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In this Supplemental Material we solve the macroscopic fluctuation theory (MFT) equations for the joint current
and mass fluctuations of the one-dimensional (1d) weakly asymmetric simple exclusion process (WASEP) coupled
to boundary particle reservoirs at arbitrary densities or chemical potentials. This model belongs in a large class of
driven diffusive systems of theoretical and technological interest. MFT [1] provides a detailed description of dynamical
fluctuations in general driven diffusive systems, starting from the hydrodynamic evolution equation for the system of
interest and the sole knowledge of two transport coefficients, which can be measured experimentally. In particular,
MFT offers explicit predictions for the large-deviation functions (LDFs) which characterize the fluctuations of different
observables, as well as the associated trajectories in phase space responsible of these fluctuations.

After a brief but self-consistent presentation of MFT in §I and a characterization of the nonequilibrium steady state
of the 1d open WASEP under arbitrary driving (see §II), we proceed to solve analytically in §III the MFT equations
for the joint mass-current statistics of this model, understanding along the way the symmetry-breaking dynamical
phase transition described in the main text. Key to this calculation is the additivity conjecture [2], which assumes
that the optimal trajectories responsible of a trajectory are time-independent. We explore in §IV the possibility of
additivity violations in the form of time-dependent, instantonic solutions to the MFT equations in regimes where the
joint current-mass LDF becomes non-convex. Finally, we study in §V from a microscopic point of view the DPT
found at the macroscopic level, using in particular the quantum Hamiltonian formalism for the master equation and
the tilted dynamical generator.
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I. A CRASH COURSE ON MFT

We hence consider systems described at the mesoscopic level by a continuity equation of the form

∂tρ+ ∂xj = 0 , (S1)

where ρ(x, t) and j(x, t) are the density and current fields, respectively, and x ∈ [0, 1] and t are the macroscopic
space and time variables, obtained after a diffusive scaling limit such that x = x̃/L and t = t̃/L2, with x̃ and t̃ the
equivalent microscopic variables and L the system size in natural units. The system is coupled at the boundaries to
particle reservoirs at densities ρL,R, so the boundary conditions for the density field are ρ(0, t) = ρL and ρ(1, t) = ρR
∀t. The current field in eq. (S1) is in general a fluctuating quantity, and can be written as

j(x, t) = −D(ρ)∂xρ(x, t) + σ(ρ)E + ξ(x, t). (S2)

The first two terms in the rhs are just Fick’s law, which express the proportionality of the current to the density
gradient and the external field E, with D(ρ) and σ(ρ) the diffusivity and mobility transport coefficients (which might
be nonlinear functions of the local density). The last term ξ(x, t) is a weak Gaussian white noise, such that

〈ξ(x, t)〉 = 0, 〈ξ(x, t)ξ(x′, t′)〉 =
σ(ρ)

L
δ(x− x′)δ(t− t′) . (S3)

This noise term accounts for all fast degrees of freedom which are integrated out in the coarse-graining proceduce which
results in the mesoscopic hydrodynamic description (S1)-(S2). After some relaxation time, a system described by the
above set of equations reaches a nonequilibrium steady state characterized by a (typically inhomogeneous) density
profile ρst(x) compatible with the above boundary conditions, and a nonzero average current 〈q〉 = −D(ρst)∂xρst +
σ(ρst)E constant across space. Note that, for WASEP, the two key transport coefficients are D(ρ) = 1

2 and σ(ρ) =
ρ(1− ρ) [3, 4], and Section §II below describes the steady-state solution of the above hydrodynamic equations for the
1d open WASEP.

A simple path integral calculation starting from Eqs. (S1)-(S2) then shows that the probability of a given field
trajectory {ρ, j}τ0 obeys a large deviation principle of the form P ({ρ, j}τ0) ∼ exp(−LIτ [ρ, j]), with an action given by
[1, 5, 6]

Iτ [ρ, j] =

∫ τ

0

dt

∫ 1

0

dx
[j +D(ρ)∂xρ− Eσ(ρ)]2

2σ(ρ)
, (S4)

with ρ(x, t) and j(x, t) coupled via the continuity equation ∂tρ + ∂xj = 0 (in any other case Iτ [ρ, j] → ∞). We are
interested here in the joint statistics for fluctuations of the spacetime-integrated current q and mass m. These two
empirical observables are defined as

q =
1

τ

∫ τ

0

dt

∫ 1

0

dx j(x, t) , (S5)

m =
1

τ

∫ τ

0

dt

∫ 1

0

dx ρ(x, t) . (S6)

The probability of observing a given q and m can now be written as a path integral over all possible trajectories {ρ, j}τ0 ,
weighted by its probability measure P ({j, ρ}τ0), and restricted to those trajectories compatible with the values of q
and m in Eqs. (S5) and (S6), respectively, the continuity equation (S1) at every point of space and time, and the fixed
boundary conditions for the density field. For long times and large system sizes, this sum over trajectories is dominated
by the associated saddle point and scales as P (m, q) ∼ exp{−τLG(m, q)}, where G(m, q) is the mass-current large
deviation function (LDF) given by

G(m, q) = lim
τ→∞

1

τ
min
{ρ,j}τ0

Iτ (ρ, j) . (S7)

The density and current fields solution of this variational problem, denoted here as ρm,q(x, t) and jm,q(x, t), can
be interpreted as the optimal trajectory the system follows in order to sustain a long-time mass and current joint
fluctuation, and are in general time-dependent.

However, in most applications of MFT to study fluctuations of time-integrated observables in open systems, such
as (S5)-(S6), it has been found that the optimal trajectory {ρm,q, jm,q}τ0 is indeed time-independent. Physically
this means that, in order sustain a given mass-current long-time fluctuation, the system of interest settles after a
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negligible initial transient into a time-independent state (possibly followed by an equally negligible final transient).
This property, known as Additivity Principle in literature [1, 2, 7–19], strongly simplifies the variational problem at
hand. In particular, the mass-current LDF now reads

G(m, q) = min
ρ(x)

∫ 1

0

dx
[q +D(ρ)ρ′(x)− σ(ρ)E]

2

2σ(ρ)
. (S8)

The optimal density profile solution of this simpler variational problem, ρm,q(x), is subject to to the additional
constraint

m =

∫ 1

0

ρm,q(x) dx , (S9)

and the optimal current field is simply jm,q(x) = q due to the continuity equation (S1) and the time-independence of
the dominant trajectory. The integral constraint (S9) can be implemented using a Lagrange multiplier λ which will
be fixed a posteriori to enforce the constraint. We hence define a new function

G(λ, q) = min
ρ(x)

∫ 1

0

dx

{
[q +D(ρ)ρ′(x)− σ(ρ)E]

2

2σ(ρ)
− λρ(x)

}
. (S10)

The optimal density field for this variational problem is the solution of the following Euler-Lagrange equation

q2
(

1

2σ(ρ)

)′
+
E2

2
σ′(ρ)− ρ′′(x)

D(ρ)2

σ(ρ)
− ρ′(x)2

(
D(ρ)2

2σ(ρ)

)′
= λ, (S11)

where the ′ means derivative with respect to the argument, e.g. σ′(ρ) = dσ(ρ)
dρ and ρ′(x) = dρ(x)

dx . Multiplying both

sides of this equation by ρ′(x), we arrive easily to

d

dx

[
q2

2σ(ρ)
− λρ(x) +

E2

2
σ(ρ)− ρ′(x)2

D(ρ)2

2σ(ρ)

]
= 0 , (S12)

which can be trivially integrated once to yield

D(ρ)2
(
dρ(x)

dx

)2

= q2 + 2 (K − λρ)σ(ρ) + E2σ(ρ)2 , (S13)

where K is an integration constant which allows us to fix the correct boundary condition at one of the two ends,
ρλ,q(0) = ρL and ρλ,q(1) = ρR (the other boundary value is given to solve the previous first-order differential equation).
Interestingly, the optimal density field solution of this differential equation does not depend on the sign of the current q
or the external field E, as they both appear squared in Eq. (S13). This fact is ultimately a macroscopic manifestation
of the time-reversibility of microscopic dynamics. The value of the Lagrange multiplier λ = λ(m, q) can be now fixed
by imposing that the total mass associated to the solution ρλ,q(x) of the above differential equation is just m, i.e.

m =

∫ 1

0

ρλ,q(x) dx . (S14)

Our aim in the following sections is to solve this variational problem for the 1d open WASEP, for which the key
transport coefficients are D(ρ) = 1/2 and σ(ρ) = ρ(1−ρ). However, before proceeding with the analysis of fluctuations,
we focus briefly on the steady state behavior.
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FIG. S1. (a) Steady-state density profile ρst(x) for the 1d open WASEP for a symmetric gradient with boundary densities

ρL = 0.8 and ρR = 0.2, and external fields E ∈ [1, 50] increasing as Ek = 50k/10 with k ∈ [0, 10]. (b) Same results as in (a), but
for an asymmetric gradient with boundary densities ρL = 0.6 and ρR = 0.45. (c) Steady state current 〈q〉 vs ρL for external
field E = 4 and two right boundary densities, namely ρR = 0.2 and ρR = 0.45.

II. STEADY STATE FOR THE 1d OPEN WASEP

In this section we derive the steady state current 〈q〉 and density profile ρst(x) for the 1d open WASEP driven by
an arbitrary external density gradient and possibly by an additional external field E. These steady state properties
are given by Fick’s law, which for D(ρ) = 1/2 and σ(ρ) = ρ(1− ρ) simply reads

〈q〉 = −1

2

dρst(x)

dx
+ Eρst(x)[1− ρst(x)] , (S15)

with boundary conditions ρst(0) = ρL and ρst(1) = ρR. The previous equation can be easily solved

x =

∫ ρst(x)

ρL

dρ

2[Eρ(1− ρ)− 〈q〉]
= −1

θ
tan−1

(
E

θ
(2ρ− 1)

) ∣∣∣∣∣
ρst(x)

ρL

≡ −1

θ
Tθ(ρ)

∣∣∣∣∣
ρst(x)

ρL

,

with the definitions θ ≡
√
E(4〈q〉 − E) and Tθ(ρ) ≡ tan−1

(
E
θ (2ρ− 1)

)
. Equivalently

x =
1

θ
[Tθ(ρL)− Tθ(ρst(x))] .

By imposing now that ρst(1) = ρR, we obtain an implicit equation for the constant θ, i.e.

θ = Tθ(ρL)− Tθ(ρR) .

This equation for θ(ρL, ρR, E) cannot be solved analytically in general. However, it might be solved numerically for
every external parameter 3-tuple (ρL, ρR, E). From this solution one can obtain the steady-state current

〈q〉 =
1

4

(
E +

θ2

E

)
(S16)

and the stationary density profile

ρst(x) =
1

2

{
1 +

θ

E
tan [Tθ(ρL)− θx]

}
. (S17)

Fig. S1 shows steady-state profiles and stationary currents for different values of (ρL, ρR, E).
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III. JOINT MASS-CURRENT FLUCTUATIONS IN THE 1d OPEN WASEP

We now return to our original problem of determining the optimal density field associated to a mass-current
fluctuation in the 1d open WASEP. The governing differential equation (S13) reads in this case

1

4

(
dρ

dx

)2

= q2 + 2(K − λρ)ρ(1− ρ) + E2ρ2(1− ρ)2 , (S18)

with boundary conditions ρ(0) = ρL and ρ(1) = ρR. Without loss of generality, we assume from now on that ρL ≥ ρR
and E > 0; equivalent results to those described below hold in other situations. Note also that the case E = 0 results
in a simpler problem lacking any dynamical phase transition [20], so it won’t be studied here. The rhs of Eq. (S18)
defines a fourth-order polynomial in ρ,

π0(ρ) ≡ q2 + 2(K − λρ)ρ(1− ρ) + E2ρ2(1− ρ)2 ≡ E2π(ρ) , (S19)

whose roots will play a key role in the analysis of possible solutions. In particular, the real roots of π(ρ) (equivalently
π0(ρ)) define the possible extrema of the optimal density field, though as we discuss next not all real roots correspond
necessarily to extrema of the profile.

A first observation is that, for ρL > ρR, no (local) extrema of the optimal profile ρλ,q(x) can lie within the ρ-interval
(ρR, ρL). To see why, let’s assume for a moment that there exists a local extremum ρa ∈ (ρR, ρL), i.e. a real root
ρa ∈ R such that π(ρa) = 0 and π′(ρa) 6= 0. If ρa = ρ(xa) is a local maximum, it must be reached from below from
both sides (as x → x±a ), and this is not possible since ρL > ρa. Equivalently, if ρa is a local minimum it should
be reached from above from both sides, and this is again not possible because ρR < ρa. Hence no local extrema
of the density profile can lie in the interval (ρR, ρL). Similarly, only one maximum can exists above ρL. Indeed, if
two maxima ρa > ρb > ρL exist (one local, the other global), they must be separated by a local minimum ρc > ρL.
By definition, this local minimum must be reached from above from both sides, and this is again impossible since
ρL < ρc. An equivalent argument shows that only one minimum can exists below ρR. Moreover, a numerical analysis
of the differential equation (S18) shows that no inflection points, for which π(ρ) = 0 = π′(ρ) simultaneously, are to
be expected in the solutions, so we can safely assume that only maxima and minima are possible. These arguments
therefore suggest that the optimal density profile solution of the Eq. (S18) can be either (a) monotonous, or contain
(b) a single maximum, (c) a single minimum, or at most (d) one maximum and one minimum.

Before embarking on the general solution of the differential equation (S18), let us summarize the global solution
strategy. As we will show below, the resulting density profile can be written as a rational function of Jacobi elliptic
functions (either sn, cn or tn Jacobi functions [21], depending on the root structure of the polynomial π(ρ) defined
above). This density profile will be a parametric function of the current q and the external field E, as well as the
constants K and λ, i.e. ρ(x) = ρ(x; q, E,K, λ). These two latter constants must be fixed by imposing simultaneously
the correct right boundary density ρR and the total mass m, i.e.

ρ(x = 1; q, E,K, λ) = ρR ,

∫ 1

0

ρ(x; q, E,K, λ) dx = m. (S20)

Although we find below explicit solutions for ρ(x; q, E,K, λ), the simultaneous solution of the previous equations
requires numerical methods to determine the values of K and λ associated to a joint fluctuation of the current q and
mass m under external field E. Moreover, the lack of intuition about the possible values of the constants K and λ
for a given set of parameters (m, q,E) calls for an alternative codification of these two constants in terms of more
physical quantities. In particular, defining ρ′L,R(m, q,E) ≡ ρ′(x = 0, 1) as the slope of the optimal density profile at

the left (L) and right (R) boundary, respectively, which depend on the external parameters (m, q,E), we can see from
Eq. (S18) that

1

4
(ρ′L,R)2 = q2 + 2(K − λρL,R)ρL,R(1− ρL,R) + E2ρ2L,R(1− ρL,R)2 , (S21)

which allows to write the constants K and λ in terms of the more intuitive boundary slopes ρ′L,R(m, q,E), i.e.

K(m, q,E) =
ΛR(m, q,E)ρL − ΛL(m, q,E)ρR

ρL − ρR
, λ(m, q,E) =

ΛR(m, q,E)− ΛL(m, q,E)

ρL − ρR
, (S22)

where we have defined

ΛL,R(m, q,E) ≡
1
4 (ρ′L,R)2(m, q,E)− q2 − E2ρ2L,R(1− ρL,R)2

2ρL,R(1− ρL,R)
. (S23)
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Hence, for a given external field E and fixed values of the current q and the mass m, one has to find numerically the
slopes ρ′L,R(m, q,E) such that

ρ(x = 1; q, E, ρ′L, ρ
′
R) = ρR ,

∫ 1

0

ρ(x; q, ρ′L, ρ
′
R) dx = m, (S24)

where ρ(x; q, E, ρ′L, ρ
′
R) is the optimal profile solution of our variational problem. Recalling now that ρL ≥ ρR, it

is interesting to note that fixing the sign of the boundary slopes ρ′L,R(m, q,E) determines whether the resulting

profiles is either monotonous (ρ′L < 0, ρ′R < 0) or exhibits a single maximum (ρ′L > 0, ρ′R < 0), a single minimum
(ρ′L < 0, ρ′R > 0), or one maximum and one minimum (ρ′L > 0, ρ′R > 0; we discuss below the reason why the maximum
comes before the minimum).

We turn now to the explicit solution of the ordinary differential equation (S18), which can be written as ρ′(x) =

±2|E|
√
π(ρ), where the sign depends on the section of the profile analyzed. Since ρL ≥ ρR, monotonous profiles have

ρ′(x) ≤ 0 ∀x ∈ [0, 1], and the differential equation can be integrated to yield

2|E|x =

∫ ρL

ρ(x)

dρ√
π(ρ)

(monotonous profile). (S25)

For optimal profiles containing a single maximum ρ+ = ρ(x+), such that π(ρ+) = 0, we have ρ′(x) = +2|E|
√
π(ρ)

∀x ∈ [0, x+] and ρ′(x) = −2|E|
√
π(ρ) ∀x ∈ [x+, 1], and hence

2|E|x =



∫ ρ(x)

ρL

dρ√
π(ρ)

0 ≤ x ≤ x+

2|E|x+ +

∫ ρ+

ρ(x)

dρ√
π(ρ)

x+ < x ≤ 1

(single-maximum profile), (S26)

where 2|E|x+ =

∫ ρ+

ρL

dρ√
π(ρ)

defines the position of the maximum. Next, for optimal profiles containing a single

minimum ρ− = ρ(x−), such that π(ρ−) = 0, one can show equivalently

2|E|x =



∫ ρL

ρ(x)

dρ√
π(ρ)

0 ≤ x ≤ x−

2|E|x− +

∫ ρ(x)

ρ−

dρ√
π(ρ)

x− < x ≤ 1

(single-minimum profile), (S27)

where now 2|E|x− =

∫ ρL

ρ−

dρ√
π(ρ)

locates the minimum. Finally, for profiles with a maximum ρ+ = ρ(x+) and a

minimum ρ− = ρ(x−), with π(ρ+) = 0 = π(ρ−), it is easy to see that

2|E|x =



∫ ρ(x)

ρL

dρ√
π(ρ)

0 ≤ x ≤ x+ ,

2|E|x+ +

∫ ρ+

ρ(x)

dρ√
π(ρ)

x+ < x ≤ x− ,

2|E|x− +

∫ ρ(x)

ρ−

dρ√
π(ρ)

x− < x ≤ 1 .

(max-min profile), (S28)

with

2|E|x+ =

∫ ρ+

ρL

dρ√
π(ρ)

, (S29)

2|E|x− = 2|E|x+ +

∫ ρ+

ρ−

dρ√
π(ρ)

. (S30)
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FIG. S2. Density plot of the structure of zeroes of the polynomial π(ρ) as a function of the boundary slopes ρ′L,R(m, q,E) ∈
[−3, 3] for external field E = 4 and varying values of the current q ∈ [0, 1.25]. Results for two density gradients are shown,
namely (ρL = 0.8, ρR = 0.2) (symmetric gradient, top row) and (ρL = 0.6, ρR = 0.45) (asymmetric gradient, bottom row).

Here we implicitly assume that x+ < x−, i.e. the maximum comes before the minimum. This is a consequence of the
choice ρL ≥ ρR, which makes the cost of reversing the extrema non-optimal from a variational point of view, see Eq.
(S8).

In all cases, the integrals appearing in Eqs. (S25)-(S28) are elliptic integrals of the first kind, whose inverse
solution can be written in terms of Jacobi elliptic functions [21], depending on the structure of zeroes of the 4th-
order polynomial π(ρ). Since this polynomial is always real, its 4 roots can be either two pairs of complex conjugate
numbers (ρ1, ρ

∗
1, ρ2, ρ

∗
2 ∈ C, denoted as case 2cc), two real roots accompanied by a single pair of complex conjugate

roots (ρ1, ρ2 ∈ R, ρ3, ρ∗3 ∈ C, denoted as case 2r1cc), or 4 different real roots (ρ1, ρ2, ρ3, ρ4 ∈ R, denoted as case 4r).
Note that all possible combinations do appear in the solution of this variational problem. As an example, Fig. S2
shows density plots for the structure of zeroes of the polynomial π(ρ) for a fixed external field E = 4 (used below) as a
function of the possible boundary slopes of the optimal density field, ρ′L,R(m, q,E), for two different density gradients.
We now study each of the cases separately.

A. Two pairs of complex conjugate roots

In this case, due to the absence of real roots, the optimal density profile must be monotonous. This behavior will be
dominant for small mass and current fluctuations, i.e. close to the average behavior. If we denote the complex roots
as ρ1, ρ

∗
1, ρ2, ρ

∗
2 ∈ C, the polynomial can be written as π(ρ) = (ρ−ρ1)(ρ−ρ∗1)(ρ−ρ2)(ρ−ρ∗2). Defining now bi ≡ Re(ρi)

and ai ≡ |Im(ρi)|, with i = 1, 2, and introducing the constants A2 ≡ (b1−b2)2+(a1+a2)2, B2 ≡ (b1−b2)2+(a1−a2)2

and y1 ≡ b1 − a1g1, with

g21 ≡
4a21 − (A−B)2

(A+B)2 − 4a21
, (S31)

we can solve [21] the integral (S25)

2|E|x =

∫ ρL

y1

dρ√
π(ρ)

−
∫ ρ(x)

y1

dρ√
π(ρ)

=
2

A+B

[
F

(
ϕ(ρL),

4AB

(A+B)2

)
− F

(
ϕ(ρ(x)),

4AB

(A+B)2

)]
, (S32)

with

ϕ(z) ≡ tan−1
(

z − b1 + a1g1
a1 + g1b1 − g1z

)
, (S33)

and where F (ϕ(z), k2) is the incomplete elliptic integral of the first kind of amplitude ϕ(z) and modulus k2 [21].
As originally shown by Abel and Jacobi, this elliptic integral can be inverted [21]. Indeed, if u ≡ F (ϕ(z), k2), then
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tanϕ(z) = tn(u, k2), where tn(u, k2) is the Jacobi tn elliptic function [21]. Applying this inversion formula to

F
(
ϕ(ρ(x)), κ2ϕ

)
= FLϕ − (A+B)|E|x , (S34)

where we have defined for simplicity κ2ϕ ≡ 4AB/(A + B)2 and FLϕ ≡ F
(
ϕ(ρL), κ2ϕ

)
, and solving for ρ(x) we find for

the case of two complex conjugate roots (2cc)

ρ2cc(x) =
(a1 + g1b1) tn

[
FLϕ − (A+B)|E|x, κ2ϕ

]
+ b1 − a1g1

1 + g1 tn
[
FLϕ − (A+B)|E|x, κ2ϕ

] . (S35)

B. Two real roots, one pair of complex conjugate roots

We denote the real roots as ρ1, ρ2 ∈ R, while the pair of complex conjugate roots is ρ3, ρ
∗
3 ∈ C. We further assume

without loss of generality that ρ1 < ρ2. Due to the presence of two real roots, the number of possibilities to study
increases considerably. In particular, the two real roots can be either:

(i) ρ1, ρ2 ≥ ρL.

In this case the density profile can be monotonous (i1) or it may have a single maximum at ρ1 (i2). The
polynomial π(ρ) can be now written in the region of interest as π(ρ) = (ρ1−ρ)(ρ2−ρ)(ρ−ρ3)(ρ−ρ∗3). Defining
now b3 ≡ Re(ρ3) and a3 ≡ |Im(ρ3)|, and introducing the constants A2 ≡ (ρ1−b3)2+a23 and B2 ≡ (ρ2−b3)2+a23,
we have for the case (i1) of monotonous profiles, see Eq. (S25), that

2|E|x =

∫ ρ1

ρ(x)

dρ√
π(ρ)

−
∫ ρ1

ρL

dρ√
π(ρ)

=
1√
AB

[
F
(
γ(ρ(x)), κ2γ

)
− FLγ

]
, (S36)

where F (γ(z), κ2γ) is the incomplete elliptic integral of the first kind of amplitude γ(z) and modulus κ2γ [21]. We
have further defined the amplitude function

γ(z) ≡ cos−1
(

(A−B)z + ρ1B − ρ2A
(A+B)z − ρ1B − ρ2A

)s+
, (S37)

as well as the modulus

κ2γ ≡ s+
(A+ s+B)2 − (ρ1 − ρ2)2

4AB
, (S38)

and the constant FLγ ≡ F
(
γ(ρL), κ2γ

)
, where we introduce for latter convenience the sign function s+ ≡ (−1)n+ ,

with n+ the number of real roots larger or equal than ρL [note that for the current case (i) s+ = +1 as n+ = 2].
As before, if u ≡ F (γ(z), k2), then cos γ(z) = cn(u, k2), where cn(u, k2) is the Jacobi cosine elliptic function
[21]. Applying this inversion formula to

F
(
γ(ρ(x)), κ2γ

)
= FLγ + 2|E|

√
ABx (S39)

and solving for ρ(x) we obtain for the case of two real (2r) and one pair of complex conjugate roots (1cc) in the
case (i1) of monotonous profiles

ρ
(i1)
2r1cc(x) =

(ρ2A− ρ1B)− (ρ1B + ρ2A) cn
[
FLγ + 2|E|

√
ABx, κ2γ

]
(A−B)− (A+B) cn

[
FLγ + 2|E|

√
ABx, κ2γ

] . (S40)

Next we consider a profile with a single maximum (i2). In this case, see Eq. (S26),

2|E|x =



∫ ρ1

ρL

dρ√
π(ρ)

−
∫ ρ1

ρ(x)

dρ√
π(ρ)

=
1√
AB

[
FLγ − F

(
γ(ρ(x)), κ2γ

)]
0 ≤ x ≤ x+

∫ ρ1

ρL

dρ√
π(ρ)

+

∫ ρ1

ρ(x)

dρ√
π(ρ)

=
1√
AB

[
FLγ + F

(
γ(ρ(x)), κ2γ

)]
x+ < x ≤ 1

(S41)
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where 2|E|x+ = FLγ /
√
AB. We therefore have

F
(
γ(ρ(x)), κ2γ

)
= 2|E|

√
AB|x+ − x| = |FLγ − 2|E|

√
ABx| , (S42)

which can be inverted to obtain

ρ
(i2)
2r1cc(x) =

(ρ2A− ρ1B)− (ρ1B + ρ2A) cn
[
|FLγ − 2|E|

√
ABx|, κ2γ

]
(A−B)− (A+B) cn

[
|FLγ − 2|E|

√
ABx|, κ2γ

] . (S43)

The solution for both the monotonous (i1) and the single-maximum (i2) cases when ρ1, ρ2 ≥ ρL can be now
unified by introducing the slope of the optimal profile at the left boundary and its sign. In particular, defining
the boundary slopes ρ′L ≡ ρ′(0) and ρ′R ≡ ρ′(1), and introducing their sign sL,R ≡ sign(ρ′L,R), it’s clear that the
monotonous profile for ρL ≥ ρR corresponds to sL = −1 while the single-maximum case corresponds to sL = +1,
and hence

ρ
(i)
2r1cc(x) =

(ρ2A− ρ1B)− (ρ1B + ρ2A) cn
[
|FLγ − 2sL|E|

√
ABx|, κ2γ

]
(A−B)− (A+B) cn

[
|FLγ − 2sL|E|

√
ABx|, κ2γ

] (S44)

represents both solutions for the case (i) ρ1, ρ2 ≥ ρL.

(ii) ρ1, ρ2 ≤ ρR.

In this case the density profile can be monotonous (ii1) or it may have a single minimum (ii2) at ρ2 (since
in our notation ρ1 < ρ2). Note that, as in case (i) above, the roots sign function is again s+ = +1 since
n+ = 0 here. We proceed now as above and write the polynomial π(ρ) in the interesting regime as π(ρ) =
(ρ− ρ1)(ρ− ρ2)(ρ− ρ3)(ρ− ρ∗3). As before, for the case of monotnonous profiles we may write

2|E|x =

∫ ρL

ρ2

dρ√
π(ρ)

−
∫ ρ(x)

ρ2

dρ√
π(ρ)

=
1√
AB

[
F
(
π − γ(ρL), κ2γ

)
− F

(
π − γ(ρ(x)), κ2γ

)]

=
1√
AB

[
F
(
γ(ρ(x)), κ2γ

)
− FLγ

]
, (S45)

where we have used that cos−1(−z) = π − cos−1(z) and F (π − γ, k2) = 2K(k2) − F (γ, k2), with K(k2) =
F (π/2, k2) the complete elliptic integral of the first kind. The previous equation once inverted in terms of Jacobi

cosine elliptic functions and solved for ρ(x) yields the same Eq. (S40) as in case (i1) above, i.e. ρ
(ii1)
2r1cc(x) =

ρ
(i1)
2r1cc(x).

In a similar way, when the profile has a single-minimum we have [21]

2|E|x =



∫ ρL

ρ2

dρ√
π(ρ)

−
∫ ρ(x)

ρ2

dρ√
π(ρ)

=
1√
AB

[
F
(
π − γ(ρL), κ2γ

)
− F

(
π − γ(ρ(x)), κ2γ

)]
0 ≤ x ≤ x−

∫ ρL

ρ2

dρ√
π(ρ)

+

∫ ρ(x)

ρ2

dρ√
π(ρ)

=
1√
AB

[
F
(
π − γ(ρL), κ2γ

)
+ F

(
π − γ(ρ(x)), κ2γ

)]
x− < x ≤ 1

(S46)
or equivalently

2|E|x =



1√
AB

[
F
(
γ(ρ(x)), κ2γ

)
− FLγ

]
0 ≤ x ≤ x−

1√
AB

[
4K(k2)− F

(
γ(ρ(x)), κ2γ

)
− FLγ

]
x− < x ≤ 1

(S47)
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Solving for F
(
γ(ρ(x)), κ2γ

)
in the previous piece-wise equation, applying the inversion formula and noting that

cn(u, k2) is even in u and periodic with period 4K(k2), i.e. cn(u+ 4K(k2), k2) = cn(u) = cn(−u), see Ref. [21],
we thus find after solving for the density profile

ρ
(ii2)
2r1cc(x) =

(ρ2A− ρ1B)− (ρ1B + ρ2A) cn
[
FLγ + 2|E|

√
ABx, κ2γ

]
(A−B)− (A+B) cn

[
FLγ + 2|E|

√
ABx, κ2γ

] = ρ
(ii1)
2r1cc(x) = ρ

(i1)
2r1cc(x) , (S48)

so the general formula (S44) for case (i) is also valid for case (ii) [note that in the latter case the sign of the
profile slope at the left boundary is sL = −1].

(iii) ρ1 ≤ ρR, ρ2 ≥ ρL.

In this case the density profile can be monotonous (iii1) or it may a single maximum (iii2), a single minimum
(iii3), or a maximum and a minimum (iii4). In all cases the roots sign function is now s+ = −1 since n+ = 1.
The polynomial π(ρ) can be decomposed as π(ρ) = (ρ − ρ1)(ρ2 − ρ)(ρ − ρ3)(ρ − ρ∗3), and for the case (iii1) of
monotonous profiles –see Eq. (S25)– we find

2|E|x =

∫ ρL

ρ1

dρ√
π(ρ)

−
∫ ρ(x)

ρ1

dρ√
π(ρ)

=
1√
AB

[
FLγ − F

(
γ(ρ(x)), κ2γ

)]
, (S49)

and therefore

ρ
(iii1)
2r1cc(x) =

(ρ2A− ρ1B)− (ρ1B + ρ2A)
(

cn
[
FLγ − 2|E|

√
ABx, κ2γ

])−1
(A−B)− (A+B)

(
cn
[
FLγ − 2|E|

√
ABx, κ2γ

])−1 . (S50)

When a single maximum is presents, case (iii2), we have

2|E|x =



∫ ρ(x)

ρ1

dρ√
π(ρ)

−
∫ ρL

ρ1

dρ√
π(ρ)

=
1√
AB

[
F
(
γ(ρ(x)), κ2γ

)
− FLγ

]
0 ≤ x ≤ x+

2

∫ ρ2

ρ1

dρ√
π(ρ)

−
∫ ρL

ρ1

dρ√
π(ρ)

−
∫ ρ(x)

ρ1

dρ√
π(ρ)

=
1√
AB

[
4K(κ2γ)− FLγ − F

(
γ(ρ(x)), κ2γ

)]
x+ < x ≤ 1

(S51)

where the maximum location is given now by 2|E|
√
ABx+ = 4K(κ2γ)− FLγ /

√
AB. Solving for F

(
γ(ρ(x)), κ2γ

)
,

applying the inversion formula and recalling that cn(u + 4K(k2), k2) = cn(u) = cn(−u), we thus find after
solving for the density profile

ρ
(iii2)
2r1cc(x) =

(ρ2A− ρ1B)− (ρ1B + ρ2A)
(

cn
[
FLγ + 2|E|

√
ABx, κ2γ

])−1
(A−B)− (A+B)

(
cn
[
FLγ + 2|E|

√
ABx, κ2γ

])−1 . (S52)

For the single-minimum case (iii3) we have

2|E|x =



∫ ρL

ρ1

dρ√
π(ρ)

−
∫ ρ(x)

ρ1

dρ√
π(ρ)

=
1√
AB

[
FLγ − F

(
γ(ρ(x)), κ2γ

)]
0 ≤ x ≤ x−

∫ ρL

ρ1

dρ√
π(ρ)

+

∫ ρ(x)

ρ1

dρ√
π(ρ)

=
1√
AB

[
FLγ + F

(
γ(ρ(x)), κ2γ

)]
x− < x ≤ 1

(S53)

with x− = FLγ /(2|E|
√
AB), and therefore

ρ
(iii3)
2r1cc(x) =

(ρ2A− ρ1B)− (ρ1B + ρ2A)
(

cn
[
|FLγ − 2|E|

√
ABx|, κ2γ

])−1
(A−B)− (A+B)

(
cn
[
|FLγ − 2|E|

√
ABx|, κ2γ

])−1 . (S54)
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Finally, for the case (iii4) with a maximum and a minimum, we can write

2|E|x =



∫ ρ(x)

ρ1

dρ√
π(ρ)

−
∫ ρL

ρ1

dρ√
π(ρ)

=
1√
AB

[
F
(
γ(ρ(x)), κ2γ

)
− FLγ

]
0 ≤ x ≤ x+

2

∫ ρ2

ρ1

dρ√
π(ρ)

−
∫ ρL

ρ1

dρ√
π(ρ)

−
∫ ρ(x)

ρ1

dρ√
π(ρ)

=
1√
AB

[
4K(κ2γ)− FLγ − F

(
γ(ρ(x)), κ2γ

)]
x+ < x ≤ x−

2

∫ ρ2

ρ1

dρ√
π(ρ)

−
∫ ρL

ρ1

dρ√
π(ρ)

+

∫ ρ(x)

ρ1

dρ√
π(ρ)

=
1√
AB

[
4K(κ2γ)− FLγ + F

(
γ(ρ(x)), κ2γ

)]
x− < x ≤ 1

(S55)
or equivalently

F
(
γ(ρ(x)), κ2γ

)
=


FLγ + 2|E|

√
ABx 0 ≤ x ≤ x+

4K(κ2γ)− (FLγ + 2|E|
√
ABx) x+ < x ≤ x−

(FLγ + 2|E|
√
ABx)− 4K(κ2γ) x− < x ≤ 1

(S56)

where x+ = (2K(κ2γ)−FLγ )/(2|E|
√
AB) and x− = (4K(κ2γ)−FLγ )/(2|E|

√
AB). Inverting the previous piecewise

equation, taking into account the periodicity of the Jacobi cosine elliptic function cn(u, k2), and solving for the
density we thus find

ρ
(iii4)
2r1cc(x) =

(ρ2A− ρ1B)− (ρ1B + ρ2A)
(

cn
[
FLγ + 2|E|

√
ABx, κ2γ

])−1
(A−B)− (A+B)

(
cn
[
FLγ + 2|E|

√
ABx, κ2γ

])−1 . (S57)

It is now clear that the four different options for case (iii) with ρ1 ≤ ρR, ρ2 ≥ ρL can be unified into a single
expression using the sign of the left boundary slope sL, i.e. with the argument of the cn function written as
|FLγ + 2sL|E|

√
ABx|. Moreover, using also the roots sign function s+ defined above, we may write the general

solution for the case of two real roots and one pair of complex conjugate roots for π(ρ) in a compact form

ρ2r1cc(x) =
(ρ2A− ρ1B)− (ρ1B + ρ2A)

(
cn
[
|FLγ − 2sLs+|E|

√
ABx|, κ2γ

])s+
(A−B)− (A+B)

(
cn
[
|FLγ − 2sLs+|E|

√
ABx|, κ2γ

])s+ . (S58)

C. Four real roots

We denote the real roots as ρ1 < ρ2 < ρ3 < ρ4 ∈ R, where the label ordering is arbitrary. As in Section A.3.2 above,
we should now explore all possible orderings of these 4 real roots with respect to the boundary densities ρL ≥ ρR.
However, one can check numerically that the only ordering appearing in all cases of interest is that of two real roots
above ρL and two real roots below ρR, i.e. ρ1 < ρ2 < ρR ≤ ρL < ρ3 < ρ4, in which case the polynomial can be written
in the regime of interest as π(ρ) = (ρ1 − ρ)(ρ2 − ρ)(ρ− ρ3)(ρ− ρ4). Due to the presence of two real roots bracketing
the boundary densities, the resulting density profile can be monotonous (iv1), or it may have a single maximum (iv2),

a single minimum (iv3), or a maximum and a minimum (iv4). Defining now the constant gφ ≡
√

(ρ4 − ρ2)(ρ3 − ρ1)
and the amplitude function

φ(z) ≡ sin−1

√
(ρ4 − ρ2)(ρ3 − z)
(ρ3 − ρ2)(ρ4 − z)

, (S59)

together with the modulus

κ2φ ≡
(ρ3 − ρ2)(ρ4 − ρ1)

(ρ4 − ρ2)(ρ3 − ρ1)
, (S60)
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we find for the monotonous case (iv1) that

2|E|x =

∫ ρ3

ρ(x)

dρ√
π(ρ)

−
∫ ρ3

ρL

dρ√
π(ρ)

=
2

gφ

[
F
(
φ(ρ(x)), κ2φ

)
− FLφ

]
(S61)

where F (φ(z), κ2φ) is the incomplete elliptic integral of the first kind with amplitude φ(z) and modulus κ2φ, see Eqs.

(S59) and (S60), and FLφ ≡ F (φ(ρL), κ2φ). By noting that if u ≡ F (φ(z), k2), then sin γ(z) = sn(u, k2), where sn(u, k2)

is the Jacobi sine elliptic function [21], we thus find

(ρ4 − ρ2)(ρ3 − ρ(x))

(ρ3 − ρ2)(ρ4 − ρ(x))
= sn2

(
gφ|E|x+ FLφ , κ

2
φ

)
, (S62)

which can be solved for ρ(x) to yield

ρ
(iv1)
4r (x) = ρ4

Aφ sn2
(
gφ|E|x+ FLφ , κ

2
φ

)
− ρ3/ρ4

Aφ sn2
(
gφ|E|x+ FLφ , κ

2
φ

)
− 1

, (S63)

where Aφ ≡ (ρ3 − ρ2)/(ρ4 − ρ2) is another constant. For the case (iv2) of profiles exhibiting a single maximum,
proceeding as in previous examples one simply obtains

F
(
φ(ρ(x)), κ2φ

)
=

 FLφ − gφ|E|x 0 ≤ x ≤ x+

−(FLφ − gφ|E|x) x+ < x ≤ 1
(S64)

where the maximum location is defined by gφ|E|x+ = FLφ . Inverting the previous equation and solving for the density
field we hence find

ρ
(iv2)
4r (x) = ρ4

Aφ sn2
(∣∣FLφ − gφ|E|x∣∣, κ2φ)− ρ3/ρ4

Aφ sn2
(∣∣FLφ − gφ|E|x∣∣, κ2φ)− 1

. (S65)

For the single minimum case (iv3), we have

2|E|x =



∫ ρ3

ρ(x)

dρ√
π(ρ)

−
∫ ρ3

ρL

dρ√
π(ρ)

=
2

gφ

[
F
(
φ(ρ(x)), κ2φ

)
− FLφ

]
0 ≤ x ≤ x−

2

∫ ρ3

ρ2

dρ√
π(ρ)

−
∫ ρ3

ρL

dρ√
π(ρ)

−
∫ ρ3

ρ(x)

dρ√
π(ρ)

=
2

gφ

[
2K(κ2φ)− FLφ − F

(
φ(ρ(x)), κ2φ

)]
x− < x ≤ 1

(S66)
or equivalently

F
(
φ(ρ(x)), κ2φ

)
=

 FLφ + gφ|E|x 0 ≤ x ≤ x−

2K(κ2φ)− (FLφ + gφ|E|x) x− < x ≤ 1
(S67)

This expression can be easily inverted by noting [21] that sn(u+ 2K(k2), k2) = −sn(u, k2) = sn(−u, k2), and solving

for the density profile we thus obtain ρ
(iv3)
4r (x) = ρ

(iv1)
4r (x), i.e. the same expression as in case (iv1) above, see Eq.

(S63). Finally, for the case (iv4) of a profile with a maximum and a minimum, we have

2|E|x =



∫ ρ3

ρL

dρ√
π(ρ)

−
∫ ρ3

ρ(x)

dρ√
π(ρ)

=
2

gφ

[
FLφ − F

(
φ(ρ(x)), κ2φ

)]
0 ≤ x ≤ x+

∫ ρ3

ρL

dρ√
π(ρ)

+

∫ ρ3

ρ(x)

dρ√
π(ρ)

=
2

gφ

[
FLφ + F

(
φ(ρ(x)), κ2φ

)]
x+ < x ≤ x−

2

∫ ρ3

ρ2

dρ√
π(ρ)

+

∫ ρ3

ρL

dρ√
π(ρ)

−
∫ ρ3

ρ(x)

dρ√
π(ρ)

=
2

gφ

[
2K(κ2φ) + FLφ − F

(
φ(ρ(x)), κ2φ

)]
x− < x ≤ 1

(S68)
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or equivalently

F
(
φ(ρ(x)), κ2φ

)
=


FLφ − gφ|E|x 0 ≤ x ≤ x+

−(FLφ − gφ|E|x) x+ < x ≤ x−

2K(κ2φ) + FLφ − gφ|E|x x− < x ≤ 1

(S69)

with gφ|E|x+ = FLφ and gφ|E|x− = FLφ + K(κ2φ). Using again the periodicity of the Jacobi elliptic sn function, and

solving for the density profile, it is easy to find that ρ
(iv4)
4r (x) = ρ

(iv2)
4r (x), i.e. the same expression as in case (iv2)

above, see Eq. (S65). Moreover, all expressions for cases (iv1)–(iv4) (when π(ρ) has four real roots) can be unified
into a single formula by making use again of the left boundary slope sign function sL, i.e. the sign of the slope of the
density field ρ(x) at x = 0. The result is

ρ4r(x) = ρ4
Aφ sn2

(∣∣FLφ − sLgφ|E|x∣∣, κ2φ)− ρ3/ρ4
Aφ sn2

(∣∣FLφ − sLgφ|E|x∣∣, κ2φ)− 1
. (S70)

In summary, the general solution for the optimal density field associated to a joint mass and current fluctuation in
the 1d weakly assymmetric simple exclusion process in contact with boundary reservoirs at densities ρL ≥ ρR and
subject to an external driving field E can be written as

ρ(x) =



(a1 + g1b1) tn
[
FLϕ − (A+B)|E|x, κ2ϕ

]
+ b1 − a1g1

1 + g1 tn
[
FLϕ − (A+B)|E|x, κ2ϕ

] (2cc)

(ρ2A− ρ1B)− (ρ1B + ρ2A)
(

cn
[
|FLγ − 2sLs+|E|

√
ABx|, κ2γ

])s+
(A−B)− (A+B)

(
cn
[
|FLγ − 2sLs+|E|

√
ABx|, κ2γ

])s+ (2r1cc)

ρ4
Aφ sn2

(∣∣FLφ − sLgφ|E|x∣∣, κ2φ)− ρ3/ρ4
Aφ sn2

(∣∣FLφ − sLgφ|E|x∣∣, κ2φ)− 1
(4r)

(S71)

where the relevant constants in each case are defined above.
Using this result, it is now possible to study analytically the dynamical phase transition described in the main text for

arbitrary boundary gradient (symmetric or asymmetric), well beyond the perturbative nonequilibrium linear regime.
In particular, for PH-symmetric boundaries (ρR = 1−ρL), the conditional mass-current LDF G(m|q) ≡ G(m, q)−G(q)
exhibits a peculiar change of behavior at a critical current |qc|, see Figs. S3.a-b: while for |q| > |qc| the LDF G(m|q)
displays a single minimum at mq = 1/2, with an associated PH-symmetric optimal profile (top insets in Figs. S3.a-
b), for |q| < |qc| two equivalent minima m±q appear in G(m|q), each one associated with a PH-symmetry-broken

optimal profile ρ±q (x), see bottom insets in Figs. S3.a-b, such that ρ±q (x) → 1 − ρ∓q (1 − x). The emergence of

this non-convex regime in G(m|q) signals a 2nd-order DPT to a PH-symmetry-broken dynamical phase. Note that
this happens both for equal boundary densities (ρR = 0.5 = ρL, Fig. S3.a) and for large but symmetric boundary
gradients (ρL = 0.8, ρR = 0.2, Fig. S3.b). On the other hand, for PH-asymmetric boundaries (ρR 6= 1 − ρL, as e.g.
ρL = 0.6, ρR = 0.45, see Fig. S3.c), the governing action (S4) is no longer PH-symmetric: the asymmetry favors one
of the mass branches and the associated G(m|q) displays a single global minimum ∀q, see Fig. S3.c, and an unique
optimal profile. Still, G(m|q) becomes non-convex for low enough currents, and for weak gradient asymmetry, as is
the case for ρL = 0.6, ρR = 0.45 shown in Fig. S3.c, metastable-like local minima in G(m|q) may appear.

The mass mq where the minima of G(m|q) appear for a fixed q is evaluated by demanding dG(m|q)
dm = dG(m,q)

dm = 0.
The m-slope of the LDF G(m, q) at a given (m, q)-point is simply given by the Lagrange multiplier λ(m, q) used to
impose the mass constraint, so

dG(m, q)

dm

∣∣∣∣
mq

= λ(mq, q) = 0 ⇒ ΛL(mq, q, E) = ΛR(m, q,E) , (S72)
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FIG. S3. Middle row: Conditional LDF G(m|q) = G(m, q)−G(q) as a function of the mass m for different currents q for three
different boundary drivings, namely (a) ρL = 0.5, ρR = 0.5 (symmetric driving), (b) ρL = 0.8, ρR = 0.2 (symmetric driving),
and (c) ρL = 0.6, ρR = 0.45 (asymmetric driving). The lines projected in the m − q plane correspond to the local minima of
the LDF G(m|q), which define the mass mq associated to a current fluctuation q. In the symmetry-broken regime this defines
the low- and high-mass branches m±q . Botton row: optimal density profiles ρm,q(x) obtained for q = 0 and the three different
boundary drivings. The thick lines are the optimal profiles associated to the local minima m±q of G(m|q). For completeness
the associated G(m|q) is also shown. Top row: optimal density profiles in each caso, for a current in the PH-symmetric region,
|q| > qc.

where we have used the formula which relates the Lagrange multiplier λ(m, q) with the boundary slopes ρ′L,R(m, q,E)

of the optimal density profile, see Eq. (S22) in §III above, with the definition

ΛL,R(m, q,E) ≡
1
4 (ρ′L,R)2(m, q,E)− q2 − E2ρ2L,R(1− ρL,R)2

2ρL,R(1− ρL,R)
. (S73)

In this way, defining σL,R ≡ ρL,R(1− ρL,R), the equation for the mass minima mq for a fixed q is

1

4σL
(ρ′L)2(mq, q, E)− 1

4σR
(ρ′R)2(mq, q, E) = q2

(
1

σL
− 1

σR

)
+ E2(σL − σR) . (S74)

The critical current qc can be evaluated as well by demanding that

dG(m, q)

dm

∣∣∣∣
mqc ,qc

= 0 =
d2G(m, q)

dm2

∣∣∣∣
mqc ,qc

, (S75)

which leads to the following pair of equations

1

4σL
(ρ′L)2(mqc , qc, E)− 1

4σR
(ρ′R)2(mqc , qc, E) = q2c

(
1

σL
− 1

σR

)
+ E2(σL − σR) , (S76)

ρ′L(m, q,E)

σL

dρ′L(m, q,E)

dm

∣∣∣∣
mqc ,qc

=
ρ′R(m, q,E)

σR

dρ′R(m, q,E)

dm

∣∣∣∣
mqc ,qc

. (S77)

Note that these equations for mq and for qc must be solved numerically due to the nonlinear character of the problem.



15

IV. INSTANTON SOLUTION, MAXWELL-LIKE CONSTRUCTION AND VIOLATION OF
ADDITIVITY PRINCIPLE

In this section we build a time-dependent, instanton-like solution for the optimal density and current fields responsi-
ble of a joint fluctuation of the empirical current and mass. We further show that this solution improves the additivity
principle prediction (i.e. yields a better minimizer of the MFT action) in the regime where the joint current-mass LDF
becomes non-convex. This result demonstrates that time-dependent solutions of the MFT problem in open systems
exist and dominate fluctuation behavior in dynamical coexistence regimes emerging at DPTs.

We start from the general expression derived above for the joint mass-current LDF, see Eq. (S7),

G(m, q) = lim
τ→∞

1

τ
min
{ρ,j}τ0

∫ τ

0

dt

∫ 1

0

dx
[j +D(ρ)∂xρ− Eσ(ρ)]2

2σ(ρ)
, (S78)

with the fields ρ(x, t) and j(x, t) coupled at every point of space and time via the continuity equation, ∂tρ+ ∂xj = 0.
Moreover, the density and current fields are further constrained to yield empirical values

q =
1

τ

∫ τ

0

dt

∫ 1

0

dx j(x, t) , (S79)

m =
1

τ

∫ τ

0

dt

∫ 1

0

dx ρ(x, t) , (S80)

and boundary conditions for the density field are such that ρ(0, t) = ρL and ρ(1, t) = ρR ∀t. We have seen in previous
sections of the SM that, under the additivity conjecture [2], the joint mass-current LDF is simplified to

Gad(m, q) = min
ρ(x)

∫ 1

0

dx
[q +D(ρ)ρ′(x)− σ(ρ)E]

2

2σ(ρ)
, (S81)

with a reduced set of constraints (i.e. boundary densities, and total mass). We denote in this section as ρadm,q(x) the
optimal density profile responsible of a joint mass and current fluctuation under the additivity hypothesis. To search
for violations of the additivity principle, we focus our attention in current fluctuations |q| ≤ qc below the critical point
in systems driven by a symmetric density gradient (ρR = 1 − ρL). In this regime we conjecture a solution for the
optimal trajectory responsible of a given mass-current fluctuation, which is time-dependent for masses where G(m, q)
is non-convex. In particular, our ansatz in this regime is

ρm,q(x, t) =


ρadm,q(x) if m < m−q or m > m+

q

ρad
m−
q ,q

(x) [1− φ(t− tm,q)] + ρad
m+
q ,q

(x) φ(t− tm,q) if m−q ≤ m ≤ m+
q

(S82)

where m±q are the masses of the optimal density profiles associated to a current fluctuation |q| ≤ qc in the PH
symmetry broken regime along the high-mass (+) and low-mass (−) branches. The time-dependent function φ(t) is
a sufficiently smooth localized crossover function such that φ(t) = 0 ∀t < − δt2 and φ(t) = 1 ∀t > δt

2 , with δt a fixed
timescale. The crossover time tm,q in Eq (S82) can be determined now by imposing the constraint on the empirical
mass, Eq. (S80). In particular

m =
1

τ

∫ τ

0

dt

∫ 1

0

dx ρm,q(x, t) =

(
tm,q − δt

2

τ

)
m−q +

(
τ − (tm,q + δt

2 )

τ

)
m+
q +

1

τ

∫ tm,q+
δt
2

tm,q− δt2
dt

∫ 1

0

dxρm,q(x, t)

=
tm,q
τ
m−q +

(
1− tm,q

τ

)
m+
q +

1

τ

[
−δt+

∫ tm,q+
δt
2

tm,q− δt2
dt

∫ 1

0

dxρm,q(x, t)

]
. (S83)

The third term in the rhs of the last equation is ∼ O(δt/τ), so in the long-time limit (τ → ∞) and for a fixed
crosscover time δt this term tends to zero, and hence we find tm,q = p τ with the definition

p =
m+
q −m

m+
q −m−q

. (S84)

As mentioned above, the time-dependent optimal density field ρm,q(x, t) must obey at all points of space and time
a continuity equation ∂tρm,q(x, t) + ∂xjm,q(x, t) = 0. To obtain the optimal time-dependent current field jm,q(x, t)
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for m−q ≤ m ≤ m+
q , we first note that in this case

∂tρm,q(x, t) =


0 if t /∈ [tm,q − δt

2 , tm,q + δt
2 ][

ρad
m+
q ,q

(x)− ρad
m−
q ,q

(x)
]
φ′(t− tm,q) if t ∈ [tm,q − δt

2 , tm,q + δt
2 ]

(S85)

Therefore the continuity constraint in the mass regime m−q ≤ m ≤ m+
q leads to the following optimal current trajectory

jm,q(x, t) =

 q if t /∈ [tm,q − δt
2 , tm,q + δt

2 ]

χ(x) φ′(t− tm,q) if t ∈ [tm,q − δt
2 , tm,q + δt

2 ]
(S86)

where we have already taken into account the constraint on the empirical current q, see Eq. (S79). The function χ(x)
is such that χ′(x) = ρad

m+
q ,q

(x) − ρad
m−
q ,q

(x), and we note that the transient regime where jm,q(x, t) is different from q

does not contribute to the final value of the empirical current, Eq. (S79), as this transient is negligible against the
long-time limit for τ .

Using this ansatz for the optimal trajectory responsible of a mass and current fluctuation in Eq. (S78), we obtain
for the associated joint LDF

G(m, q) = lim
τ→∞

1

τ

∫ τ

0

dt

∫ 1

0

dx
[jm,q(x, t) +D(ρm,q)∂xρm,q(x, t)− Eσ(ρm,q)]

2

2σ(ρm,q)

= lim
τ→∞

[(
tm,q − δt

2

τ

)
Gad(m−q , q) +

(
τ − (tm,q + δt

2 )

τ

)
Gad(m+

q , q) +
1

τ
I

]
, (S87)

with the definition

I ≡
∫ tm,q+

δt
2

tm,q− δt2
dt

∫ 1

0

dx
[jm,q(x, t) +D(ρm,q)∂xρm,q(x, t)− Eσ(ρm,q)]

2

2σ(ρm,q)
. (S88)

Noting that I ∼ O(δt) and using the same arguments as above, we find in the long-time limit τ →∞ that

G(m, q) = p Gad(m−q , q) + (1− p)Gad(m+
q , q) , (S89)

which corresponds to the Maxwell construction obtained from Gad(m, q) in the mass regime m−q ≤ m ≤ m+
q where this

joint LDF is non-convex (for |q| ≤ qc), as described above and in the main text. Note that an equivalent argument can
be developed for the conditional mass-current LDF G(m|q) = G(m, q) − G(q). This instanton solution corresponds
to the dynamical coexistence of the different symmetry-broken phases which appear for |q| ≤ qc, a behavior typical
of 1st-order DPTs. Note also that one can generalize the previous solution to PH-asymmetric boundaries in regimes
where G(m, q) is non-convex. Finally, we would like to mention that some subtleties of the instanton solution appear
for |q| ≈ qc related to the order of the L→∞ and τ →∞ limits, see Ref. [22] for a discussion of this issue.
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V. SPECTRAL ANALYSIS OF THE DYNAMICAL GENERATOR AND METASTABLE MANIFOLD

In this section we perform a spectral analysis of the microscopic dynamics of the 1d WASEP in order to better
understand the DPT demonstrated above from a microscopic point of view. In particular, we will focus on the quasi-
degenerate (metastable) states |P c1MS〉 and |P c2MS〉 introduced in the main text, which contain the information about
the optimal trajectories in the symmetry-broken phase.

At the microscopic level, a configuration of the 1d WASEP is given by C = {nk}k=1,...,L, where nk = 0, 1 is the
occupation number of the kth-site of the lattice. Within the quantum Hamiltonian formalism for the master equation
[23], each configuration is then represented as a vector in a Hilbert space

|C〉 =

L⊗
k=1

(
nk

1− nk

)
, (S90)

and the complete information about the system is contained in a vector |P 〉 = (P (C1), P (C2), ...)T =
∑
i P (Ci) |Ci〉,

with T denoting transposition, such that P (Ci) represents the probability of configuration Ci. This probability
vector is normalized such that 〈−|P 〉 = 1 where 〈−| =

∑
i 〈Ci| is the vector representing the sum over all possible

configurations and 〈Ci|Cj〉 = δij . The probability vector |P 〉 evolves in time according to the master equation

∂t |P 〉 = W |P 〉 , (S91)

where W defines the Markov generator of the dynamics. Such generator can be tilted Wµ,λ[6, 25] to bias the original
stochastic dynamics in order to favor large (low) mass for µ < 0 (µ > 0) and large (low) currents for λ > 0 (λ < 0),
with µ and λ the conjugate parameters to the microscopic mass and current observables, respectively. In particular,
the tilted dynamical generator for the 1d open WASEP is

Wµ,λ =

L−1∑
k=1

[
1

2
e(λ+E)/(L−1)σ+

k+1σ
−
k +

1

2
e−(λ+E)/(L−1)σ+

k σ
−
k+1

− 1

2
eE/(L−1)n̂k(1− n̂k+1)− 1

2
e−E/(L−1)n̂k+1(1− n̂k)]

+ α[σ+
1 − (1− n̂1)] + γ[σ−1 − n̂1]

+ δ[σ+
L − (1− n̂L)] + β[σ−L − n̂L]− µ

L

L∑
k=1

n̂k , (S92)

and we recall (see main text) that α and γ (δ and β) are the injection and extraction rates at the leftmost (rightmost)
site, respectively. In the previous expression 1 is the identity matrix and n̂k = σ+

k σ
−
k is the number operator at site

k ∈ [1, L], where σ+
k and σ−k are the creation and annihilation operators given by σ±k = (σxk ± iσ

y
k)/2 respectively, with

σx,yk the standard x, y-Pauli matrices acting on site k. The connection between the biased dynamics and the large

deviation properties of the 1d WASEP is established through the largest eigenvalue of Wµ,λ [25, 26]. Such eigenvalue,
denoted by θ0(µ, λ), is nothing but the cumulant generating function of the observables m and q, related to the LDF
G(m, q) via a Legendre transform,

θ0(µ, λ) = L−1 max
m,q

[λq − µLm−G(m, q)] . (S93)

The average of an observable b at a final time t in the unbiased (λ = µ = 0) dynamics can be written in operator

notation as 〈b(t)〉 ≡ 〈−|b̂et W0,0 |P0〉. We can write the time evolution operator for long times as et W0,0 ∼ |Pss〉 〈−|,
with |Pss〉 being the stationary state probability vector. Thus, as 〈−|P0〉 = 1 the average of b is 〈b(t)〉 ≡ 〈−|b̂ |Pss〉.
Since we are in the unbiased dynamics this average is the same at both the final time t and the intermediate times
0� τ � t, so that 〈b(t)〉 = 〈b(τ)〉 [27]. However, for a biased dynamics such as W0,λ, we are interested in computing
the average of observables at intermediate times, since the rare event sustained by W0,λ presents time-boundary effects
which make the average at final and at intermediate times no longer equivalent [27]. Hence, in order to make these
averages equivalent in the biased dynamics, we transform the non-stochastic generator W0,λ (note that it does not
conserve probability 〈−|W0,λ 6= 0) into a physical stochastic generator via the Doob transform [28, 29]:

W0,λ
Doob = L̂0W0,λL̂−10 − θ0(λ) , (S94)

which is a proper stochastic generator (now 〈−|W0,λ
Doob = 0), with largest eigenvalue equal to zero, generating the same

trajectories as W0,λ. Here L̂0 is a diagonal matrix whose elements (L̂0)ii are the i-th entries of the left eigenvector
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〈L0| of the biased generator W0,λ associated with its largest eigenvalue θ0(λ). Thus, with this new generator W0,λ
Doob

we can compute the average of any observable b at intermediate times as

〈b(τ)〉λ = 〈b(t)〉λ ≡
〈−|b̂et W0,λ

Doob |P0〉
〈−|et W0,λ

Doob |P0〉
. (S95)

In what follows we show how the previous average takes different forms depending on whether or not the largest
eigenvalue of the biased generator W0,λ is degenerate.

A. Non-degenerate largest eigenvalue (PH symmetric phase)

If θ0(λ) is non-degenerate, the time evolution operator for long times is et W0,λ ∼ etθ0(λ) |R0〉 〈L0|. Then by using
(S94) the asymptotic Doob time evolution operator reads

et W0,λ
Doob ∼ L̂0 |R0〉 〈L0| L̂−10 = L̂0 |R0〉 〈−| ,

with |R0〉 being the right eigenvector of W0,λ associated with its largest eigenvalue θ0(λ). Additionally we can
normalize eigenvectors so that

〈Li|Rj〉 = δij and 〈−|R0〉 = 1 .

Thus the time-evolved initial probability vector is

et W0,λ
Doob |P0〉 ∼ L̂0 |R0〉 . (S96)

As a consequence the average (S95) is given by

〈b(τ)〉λ =
〈−|b̂L̂0 |R0〉
〈−|L̂0 |R0〉

=
〈−|b̂L̂0 |R0〉
〈L0|R0〉

= 〈−|b̂L̂0 |R0〉

where in the last equality we have used the fact that eigenvectors are normalized. This is how we calculate, from the
microscopic dynamics, the optimal density profiles associated with current fluctuations (λ 6= 0) in the particle-hole
(PH) symmetric phase. The optimal particle density in the large size limit at x = k/L, with L being the total number
of sites, is thus given by

ρ(x) = 〈n̂k(τ)〉λ = 〈−|n̂kL̂0 |R0〉 .

B. Degenerate largest eigenvalue (PH symmetry-broken phase)

As we have seen in the main text, for λ−c ≤ λ ≤ λ+c (or equivalently |q| ≤ qc), the largest eigenvalue of W0,λ becomes
degenerate in the large size limit, L→∞. This is reflected in the diffusively-scaled spectral gap, L2[θ0(0, λ)−θ1(0, λ)],
with θ1(0, λ) the next-to-leading eigenvalue of W0,λ, which tends to zero as L increases in this λ-region. In this case,
defining as |R1〉 and 〈L1| the right and left eigenvectors associated to θ1(0, λ), we have that the time evolution operator

can be written for long times as et W0,λ ∼ etθ0(λ)(|R0〉 〈L0| + |R1〉 〈L1|). Hence, by using (S94) the asymptotic Doob
time evolution operator reads

et W0,λ
Doob ∼ L̂0 |R0〉 〈L0|L−10 + L̂0 |R1〉 〈L1| L̂−10 = L̂0 |R0〉 〈−|+ L̂0 |R1〉 〈L1| L̂−10 .

Thus the time-evolved initial vector probability is

et W0,λ
Doob |P0〉 ∼ L̂0 |R0〉+ cL̂0 |R1〉 , (S97)

with c = 〈L1| L̂−10 |P0〉. Note that, since 〈−|P0〉 = 1 then c ∈ [c1, c2] with c1 = min
(
〈L1| L̂−10

)
and c2 =

max
(
〈L1| L̂−10

)
, where min and max correspond to the minimum and maximum entries of the vector 〈L1| L̂−10 .
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Thus, Eq. (S97) defines the set of metastable states |P cMS〉 of the main text, whose extremes are given by |P c1MS〉 and
|P c2MS〉. As a consequence the average (S95) is given by

〈b(τ)〉λ =
〈−|b̂L̂0 |R0〉+ c〈−|b̂L̂0 |R1〉
〈−|L̂0 |R0〉+ c〈−|L̂0 |R1〉

= 〈−|b̂L̂0 |R0〉+ c〈−|b̂L̂0 |R1〉

where in the last equality we have used the fact that eigenvectors are normalized. This is how we calculate, from
the microscopic dynamics, the optimal density profiles associated with current fluctuations (λ 6= 0) in the symmetry-
broken phase. The optimal particle densities in the large size limit at x = k/L, are thus given by

ρ1(x) = 〈n̂k(τ)〉λ = 〈−|n̂kL̂0 |R0〉+ c1〈−|n̂kL̂0 |R1〉

and

ρ2(x) = 〈n̂k(τ)〉λ = 〈−|n̂kL̂0 |R0〉+ c2〈−|n̂kL̂0 |R1〉 ,

which correspond to the metastable density profiles for L = 10 and L = 20 of Fig. 4 in the main text.
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[15] M. Žnidarič, “Exact large-deviation statistics for a nonequilibrium quantum spin chain,” Phys. Rev. Lett. 112, 040602
(2014).

[16] O. Shpielberg and E. Akkermans, “Le Chatelier principle for out-of-equilibrium and boundary-driven systems: Application
to dynamical phase transitions,” Phys. Rev. Lett. 116 (2016).
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