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Structure of the optimal path to a fluctuation
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Macroscopic fluctuations have become an essential tool to understand physics far from equilibrium due to the
link between their statistics and nonequilibrium ensembles. The optimal path leading to a fluctuation encodes key
information on this problem, shedding light on, e.g., the physics behind the enhanced probability of rare events out
of equilibrium, the possibility of dynamic phase transitions, and new symmetries. This makes the understanding
of the properties of these optimal paths a central issue. Here we derive a fundamental relation which strongly
constrains the architecture of these optimal paths for general d-dimensional nonequilibrium diffusive systems,
and implies a nontrivial structure for the dominant current vector fields. Interestingly, this general relation (which
encompasses and explains previous results) makes manifest the spatiotemporal nonlocality of the current statistics
and the associated optimal trajectories.
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I. INTRODUCTION

Understanding the statistics of macroscopic fluctuations
in nonequilibrium systems remains as a major challenge of
theoretical physics. This interest is rooted in the prominent
role that fluctuations play in equilibrium, where their statistics
is directly linked to the relevant thermodynamic potentials via
the Einstein formula [1,2]. Similarly, it is nowadays expected
that a deeper understanding of nonequilibrium fluctuations will
pave the way to a sound definition of nonequilibrium potentials
[3–5], though we already know that these functions do typi-
cally have some striking features peculiar to nonequilibrium
behavior (as, e.g., nonlocal behavior leading to long-range cor-
relations). Among all possible observables that can be defined,
the currents of locally conserved quantities play a key role
as tokens of nonequilibrium physics, appearing in response
to any driving mechanism (as, e.g., a boundary gradient or
external field) pushing the system out of equilibrium. In this
way, the distribution of current fluctuations is a central object
of investigation, with the associated current large deviation
function (LDF) [6] acting as a marginal of the nonequilibrium
analog of thermodynamic potential.

In recent years, a macroscopic fluctuation theory (MFT)
has been formulated [3,7–10] to study dynamic fluctuations
in systems far from equilibrium, starting from a mesoscopic
description of the system of interest in terms of fluctuating
hydrodynamics [11–21]. Indeed MFT needs of only a few
transport coefficients which can be easily determined in ex-
periments or simulations. From this starting point, MFT offers
detailed predictions for the large deviation functions of interest
in terms of a complex spatiotemporal variational problem for
the locally conserved fields and the associated currents [3]. As
an interesting by-product, MFT also determines the optimal
path to a fluctuation from the solution of the Euler-Lagrange
equations for this variational problem. Understanding the
properties and spatiotemporal structure of these optimal paths
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is of paramount importance, as they contain information on
possible dynamic phase transitions appearing at the fluctuating
level [5,22–31], while their symmetry properties lead to new
fluctuation theorems [32–44].

The complexity of the MFT variational problem is such
that most studies to date have focused on the current statistics
of oversimplified one-dimensional (1d) transport models for
which the MFT problem is somewhat simpler, specially when
aided with the Additivity Principle [45–53]. Only very recently
MFT has been used to understand current fluctuations in more
realistic high-dimensional (d > 1) systems [5,31,39,54–57],
and these studies have unveiled a rich phenomenology which
only appears for d > 1, including hidden symmetries leading
to new fluctuation theorems [39], a weak generalization of
the Additivity Principle [56], and complex dynamic phase
transitions associated with competing emergent orders and
symmetry breaking phenomena [31]. Crucially, the richness
found in d > 1 stems in all cases from the relevance of
structured optimal current fields at the fluctuating level, a
common trait of all these new results [31,56,57]. In this
paper we show that structured optimal current fields are a
fundamental requirement of any high-dimensional fluctuating
theory, rather than a mathematical accident. In particular, a
simple calculation within MFT allows us to relate the Jacobian
matrix of the reduced optimal current field (to be defined
below) with the Hessian matrix of a response field which
guarantees that the continuity equation (expressing the local
conservation law) is fulfilled at all points of space and time.
A natural analyticity requirement for this response field then
leads to a strong condition on the reduced optimal current
field: in brief, the optimal current vector field is bounded to
exhibit nontrivial structure along the dominant direction in all
its orthogonal components, and this structure is coupled to
the optimal density field via the mobility transport coefficient.
This coupling is explicitly nonlocal in space and time, a main
feature of nonequilibrium physics. This result sheds new light
and encompasses all previous works on current fluctuations
in d > 1, opening the door to further developments in this
field.

To illustrate the meaning of the structure described above,
we show in Fig. 1 both the optimal density ρ(x) and
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FIG. 1. Optimal solution for the current vector field (a) and the
density field (b) and (c) associated with a given current fluctuation in
the 2d Kipnis-Marchioro-Presutti model of heat transport in contact
with two boundary thermal baths at temperatures ρ(x = 0) = ρ0 = 3
and ρ(x = 1) = ρ1 = 1 and no external field (in this model the locally
conserved density field is the energy). Gray lines in (a) depict both
local components of the optimal current vector field, while red arrows
show the resultant vectors. Note the nontrivial structure of the y

component of the current field along the gradient x direction, in stark
contrast with the constant, structureless current x component.

current vector fields associated with a particular (rare) current
fluctuation in a broadly studied driven diffusive system, the
two-dimensional Kipnis-Marchioro-Presutti (KMP) model of
heat transport in contact with two boundary thermal baths
located at x = 0,1 and no external field [56]. In this case, the
dominant direction of structure formation corresponds to that
of the temperature gradient, resulting in optimal density fields
with structure only along the x direction [Figs. 1(b) and 1(c)].
Consequently, the optimal current vector field exhibits a
nontrivial structure in its y component along the gradient x

direction, proportional to the local density field squared as
dictated by the KMP mobility transport coefficient, which is
simply σ (ρ) = ρ2. This structure of the current y component,
which contrasts with the constant structureless x component
[Fig. 1(a)], is the manifestation of a general theorem for driven
diffusive systems that we prove next.

II. MACROSCOPIC FLUCTUATION THEORY

To be more precise, we focus now on a broad class of d-
dimensional anisotropic driven diffusive systems characterized
by a density field ρ(r,t), with r ∈ � ≡ [0,1]d and t ∈ [0,τ ],
which represents any locally conserved observable as, e.g.,
a density of particles, energy, charge, etc. This density
field evolves in time according to the following fluctuating

hydrodynamics equation [3–5]:

∂tρ(r,t) + ∇ · (−D̂(ρ)∇ρ(r,t) + σ̂ (ρ)E + ξ (r,t)) = 0. (1)

The field ϕ(r,t) ≡ −D̂(ρ)∇ρ(r,t) + σ̂ (ρ)E + ξ (r,t) acts as a
fluctuating current, with E an external driving field. In this way
Eq. (1) is nothing but the continuity equation expressing the
local conservation law. The deterministic part of the current
field ϕ(r,t) is given by Fick’s law under external driving, where
D̂(ρ) ≡ D(ρ)Â and σ̂ (ρ) = σ (ρ)Â are the diffusivity and
mobility matrices, respectively, and Â is a diagonal anisotropy
matrix with components Âαβ = aαδαβ , α,β ∈ [1,d], which we
assume constant and independent of the local density. The
vector field ξ (r,t) is a Gaussian white noise term with zero
average, 〈ξ (r,t)〉 = 0, and variance

〈ξα(r,t)ξβ(r′,t ′)〉 = σ (ρ)

Ld
aαδαβδ(r − r′)δ(t − t ′),

with L the system size in natural units. This (conserved)
noise term accounts for the many fast microscopic degrees
of freedom which are averaged out in the coarse-graining
procedure leading to Eq. (1). Note that, at this mesoscopic level
of description, the diffusion and mobility transport matrices
fully characterize the dynamic and fluctuation properties of
the model at hand. In general, systems described in this way
are driven out of equilibrium by either (a) the action of the
bulk external field E, (b) a boundary gradient imposed by
appropriate boundary conditions on the density field (more
on this below), or (c) possibly by the combined action of
both (bulk + boundary) driving mechanisms. However, in
the absence of driving, we expect the system to relax to
equilibrium. In this case both transport coefficients cannot
be independent, being related via a local Einstein relation
D̂(ρ) = σ̂ (ρ)f ′′

0 (ρ), with f0(ρ) the equilibrium free energy
density of the system of interest and ′ denoting differentiation
with respect to the argument. Our results below can be,
however, easily generalized to more general theories violating
the previous condition.

Starting from the Fokker-Planck description of the
Langevin equation (1), and using a path integral represen-
tation, the probability of observing a particular trajectory
{ρ(r,t),j(r,t)}τ0 of duration τ for the density and current fields
can be written as [3–5]

P
({ρ,j}τ0

) ∼ exp(+LdIτ [ρ,j]), (2)

meaning that

lim
L→∞

1

Ld
ln P

({ρ,j}τ0
) = Iτ [ρ,j].

The action of Eq. (2) is

Iτ [ρ,j] = −
∫ τ

0
dt

∫
�

dr
1

2σ (ρ)
J (r,t) · Â−1J (r,t), (3)

with the definition,

J (r,t) ≡ j + D̂(ρ)∇ρ − σ̂ (ρ)E, (4)

and the additional constraint that the fields ρ(r,t) and j(r,t)
must be coupled via the continuity equation at every point of
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space and time [see Eq. (1)],

∂tρ(r,t) + ∇ · j(r,t) = 0. (5)

For trajectories {ρ,j}τ0 not obeying this continuity constraint
or the appropriate boundary conditions (which depend on
the particular problem at hand, see below), Iτ [ρ,j] → −∞.
Note that the field J (r,t) in Eq. (3) is nothing but the excess
current, i.e., the departure of the current vector field j(r,t) from
its constitutive form −D̂(ρ)∇ρ + σ̂ (ρ)E associated with the
coupled density field via Fick’s law under external driving.
Equation (3) and the associated definitions constitute the
fundamental formula of macroscopic fluctuation theory [3],
from which many important and general results can be derived,
valid arbitrarily far from equilibrium.

The probability Pτ (q) of observing a space- and time-
averaged empirical current q, defined as

q = 1

τ

∫ τ

0
dt

∫
�

dr j(r,t), (6)

can be now obtained by summing up the probability of
all trajectories {ρ,j}τ0 compatible with the constraint (6)
on the empirical current and the continuity constraint (5).
Mathematically,

Pτ (q) =
∫

DρDj P
({ρ,j}τ0

)
δ(∂tρ + ∇ · j)

× δ

(
q − τ−1

∫ τ

0
dt

∫
�

dr j
)

,

with the Dirac δ functionals guaranteeing the above con-
straints. We can now just use the Fourier-Laplace represen-
tation of these δ functionals, namely

δ

(
q − τ−1

∫ τ

0
dt

∫
�

dr j
)

=
∫

dλ e−Ldλ·[τq−∫ τ

0 dt
∫
�

dr j(r,t)],

δ(∂tρ + ∇ · j) =
∫
Dψ e−Ld

∫ τ

0 dt
∫
�

dr ψ(r,t)(∂t ρ+∇·j),

and the large deviation principle Eq. (2) to arrive at

Pτ (q) ∼
∫

Dρ DjDψ dλ exp(+LdIτ [ρ,j,ψ,λ]),

where the modified action reads

Iτ [ρ,j,ψ,λ] = −
∫ τ

0
dt

∫
�

dr
[

1

2σ (ρ)
J · Â−1J

+ψ(r,t)(∂tρ + ∇ · j ) + λ · [q − j(r,t)]
]
.

For long times and large system sizes, the probability of
observing an empirical current q peaks around the average
current 〈q〉 as Pτ (q) ∼ exp[+τLdG(q)], and the concentration
rate G(q) defines the current large deviation function. This is
a measure of the exponential rate at which the likelihood of
observing a current q 
= 〈q〉 decays as τ and L increase [note
that, consequently, G(〈q〉) = 0]. In this limit, the current LDF
can be written as

G(q) = lim
τ→∞

1

τ
max

{ρ,j,ψ,λ}τ0
Iτ [ρ,j,ψ,λ]. (7)

III. STRUCTURE OF THE OPTIMAL PATH

The set (ρq,jq,ψq,λq) of optimal fields which solve this
variational problem define the most probable path leading
to a current fluctuation q. Equations for these optimal fields
can be derived now by functional differentiation of the above
modified action. In particular, by varying over the density field,
ρ(r,t) → ρ(r,t) + δρ(r,t), we arrive at the following partial
differential equation:

∂tψq = H (ρq) − σ ′
q

2σ 2
q

jq · Â−1jq + σq

2
E · ÂE,

where we have defined

H (ρq) ≡ −
[
∇

(
D2

q

2σq

)
+ D2

q

σq
∇

]
· Â∇ρq,

with Dq ≡ D(ρq) and σq ≡ σ (ρq). Another equation is ob-
tained by varying over the current field, j → j + δj, leading to

J q = σ̂q(λq + ∇ψq), (8)

where J q = jq + D̂q∇ρq − σ̂qE is the optimal excess current
[see Eq. (4)]. Finally, variations over ψ and λ lead, respectively,
to the constraints (5) and (6) for the optimal density and current
fields, ρq(r,t) and jq(r,t).

Before continuing, we can now gain some insight on
the physical interpretation of λq and ψq by using the local
Einstein formula D̂q = σ̂qf

′′
0 (ρq) to write Fick’s law under

external driving as −D̂q∇ρq + σ̂qE = σ̂q[E − ∇(δF0/δρq)],
where F0(ρ) = ∫

�
dr f0(ρ) is the equilibrium free energy

functional of the system of interest. Using this in Eq. (8) we
find that

jq = σ̂q

[
(E + λq) − ∇

(
δF0

δρq
− ψq

)]
. (9)

In this way, λq and ψq(r,t) can be interpreted, respectively, as
the additional bulk field and boundary driving (i.e., chemical
potential) necessary to obtain the current field jq(r,t) within
Fick’s law under external driving. Alternatively, note also that
ψq is nothing but the (optimal) Legendre multiplier associated
with continuity equation, Eq. (5), and as such it is intimately
related to the noise field. Indeed, the field ψ selects those
noise realizations compatible with Fick’s law and the local
conservation law (this can be better seen in the Hamiltonian
formulation of the problem [30,58] where ψ plays the role of
the conjugate moment to the density).

Equation (8), or equivalently Eq. (9), sets strong conditions
on the structure of the optimal current field. In particular,
if we define now the reduced (optimal) excess current
χq(r,t) ≡ σ̂−1

q J q(r,t) and take its Jacobian matrix ∇χq, with
components (∇χq)αβ = ∂αχq,β , we have from Eq. (8) that
∇χq = ∇∇ψq, or, equivalently,

∂αχq,β = ∂α∂βψq. (10)

In words, the Jacobian matrix of the reduced (optimal) excess
current χq corresponds to the Hessian of the response field ψq
associated with the continuity equation (5). This observation
thus leads to the following strong result:
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Theorem. Let the response function ψq : �d × [0,τ ] → R
be a C2-class function of spatial coordinates, i.e., a function
twice continuously differentiable in its spatial domain. Then

∂β

(
jα,q

aασq

)
= ∂α

(
jβ,q

aβσq

)
∀ (r,t) ∈ �d × [0,τ ]. (11)

Proof. Schwarz’s theorem [59] states that if a function ψq
has continuous second partial derivatives at any given spatial
point in �d then its Hessian matrix is symmetric at this point,
∂α∂βψq = ∂β∂αψq. This immediately implies, via Eq. (10),
that the Jacobian of the reduced (optimal) excess current is
itself a symmetric matrix, i.e., ∂αχq,β = ∂βχq,α ∀α,β ∈ [1,d].
From this symmetry, and using the definitions of χq and J q
above, and the relation ∂α(Dq/σq)∂βρq = ∂β(Dq/σq)∂αρq =
(Dq/σq)′∂αρq∂βρq, we immediately arrive at the fundamental
relation (11). Note that the C2 differentiability of the response
function ψq is a natural requirement for most physical
solutions to this variational problem, though we cannot discard
the possible existence of singular, nondifferentiable solutions
for ψq which would violate (11) at singular points. Note also
that a weaker condition for ψq which nevertheless suffices to
ensure the symmetry of its Hessian matrix is that all partial
derivatives are themselves differentiable.

To better understand the tight constraints that Eq. (11)
imposes on the optimal current fields, it is important to realize
that in all high-dimensional problems studied in literature up to
now the dominant paths responsible for a current fluctuation,
corresponding to the global extrema of the action Iτ in Eq. (7),
always exhibit structure (if any) along a principal direction,
that we denote here as x‖ [5,31,54–57]. This means in partic-
ular that ρq(r,t) = ρq(x‖,t) and jq(r,t) = jq(x‖,t). Examples
include open systems subject to a boundary gradient, which
develop structure along the gradient direction (irrespective of
the external field) [56], see, e.g., Fig. 1 above; or closed driven
diffusive systems with periodic boundary conditions, for which
different dynamic phase transitions appear to current regimes
characterized by traveling waves with structure along one of
the principal axes of the system of interest [31]. In all these
cases, condition (11) leads to

∂‖

(
jβ,q

aβσq

)
= 0 ∀β 
=‖ ,

which immediately implies that jβ,q(x‖,t) =
kβσ [ρq(x‖,t)] ∀β 
=‖, with kβ a direction-dependent
constant which follows from the constraint (6) on the
empirical current q. Therefore we arrive at

jβ,q(x‖,t) = qβ

τσ [ρq(x‖,t)]∫ τ

0
ds

∫ 1

0
dy σ [ρq(y,s)]

∀β 
=‖ .

(12)
In this way the relation between the Jacobian matrix for χq
and the Hessian matrix of the response field ψq, together with
a natural analyticity condition for the latter, force the optimal
current vector field jq to exhibit nontrivial structure along the
dominant direction ‖ in all its orthogonal components β 
=‖,
and this structure is coupled to the optimal density field ρq
via the mobility transport coefficient σ (ρq). Interestingly, this
result makes manifest the spatiotemporal nonlocality of the
current LDF (7) and the associated optimal trajectories, as

the optimal current field at a given point of space and time
depends explicitly on the space-time integral of the mobility
of the optimal density field; see the denominator in Eq. (12).
Note also that conditions (11) and (12) become empty for
d = 1, where structureless optimal current fields are still
possible [45,49,50], evidencing the richness of the fluctuation
landscape for d > 1 driven diffusive systems when compared
with their one-dimensional counterparts.

IV. CONNECTION WITH PREVIOUS RESULTS

We next explore how previous results on current fluc-
tuations for both open and closed d > 1 driven diffusive
systems fit into the above general result. First we consider
the case of open systems under an external gradient along an
arbitrary direction x‖. For that we fix the boundary densities to
ρ(r,t)|x‖=0,1 = ρ0,1, which drive the system out of equilibrium
as soon as ρ0 
= ρ1, setting periodic boundary conditions for
all other directions of space. This class of systems has been
broadly studied during the last years, finding that a simplifying
conjecture within MFT known as (weak) Additivity Principle
(AP) [56] allows one to solve the problem of current statistics
both for d = 1 [5,45,49–51] and d > 1 [54–57,60]. The AP,
which offers explicit expressions for the current LDF and
the optimal paths supporting a given fluctuation, establishes
that the most probable trajectory to a current fluctuation is
time independent (apart from some initial and final transients
of negligible weight for the current LDF). In this case
ρq = ρq(x‖) and jq = jq(x‖), so the continuity constraint
Eq. (5) implies a divergence-free optimal current field, ∇ ·
jq(x‖) = ∂‖j‖,q(x‖) = 0. These observations, together with our
general condition (12) and the constraint (6) on the empirical
current q, lead to an optimal current field jq(x‖) = (q‖,j⊥,q)
with

j⊥,q(x‖) = q⊥
σ [ρq(x‖)]∫ 1

0
dy σ [ρq(y)]

,

and where we have decomposed q = (q‖,q⊥) along the
gradient (‖) and all other, (d − 1) directions (⊥). This
corresponds exactly to the result obtained previously from the
weak Additivity Principle as applied to d-dimensional driven
diffusive systems [56], starting from a variational problem for
general but divergence-free current fields with structure along
one dominant direction. Our general theorem (11) allows one
now to understand this structure as a direct consequence of the
symmetry of the Jacobian matrix associated with the reduced
excess current. Note that this result is not compatible with the
straightforward extension to d > 1 of the 1d-system solution
(which considers the optimal current field to be constant
[45,48–50]).

To end this paper, we consider current fluctuations in closed
d-dimensional anisotropic driven diffusive systems under an
external field E [31]. For that we set periodic boundary
conditions along all directions of space. Due to the system
periodicity, the total mass is conserved so ρ0 = ∫

�
ρq(r,t)dr

is constant in time, a further constraint that has to be taken
care of in the MFT variational problem. A detailed analysis
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of the resulting MFT equations shows [5,22–24,31] that
a second-order dynamic phase transition (DPT) appears at
a given critical current for this broad family of systems
between a homogeneous fluctuation phase with Gaussian
current statistics and constant, structureless optimal fields,
ρq(r,t) = ρ0 and jq(r,t) = q, and a symmetry-broken non-
Gaussian phase characterized by the emergence of coherent
traveling waves with structure along a dominant direction,
ρq(r,t) = ωq(x‖ − vt) and jq(r,t) = jq(x‖ − vt), with v some
velocity [31]. Interestingly, for mild or no anisotropy, differ-
ent traveling-wave phases appear depending on the current
separated by lines of first-order DPTs, a degeneracy which
disappears beyond a critical anisotropy. This richness of the
fluctuation phase diagram stems again from the relevance of
structured current fields at the fluctuating level, a seemingly
mathematical accident which takes full significance at the
light of our general result (11). In particular, the continuity
equation ∂tρq + ∇ · jq = 0 applied to the 1d traveling-wave
structure implies that ∂‖[j‖,q(z‖) − vω(z‖)] = 0, where we
have defined z‖ ≡ x‖ − vt , and this together with the constraint
(6) on the empirical current leads to j‖,q(z‖) = q‖ − v[ρ0 −
ωq(z‖)]. On the other hand, all orthogonal current compo-
nents follow directly from our theorem above as j⊥,q(z‖) =
q⊥σ [ωq(z‖)]/

∫ 1
0 dy σ [ωq(y)]. This result, which is markedly

different from the traveling-wave structure found in 1d models
[22,24,39], has been recently derived within MFT after a
careful analysis of the local stability of the homogeneous,
Gaussian current phase against small but otherwise arbitrary
spatiotemporal perturbations [31]. However, its understanding
as a direct consequence of the general condition (11) sheds
new light onto this problem.

V. CONCLUSIONS

In summary, we have derived a fundamental relation which
strongly constrains the structure of the optimal path sustaining
a given current fluctuation. In particular, when a principal
direction exists, the optimal current vector field is bounded
to exhibit nontrivial structure along this dominant direction
in all its orthogonal components, a structure coupled to the
optimal density field via the mobility transport coefficient.
This has been done by relating within macroscopic fluctuation
theory the Jacobian matrix of the reduced optimal current
field with the Hessian matrix of the response field associated
with the continuity equation, and requiring analyticity for
the latter. In this sense, we prove here that the structured
optimal current fields predicted and observed by a number of
recent works [31,56,57] is indeed a fundamental requirement
of any high-dimensional fluctuating theory, rather than a
mathematical accident. Remarkably, our result also makes
manifest the nonlocality in space and time of the current
large deviation function and the associated optimal trajectories.
This result hence serves as a starting point in the study of
fluctuations in complex d-dimensional systems, constraining
the form of the optimal paths and thus aiding in the formulation
of simplifying hypotheses to solve these complex variational
problems in nonequilibrium statistical physics.
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[21] F. Bouchet, K. Gawȩdzki, and C. Nardini, Perturbative cal-
culation of quasi-potential in non-equilibrium diffusions: A
mean-field example, J. Stat. Phys. 163, 1157 (2016).

[22] T. Bodineau and B. Derrida, Distribution of current in nonequi-
librium diffusive systems and phase transitions, Phys. Rev. E 72,
066110 (2005).

[23] P. I. Hurtado and P. L. Garrido, Spontaneous Symmetry
Breaking at the Fluctuating Level, Phys. Rev. Lett. 107, 180601
(2011).

[24] C. P. Espigares, P. L. Garrido, and P. I. Hurtado, Dynamical
phase transition for current statistics in a simple driven diffusive
system, Phys. Rev. E 87, 032115 (2013).

[25] L. Zarfaty and B. Meerson, Statistics of large currents in the
Kipnis-Marchioro-Presutti model in a ring geometry, J. Stat.
Mech.: Theory Exp. (2016) P033304.

[26] S. Vaikuntanathan, T. R. Gingrich, and P. L. Geissler, Dynamic
phase transitions in simple driven kinetic networks, Phys. Rev.
E 89, 062108 (2014).

[27] K. D. N. T. Lam, J. Kurchan, and D. Levine, Order in extremal
trajectories, J. Stat. Phys. 137, 1079 (2009).

[28] D. Chandler and J. P. Garrahan, Dynamics on the way to forming
glass: bubbles in space-time, Annu. Rev. Phys. Chem. 61, 191
(2010).

[29] O. Shpielberg and E. Akkermans, Le Chatelier Principle for Out-
Of-Equilibrium and Boundary-Driven Systems: Application to
Dynamical Phase Transitions, Phys. Rev. Lett. 116, 240603
(2016).

[30] Y. Baek, Y. Kafri, and V. Lecomte, Dynamical Symmetry
Breaking and Phase Transitions in Driven Diffusive Systems,
Phys. Rev. Lett. 118, 030604 (2017).
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[39] P. I. Hurtado, C. Pérez-Espigares, J. J. del Pozo, and P.
L. Garrido, Symmetries in fluctuations far from equilibrium,
Proc. Natl. Acad. Sci. USA 108, 7704 (2011).

[40] R. Villavicencio-Sanchez, R. J. Harris, and H. Touchette,
Fluctuation relations for anisotropic systems, Europhys. Lett.
105, 30009 (2014).

[41] D. Lacoste and P. Gaspard, Isometric Fluctuation Relations for
Equilibrium States with Broken Symmetry, Phys. Rev. Lett. 113,
240602 (2014).

[42] P. Gaspard, Multivariate fluctuation relations for currents,
New J. Phys. 15, 115014 (2013).
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