, the
two models should be related®. Indeed, we now present an argument which establishes a for-
mal mapping between the two models.

Even when considering, at short times DT < R?, typical fluctuations 2 < R in the y-direc-
tion, the stochastic process x(z) is still pushed, by the constraints (9) and (10), into a large-
deviation regime in the x-direction. We can therefore approximate the stochastic particle
coordinate x (¢) by its (deterministic!) optimal-path counterpart

x(t) = —Rcos (%) (18)

which, in the leading order, is unaffected by Y. As a result, the stochastic process y (7) is effec-
tively described by a Brownian excursion in 1 4+ 1 dimensions, constrained by the condition
v (1) > yw (t), where

Y (1) = /R — %2 (1) = Rsin (”7[) (19)

is the location of an effective moving wall, which is concave. The temporal boundary condi-
tions are y (0) = y (T) = 0, and we are interested in the distribution of

Y-y(x-O)-y(t—g). (20)

In this formulation the problem is identical to that of [9]. Therefore, the distribution
P (h) of typical fluctuations of 7 =Y — R coincides with the FS distribution (15) with

0= [-9(T/2)/ (2D?)] '3 For the wall function (19), this is

2/3

and b={/[2Ai (a;)?] is found from the normalization condition [ P(Y)dy =
f__oli P(Y)dY = 1/2. As to be expected, ¢ ~ 1/bh. It is remarkable that one can establish a
mapping between two systems in the regime of their typical fluctuations by using a large-
deviation technique such as the OFM. The reason is the above-mentioned scale separation,
guaranteed by the strong inequality & < R. This scale separation leads to the existence of a
joint validity region (the near tail of the distribution) of the FS distribution and of the large-
deviation tail. As a result, the distribution P(Y, T) is now known for any ¥ > 0.

Nechaev et al [8] evaluated numerically an approximate analytic expression for P (Y, T)
for one set of parameters®. They treated £ and b as adjustable parameters and reported a very
good agreement, in the region of typical fluctuations, between P (Y, T) and the FS distribu-
tion (15). Here we have presented an analytic argument which establishes a formal map-
ping between the two models and provides analytic predictions for ¢ and b. We checked our
predictions for the set of parameters D =1, R= 100 and T = 10, used in figure 5(b) of [8].
Equation (21) yields ¢ = 0.0790. . ., which is within 2.5% from their fitted value 0.0811.

3 Numerical evidence for the existence of such a relation already exists [8], see below.

Nechaev et al [8] assumed that the Brownian particle arrives at the point (0, Y) at time 7/2. This simplifying
assumption agrees with our argument that x(r) can be replaced by its deterministic counterpart (18), but it is an
approximation. An exact numerical evaluation would use an exact expression for P (Y, 1) for arbitrary arrival time
ty at the point (0, Y) and averaging over all arrival times 0 < 7o < T.

7
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In the large-deviation regime, where % is of order R or larger, the mapping between the
2 + 1 dimensional model and the FS model is no longer valid. This can be seen by comparing
our result (12) for the 2 + 1 dimensional model with the corresponding large-deviation result
for the FS model [5]. This situation, where two models belong to the same universality class
in the regime of typical fluctuations, but not for large deviations, is common. For example,
typical one-point height fluctuations in the Kardar—Parisi-Zhang (KPZ) equation in 1 + 1
dimension, at long times and for ‘droplet’ initial condition, are distributed according to the
same Tracy—Widom distribution that describes typical fluctuations of the largest eigenvalue
of the Gaussian unitary ensemble of random matrices [11]. This universality, however, breaks
down for large deviations. Indeed, the large deviations of height in the KPZ equation at long
times [12, 13] are very different from those observed in the random matrices [14—17].

3.3. Generalizing to barriers of other shapes

Now let us go back to equation (14) for the near tail of the distribution P(%) and generalize it
by considering a whole family of convex obstacles which behave as

yx)=R—alx*+..., A>1, (22)
in a small vicinity of x = 0. For sufficiently small / the tangency points
Rl/A
SEPYPST )
are within the applicability region of equation (22), and we obtain
~InP (h) ~ ’\zﬁo‘%hzxiq (24)

@A—1)(A— 1)~ DT

where L is the obstacle’s perimeter (which would be equal to 7R for the semi-circle). The near
tail is a stretched exponential which continuously depends on A: it changes from an exponen-
tial tail at A = 1 (a triangular obstacle) to a Gaussian at A — oo (a locally flat obstacle). The
characteristic decay length b and the correlation length ¢, scale as

A 1
DT \ > DT \ B
~ ~ _— . 25
" (aiﬁ) and e <042£> 2

When A varies from 1 to infinity, the scaling of b with T varies from 7 to T2, If the obstacle
can be characterized by a single length scale R, then

A
b~ (DTR3)7T and t~ (DTRA=3) ™1 (26)

Notice the change in the character of the R-dependence of £, at A = 3/2.

By analogy with the circular obstacle, we can map the 2 + 1 dimensional problem, in the
regime of typical fluctuations, to a 1 + 1 dimensional model which extends the FS model by
considering more general local power-law behaviors of the moving wall. The x-coordinate of
the optimal trajectory behaves as x (f) ~ v (t — 7) 4 ... where v = £/T is the constant veloc-
ity along the trajectory, and 7 is the time at which the optimal trajectory crosses x = 0 (for a
symmetric obstacle y (x) =y (—x) this would be 7 = T/2). As a result, the obstacle (22) is
mapped to an effective moving wall
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Figure 4. The optimal paths for the slightly generalized problem, where the initial
point is (—L, 0), in the subcritical (a), and supercritical (b) regimes. At the critical Y a
second-order dynamical phase transition occurs, corresponding to a jump in the second
derivative of the large deviation function s(z, L/R) with respect to z.

A

Ll-7) +.... (27)

yw(t)=R—« T

The near tail of the FS model with such a wall was calculated in [5], and can be used to
reproduce our result (24), see the appendix. We leave the calculation of the full distribution of
typical fluctuations for this family of walls to future work.

3.4. Dynamical phase transition

Now let us return to large deviations of Y for the semicircular obstacle and briefly discuss a gen-
eralization of this problem, where the starting pointis movedto x (t = 0) = —L, y (t = 0) = 0.
Because of the additional length scale L, equation (11) gives way to

—lnP(Y,T) ~ R—zs (Y,L> . (28)
2DT \R' R

AtY < Y. = RL/VL* — R?, the optimal path is given by a tangent construction, see figure 4.

However, at Y > Y, the part of the optimal path, going from the point (—L, 0) to the point (0, Y),

is just a straight line. As a result, a dynamical phase transition, corresponding to a singularity

of the large deviation function s (z, L/R) as a function of z, occurs at z = Y. /R = L/v/L* — R.

This transition is of the second order.

4. Story 3: particle survival against an invading wall
In story 3 we suppose that a Brownian particle is released at # = 0 at x = L > 0, whereas an
absorbing wall, initially at x = 0, is moving to the right according to a power law

x (1) = C17, (29)

where v > 0 and C > 0 is a dimensional constant. Our first question about this system is: What
is the probability that, at long time, the particle has not yet been absorbed, see figure 5(a)?
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(a) (b) (c)

o

Figure 5. (a) Particle survival in the presence of a moving wall xy, (1) ~ /3. (b) The
optimal path for x (f) ~ f*/3 coincides with the wall function, x (¢) = xy, (). The
extremal of the problem without the wall constraint (dotted) violates the constraint
x(f) > xy (#) and is therefore not allowed. (c) The optimal path for x, (f) ~ 3/ is of
constant velocity.

Mathematicians dealt with this question extensively (see [19] and references therein). The
answer strongly depends on ~y. For v < 1/2 the survival probability decays with T as a power
law [19, 21-23]. The special case of v = 1/2 was solved in [19, 20]; this solution was redis-
covered in [21-23]. Here we will only be concerned with v > 1/2, when the long-time sur-
vival probability of the particle is exponentially small’. The case 1/2 < « < 1 follows from a
theorem due to Novikov [19]. Here we show how to reproduce it in a one-line calculation by
using the geometrical optics. We will also consider the case v > 1. Then we will ask an addi-
tional question about this system, which to our knowledge has not been addressed previously.

To evaluate the survival probability of the particle at v > 1/2, we should minimize
the action (1) under a constraint that the particle stays away from the wall. At long times,
xw(T) > L, L becomes irrelevant for the purpose of evaluating In P, so the initial condition
x(0) can be set to be infinitesimally close to 0. As in stories 1 and 2, this too is a problem
of one-sided variations. For 1/2 < « < 1, see figure 5(b), the extremal of the unconstrained
problem, x (¢) = xy, (T)t/T, violates the constraint and therefore is not allowed. The con-
strained minimum is achieved when the optimal path x (¢) coincides with the wall function
Xw (1), and equation (1) yields the particle survival probability

1 T
—InP~— 02 .
n 1 /0 X, (t)dt (30)

In fact, equation (30) holds for a whole class of concave (convex upwards) wall functions, like
those shown in figure 5(b). Furthermore, equation (30) is in perfect agreement with theorem 2
of [19], where it was obtained by a different, and more complicated, method. For the power-
law wall (29) equation (30) yields

,7/2 C2 T2fy —1 1

— <<l 31)

—InP~ ————,
4aD(2yv—-1)" 2

For v > 1 the extremal of the unconstrained problem, x (t) = x,, (T) t/T, stays away from
the wall for all 0 < ¢ < T, see figure 5(c), and provides the desired minimum of the action. In
this case equation (1) yields

C2T2'yfl
—lnPf:74D , y>1. (32)

7 The particular case v = 1is exactly soluble for all times [23], and we will comment on it shortly.

10
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Figure 6. The function f(~) which describes the survival probability, see equation (34).
This result can be generalized to a whole class of convex, %, (f) > 0, wall functions:

2
—InP~ () .
4DT

As one can see, the probability distribution depends (up to pre-exponential factors) only on the
wall position at the final time, but not on the wall history. This fact, although striking in itself,
is very intuitive within the geometrical optics framework, see figure 5(c).

Equations (31) and (32) can be written as

(33)

Cfra!

2
Je <
,lanT, where f("y){Z'y—]» 1/2<y<1,

34
1, vz L 69

In contrast to stories 1 and 2, where the geometrical optics gave short-time asymptotics of the
desired statistics, equation (34) is accurate at long times. As we see, for all v > 1/2 the sur-
vival probability (34) is described by a stretched exponential of time with the power 2y — 18,
but the function f(-y) is non-analytic, see figure 6. It is continuous together with its first deriva-
tive, but its second derivative has a jump at v = 1, that is when the absorbing wall moves
with a constant speed C. The latter case is soluble exactly for any 7 > 0 [23]. The long-time
asymptotic of the exact survival probability is [23, 24]

P~ 4 L D e_% (35)

~ V7w /DT C*T '

The geometrical-optics result (34) for v = 1 agrees with equation (35) up to pre-exponential
factors in (35). This example is instructive, as it shows an intrinsic limitation of the geometri-
cal optics: the pre-exponential factors L/ /DT and D/(C*T) are both very small (and therefore
interesting), but they are missed by the geometrical optics.

Motivated by [5, 9], we now ask an additional question. Given that the particle has not
been absorbed until time 7, what is the distribution P (X, 7, T) of its location X = x (¢t = 1)
at an earlier time 77 As in [5], we should first find the optimal path constrained on both
nonabsorption, x (f) > xy (¢) and on the value of X. Let us again consider the wall functions
xw (1) = C17, for1/2 < v < 1. At long times, the distribution has the scaling form

T (X 7

8 The power 2 — 1 was predicted in [23], see equation (4.8.1) there.
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Figure 7. The optimal path constrained on survival up to time 7 and on the location X
at an earlier time 0 < 7 < T in the (a) subcritical (b) first supercritical and (c) second

supercritical regimes for x,, (f) ~ /3. The boundaries between the subcritical and
first supercritical regimes and between the first and second supercritical regimes are
dynamical phase transition lines of third and second order, respectively.

where the large-deviation function S is given by the difference between the actions (1) evalu-
ated on the optimal path and on the wall function [5]. One should distinguish between three
regimes. At subcritical X,

Cr' < X < xe = CT? (177+777),
the optimal constrained path x (7) is given by constructing two tangents from the point (7, X)
to the graph of the wall function x,, (¢), see figure 7(a). In the first supercritical regime,

X1 KX <x =CT7,

the first segment of the optimal path, 0 < ¢ < 7, is given by the same tangent construction as
in the subcritial regime, while the second segment becomes of constant velocity:

(t—71)(CTY = X)
T—1

see figure 7(b). In the second supercritical regime, X > x.,, the particle stops after reaching

x =X, see figure 7(c). The dynamical phase transition at X = x.; is third order (as in [5]),

whereas the transition at X = x., is second order.

One can calculate the action and the probability distribution (36), by using equations (1)
and (32) and the optimal paths that we have just found. We do not show here cumbersome
formulas for the resulting large deviation function of X, but we present the near tail of the
distribution:

x(t) =X+ , T<t<T, (37)

2y/2y(1—7)Ci73"!
—InP(X,7) ~ il 3g)c ’ (X —cr)*/?, X-Cr<or.
(38)

This tail is mostly contributed to by a small vicinity of the measurement time 7, so it is inde-
pendent of T. Because of this crucial property, the typical fluctuations of X,

2/3
C:D
XCH~< 71> , (39)

T2

which are generally beyond the accuracy of the OFM, should obey the FS distribution [9],
which we already encountered in story 2. That is,
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kAL [k (X — CT) + ay)

P(X,T)~ NG (a1)2

& ()] _[1 (=) e )
where K = [ D2 ] =" p .
(40)
As a check, we compared the right hand side of equation (38) with the expression in the expo-
nent of the x (X — C77) > 1 asymptotic of the FS distribution (40). They perfectly agree.

In the very far tail of the distribution, X > CT", the optimal path is simply

X
x(t):{’r, 0<r<T,

X, 7<t<T. “41)

As a result, the very far tail is a simple free-particle Gaussian —In P ~ X?/ (4D7), and the
wall has no effect in the leading order, as to be expected.

5. Discussion

We hope that these three short stories clearly demonstrated the advantages of geometrical
optics for evaluating the statistics of Brownian motions, pushed into a large deviation regime
by constraints. One of the advantages of the geometrical optics is the knowledge of the opti-
mal path of the Brownian particle, conditioned on a specified large deviation. The optimal
path language explains in a transparent way why strongly constrained Brownian motions often
display dynamical phase transitions. These come from geometric shadows: either in the con-
figuration space as in stories 1 and 2, or in space-time as in story 3 (see also [4, 5]).

The Ferrari—Spohn (FS) distribution features prominently in the regime of typical fluctua-
tions in stories 2 and 3. While story 3 is very similar to the original context (escape from a
swinging wall) in which the FS distribution was first encountered [9], the emergence of the
FS distribution in story 2 is remarkable. We presented an argument where, exploiting a scale
separation, one can replace one stochastic coordinate [in our case x (¢)] by its deterministic
optimal path counterpart. It would be very interesting to try and implement this argument in
additional, more complicated multidimensional problems where a scale separation is present.
In any case, it appears that the FS distribution applies in more general settings than the swing-
ing wall setting [9] in which it was originally observed. The optimal path language gives a
visual explanation of the universality of the FS distribution in terms of the locality of the
constrained optimal path. Additional indications of the universality come from mathematical
literature [25-28].

The large-deviation (or rate) functions g in equation (6), s in equation (11) and S in equa-
tion (36) are not affected by the boundary conditions on the wall: they are the same for absorb-
ing and reflecting walls. The effect of the type of the boundary condition is much stronger in
the regime of typical fluctuations.

The geometrical optics misses pre-exponential factors that can be interesting. A natural
next step is to capture these factors by performing a saddle-point evaluation of the properly
constrained path integral of the Brownian motion beyond the leading order.

Among potential important applications of geometrical optics of Brownian motion is the
rate theory of biochemical processes. In many biological systems, there is a very large number
of ‘searchers’ (signal molecules, sperm cells, etc) which ‘compete’ for a single target cite (a
cell surface receptor, an oocyte, etc). This huge redundancy is apparently exploited by nature
in order to reduce the search time [3, 29]. As a result, the arrival of the first among the very
many searchers to the target is unusually fast and can be analyzed by using geometrical optics

[3].
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Appendix. Mapping to the Ferrari-Spohn model for generalized parabolas

In [5] we studied large deviations in the FS model over a time interval |¢| < T with general
convex wall functions

xw (1) =CT7g (¢/T). (A.1)
We showed there that the distribution of X = x(7) scales, in the large-deviation regime, as
et (X o7
-1 X7, T)> ——s | —., = | . .
nP (X,7.T) ) S(CTv’T> (A2)
For rescaled wall functions
t R
LI H , A3
& (T) T (A3
with A > 0, we found the large-deviation function s exactly. At1 < X < A itis given by [5]
NOA—1) [X—1\
1<X<\)= — — . A4
s(1< )= <)\1) A

This regime includes the regime of interest to us here, which is the near tail of the distribution
AX = X — 1 < 1. Using equations (A.2) and (A.4), we obtain the near tail

22—1

C’T=1 X2 (A —1) AX X (A5)
D 2 -1 |(A—1)CT '

—InP(X,T) ~

In fact, equation (A.5) holds for all (convex) rescaled wall functions whose behavior in the
vicinity of t = 7 is

()-n-

for arbitrary 7 and arbitrary go > 0. We now rewrite the effective wall function (27) in the
R

form
A
yw (1) = aL <w_ +> (A7)

This corresponds to equation (A.1) with C = a£* and = 0. Plugging these parameters into
equation (A.5), it is straightforward to see that the resulting distribution coincides exactly with
our equation (24).

A
+..., (A.6)

t—T

T

-7
T

14



J. Phys. A: Math. Theor. 52 (2019) 415001 B Meerson and N R Smith

ORCID iDs

Baruch Meerson © https://orcid.org/0000-0002-6709-8140

References

[1] Grosberg A and Frisch H 2003 J. Phys. A: Math. Gen. 36 8955
[2] Ikeda N and Matsumoto H 2015 Memoriam Marc Yor—Séminaire de Probabilités XLVII (Lecture
Notes in Mathematics vol 2137) ed C Donati-Martin et al (Cham: Springer) p 497
[3] Basnayake K, Hubl A, Schuss Z and Holcman D 2018 Phys. Lett. A 382 3449
[4] Meerson B 2019 J. Stat. Mech. 013210
[5] Smith N R and Meerson B 2019 J. Stat. Mech. 023205
[6] Rudnick J and Hu'Y 1987 J. Phys. A: Math. Gen. 20 4421
[7] Saleur H 1994 Phys. Rev. E 50 1123
[8] Nechaev S, Polovnikov K, Shlosman S, Valov A and Vladimirov A 2019 Phys. Rev. E 99 012110
(arXiv:1805.05014)
[9] Ferrari P L and Spohn H 2005 Ann. Probab. 33 1302
[10] Majumdar S N 2006 Brownian functionals in physics and computer science The Legacy of Albert
Einstein ed S R Wadia (Singapore: World Scientific) ch 6 pp 93—-129
[11] Spohn H 2015 Stochastic Processes and Random Matrices (Lecture Notes Les Houches Summer
School vol 104) ed G Schehr et al (Oxford: Oxford University Press) p 177
[12] Le Doussal P, Majumdar S N and Schehr G 2016 Europhys. Lett. 113 60004
[13] Sasorov P V, Meerson B and Prolhac S 2017 J. Stat. Mech. P063203
[14] Dean D S and Majumdar S N 2006 Phys. Rev. Lett. 97 160201
[15] Dean D S and Majumdar S N 2008 Phys. Rev. E 77 041108
[16] Majumdar S N and Vergassola M 2009 Phys. Rev. Lett. 102 060601
[17] Majumdar S N and Schehr G 2014 J. Stat. Mech. P01012
[18] Elsgolts L 1977 Differential Equations and the Calculus of Variations (Moscow: Mir Publishers)
p 360
[19] Novikov A A 1981 Math. USSR Sb. 38 495
[20] Sato S 1977 J. Appl. Probab. 14 850
[21] Krapivsky P L and Redner S 1996 J. Phys. A: Math. Gen. 29 5347
[22] Redner S and Krapivsky P L 1999 Am. J. Phys. 67 1277
[23] Redner S 2001 A Guide to First-Passage Processes (Cambridge: Cambridge University Press)
[24] Errata to [23]: (http://tuvalu.santafe.edu/~redner/projects/1st-passage/errata/errata.pdf)
[25] Ioffe D, Shlosman S and Velenik Y 2015 Commun. Math. Phys. 336 905
[26] Ioffe D, Velenik Y and Wachtel V 2018 Probab. Theory Relat. Fields 170 11
[27] Ioffe D and Velenik Y 2018 Markov Process. Relat. Fields 24 487
[28] Caputo P, Ioffe D and Wachtel V 2019 Electron. J. Probab. 24 37
[29] Meerson B and Redner S 2015 Phys. Rev. Lett. 114 198101

15


https://orcid.org/0000-0002-6709-8140
https://orcid.org/0000-0002-6709-8140
https://doi.org/10.1088/0305-4470/36/34/303
https://doi.org/10.1088/0305-4470/36/34/303
https://doi.org/10.1016/j.physleta.2018.09.040
https://doi.org/10.1016/j.physleta.2018.09.040
https://doi.org/10.1088/1742-5468/aafa81
https://doi.org/10.1088/1742-5468/ab00e8
https://doi.org/10.1088/0305-4470/20/13/042
https://doi.org/10.1088/0305-4470/20/13/042
https://doi.org/10.1103/PhysRevE.50.1123
https://doi.org/10.1103/PhysRevE.50.1123
https://doi.org/10.1103/PhysRevE.99.012110
https://doi.org/10.1103/PhysRevE.99.012110
https://arxiv.org/abs/1805.05014
https://doi.org/10.1214/009117905000000125
https://doi.org/10.1214/009117905000000125
https://doi.org/10.1209/0295-5075/113/60004
https://doi.org/10.1209/0295-5075/113/60004
https://doi.org/10.1088/1742-5468/aa73f8
https://doi.org/10.1103/PhysRevLett.97.160201
https://doi.org/10.1103/PhysRevLett.97.160201
https://doi.org/10.1103/PhysRevE.77.041108
https://doi.org/10.1103/PhysRevE.77.041108
https://doi.org/10.1103/PhysRevLett.102.060601
https://doi.org/10.1103/PhysRevLett.102.060601
https://doi.org/10.1088/1742-5468/2014/01/P01012
https://doi.org/10.1070/SM1981v038n04ABEH001455
https://doi.org/10.1070/SM1981v038n04ABEH001455
https://doi.org/10.2307/3213358
https://doi.org/10.2307/3213358
https://doi.org/10.1088/0305-4470/29/17/011
https://doi.org/10.1088/0305-4470/29/17/011
https://doi.org/10.1119/1.19115
https://doi.org/10.1119/1.19115
http://tuvalu.santafe.edu/~redner/projects/1st-passage/errata/errata.pdf
https://doi.org/10.1007/s00220-014-2277-5
https://doi.org/10.1007/s00220-014-2277-5
https://doi.org/10.1007/s00440-016-0751-z
https://doi.org/10.1007/s00440-016-0751-z
https://doi.org/10.1214/19-EJP283
https://doi.org/10.1214/19-EJP283
https://doi.org/10.1103/PhysRevLett.114.198101
https://doi.org/10.1103/PhysRevLett.114.198101

	﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿Geometrical optics of constrained Brownian motion: three short stories﻿﻿﻿﻿
	﻿﻿Abstract
	﻿﻿﻿1. ﻿﻿﻿Introduction
	﻿﻿2. ﻿﻿﻿Story 1: winding angle distribution
	﻿﻿3. ﻿﻿﻿Story 2: stretched Brownian motion
	﻿﻿3.1. ﻿﻿﻿Large deviations above a disk
	﻿﻿3.2. ﻿﻿﻿Typical fluctuations above a disk and a mapping to the Ferrari﻿–﻿Spohn model
	﻿﻿3.3. ﻿﻿﻿Generalizing to barriers of other shapes
	﻿﻿3.4. ﻿﻿﻿Dynamical phase transition

	﻿﻿4. ﻿﻿﻿Story 3: particle survival against an invading wall
	﻿﻿5. ﻿﻿﻿Discussion
	﻿﻿﻿Acknowledgments
	﻿Appendix. ﻿﻿﻿Mapping to the Ferrari﻿–﻿Spohn model for generalized parabolas
	﻿﻿﻿﻿﻿﻿ORCID iDs
	﻿﻿﻿﻿﻿﻿﻿References﻿﻿﻿﻿


